#### 期刊菜单

Echelon Use of Retired Power Battery Based on Sensor Data Filtering
DOI: 10.12677/JSTA.2022.102035, PDF, HTML, XML, 下载: 42  浏览: 61

Abstract: Recently, the recycling of power battery mainly includes two methods, namely scrap disassembly and echelon use. Echelon use can develop the power battery recycling from the dismantling of single battery to the recycling and use of battery module and battery pack, so as to achieve the effect of making full use of everything. Based on the sensor data, the state of the battery was estimated. According to the different attenuation degree of the battery capacity, the retired battery was divided into different groups, based on which the targeted recycling was carried out.

1. 引言

2. 退役动力电池梯次利用方案

3. 动力电池SOH检测方法

Table 1. Comparison between battery aging analysis methods

Table 2. Steps of utilization for retired power battery

$\left\{\begin{array}{l}{x}_{k+1}=A{x}_{k}+{\gamma }_{k}\\ {y}_{k}=C{x}_{k}+{\epsilon }_{k}\end{array}$ (1)

$\mathcal{Z}=p+\underset{i=1}{\overset{m}{\sum }}{\alpha }_{i}{g}_{i}=p\oplus G{B}^{m}\triangleq 〈p,G〉$ (2)

$\stackrel{¯}{\mathcal{Z}}\cap \mathcal{S}\subseteq \mathcal{Z}=p\oplus G{\text{B}}^{r+1}$ (3)

$\begin{array}{l}p=\stackrel{¯}{p}+\lambda \left(d-{c}^{\text{T}}\stackrel{¯}{p}\right)\\ G=\left[\begin{array}{cc}\left(I-\lambda {c}^{\text{T}}\right)\stackrel{¯}{G}& \sigma \lambda \end{array}\right]\end{array}$ (4)

$\lambda =\frac{\stackrel{¯}{G}{\stackrel{¯}{G}}^{\text{T}}c}{{c}^{\text{T}}\stackrel{¯}{G}{\stackrel{¯}{G}}^{\text{T}}c+{\sigma }^{2}}$ (5)

1) 预测步

${x}_{k}\in {\mathcal{Z}}_{k}={p}_{k}\oplus {G}_{k}{\text{B}}^{m}=〈{p}_{k},{G}_{k}〉$ (6)

${\stackrel{¯}{\mathcal{Z}}}_{k}=〈{\stackrel{¯}{p}}_{k},{\stackrel{¯}{G}}_{k}〉$ (7)

$\begin{array}{l}{\stackrel{¯}{p}}_{k+1}=A{p}_{k}=SO{H}_{k}\\ {\stackrel{¯}{G}}_{k+1}=\left[A{G}_{k}\text{}F\right]=\left[{G}_{k}\text{}1\right]\end{array}$ (8)

$\mathcal{S}=\left\{{x}_{k+1}\in {ℝ}^{n}:|C{x}_{k+1}-{y}_{k+1}|\le \stackrel{˜}{\epsilon }\right\}$ (9)

2) 更新步

$\begin{array}{l}{p}_{k+1}={\stackrel{¯}{p}}_{k+1}+\lambda \left({y}_{k+1}-C\text{​}{\stackrel{¯}{p}}_{k+1}\right)\\ {G}_{k+1}=\left[\left(I-\lambda C\right){\stackrel{¯}{G}}_{k+1}\text{ }{\epsilon }_{k}\lambda \right]\end{array}$ (10)

$\left\{\begin{array}{l}{x}_{k+1}^{+}\left(i\right)={p}_{k+1}\left(i\right)+\underset{j=1}{\overset{s}{\sum }}|{G}_{k+1}\left(i,j\right)|,i=1,\cdots ,n\hfill \\ {x}_{k+1}^{-}\left(i\right)={p}_{k+1}\left(i\right)-\underset{j=1}{\overset{s}{\sum }}|{G}_{k+1}\left(i,j\right)|,i=1,\cdots ,n\hfill \end{array}$ (11)

$\left\{\begin{array}{l}SO{H}_{k}^{+}={\stackrel{¯}{p}}_{k}+\underset{j=1}{\overset{2k+1}{\sum }}|{\stackrel{¯}{G}}_{k}\left(j\right)|\hfill \\ SO{H}_{k}^{-}={\stackrel{¯}{p}}_{k}-\underset{j=1}{\overset{2k+1}{\sum }}|{\stackrel{¯}{G}}_{k}\left(j\right)|\hfill \end{array}$ (12)

4. 电池容量衰减程度检测

$SOH=\frac{Q}{{Q}_{N}}×100%$ (13)

$\left\{\begin{array}{l}SO{H}_{k+1}=SO{H}_{k}+{\gamma }_{k}\hfill \\ {d}_{k}=SO{C}_{k}-SO{C}_{k-1}+\frac{\eta I\Delta T}{SO{H}_{k}}+{\epsilon }_{k}\hfill \end{array}$ (14)

5. 仿真示例

Figure 1. Detection curves of SOH for battery

6. 结论

NOTES

*通讯作者。

 [1] Zhang, J.Y., Shi, Y.J., Zheng, Y.D., Jiang, H., Lei, B. and Yuan, Z.Y. (2021) Study on PCS Topology of Large Capaci-ty Energy Storage System Based on Retired Power Battery Reuse. The 10th Renewable Power Generation Conference, Online Conference, 14-15 October 2021, 1004-1009. [2] 朱广燕, 刘三兵, 海滨, 陈效华. 动力电池回收及梯次利用研究现状[J]. 电源技术, 2015, 39(7): 1564-1566. [3] 高震, 张新慧, 颜勇, 彭克. 退役锂离子电池梯次利用状态区间划分[J]. 电池, 2021, 51(2): 209-213. [4] 王红美, 刘建利. 基于K-means聚类的退役动力电池梯次利用分选方法[J]. 电子技术与软件工程, 2021(7): 225-226. [5] Wang, Y., Wang, Z., Puig, V. and Cembrano, G. (2019) Zonotopic Set-Membership State Estimation for Discrete-Time Descriptor LPV Systems. IEEE Transactions on Auto-matic Control, 64, 2092-2099. https://doi.org/10.1109/TAC.2018.2863659