#### 期刊菜单

Study on the Impact of Industrial Agglomeration on the Total Factor Productivity of Manufacturing Industry in Jiangsu Province
DOI: 10.12677/SA.2022.112048, PDF, HTML, XML, 下载: 64  浏览: 117  科研立项经费支持

Abstract: According to the relevant data of the manufacturing industry in Jiangsu Province from 2015 to 2020, the comprehensive location entropy index is used to measure the industrial agglomeration degree of various manufacturing industry sectors in Jiangsu Province, and on this basis, the total factor productivity of its manufacturing-related subdivisions is analyzed by means of the DEA model, and the agglomeration degree of the related manufacturing industry in Jiangsu Province and the total factor productivity and the overall development of the country are theoretically discussed according to the calculation results, and then the measurement model is constructed to explore the impact of industrial agglomeration of manufacturing in Jiangsu Province on the total factor productivity of various industry sectors.

1. 引言

2. 研究综述

3. 江苏省制造业产业集聚与全要素生产率现状

3.1. 江苏省制造业产业集群现状

3.1.1. 测算方法

$L{Q}_{ij}=\frac{{q}_{ij}/{q}_{j}}{{q}_{i}/q}$ (1)

3.1.2. 结果分析

Table 1. Location entropy of Jiangsu Province’s 31 manufacturing sectors in 2015~2020

3.2. 江苏省制造业全要素生产率的测度

3.2.1. 江苏省制造业全要素生产率的测度模型选取

$\begin{array}{l}{\mathrm{min}}_{s}={D}_{m}^{t}\left({X}_{m}^{t},{Y}_{m}^{t}\right)\\ \text{s}\text{.t}.\text{\hspace{0.17em}}\text{\hspace{0.17em}}\underset{k=1}{\overset{M}{\sum }}{\lambda }_{k}{x}_{ik}^{t}\le {x}_{ik}^{t}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}i=1,2,\cdots ,n\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\underset{k=1}{\overset{M}{\sum }}{\lambda }_{k}{y}_{ik}^{t}\le \delta {y}_{ik}^{t}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}r=1,2,\cdots ,q\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\lambda >0\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}k=1,2,\cdots ,M\end{array}$ (2)

$\begin{array}{l}{M}_{m}^{t}=\frac{{D}_{m}^{t}\left({x}_{m}^{t+1},{y}_{m}^{t+1}\right)}{{D}_{m}^{t}\left({x}_{m}^{t},{y}_{m}^{t}\right)}\\ {M}_{m}^{t+1}=\frac{{D}_{m}^{t+1}\left({x}_{m}^{t+1},{y}_{m}^{t+1}\right)}{{D}_{m}^{t+1}\left({x}_{m}^{t},{y}_{m}^{t}\right)}\end{array}$ (3)

$\begin{array}{c}\text{TFP}=M={\left[\frac{{D}_{m}^{t}\left({x}_{m}^{t+1},{y}_{m}^{t+1}\right)}{{D}_{m}^{t}\left({x}_{m}^{t},{y}_{m}^{t}\right)}×\frac{{D}_{m}^{t+1}\left({x}_{m}^{t+1},{y}_{m}^{t+1}\right)}{{D}_{m}^{t+1}\left({x}_{m}^{t},{y}_{m}^{t}\right)}\right]}^{1/2}\text{​}\text{​}\text{​}\\ ={\left[\frac{{D}_{m}^{t}\left({x}_{m}^{t+1},{y}_{m}^{t+1}\right)}{{D}_{m}^{t+1}\left({x}_{m}^{t+1},{y}_{m}^{t+1}\right)}×\frac{{D}_{m}^{t}\left({x}_{m}^{t},{y}_{m}^{t}\right)}{{D}_{m}^{t+1}\left({x}_{m}^{t},{y}_{m}^{t}\right)}×\frac{{D}_{m}^{t+1}\left({x}_{m}^{t+1},{y}_{m}^{t+1}\right)}{{D}_{m}^{t}\left({x}_{m}^{t},{y}_{m}^{t}\right)}\right]}^{1/2}\\ =\text{TECH}×\text{EFFCH}\end{array}$ (4)

3.2.2. 结果分析

Table 2. Total factor productivity index and its decomposition in Jiangsu Province over the years

Table 3. Total factor productivity of double-digit manufacturing in Jiangsu Province from 2015 to 2020

Figure 1. Binar stacked chart of total factor productivity in double-digit manufacturing in Jiangsu Province from 2015 to 2020

4. 产业集聚对江苏省制造业全要素生产率影响的实证研究

4.1. 模型设定

$\mathrm{ln}\left(TF{P}_{it}\right)=C+{b}_{1}\mathrm{ln}\left(L{Q}_{it}\right)+{b}_{2}\mathrm{ln}\left(H{R}_{it}\right)+{b}_{3}\mathrm{ln}\left(FD{I}_{it}\right)+{m}_{it}$ (5)

4.2. 变量选取

a) 被解释变量

b) 解释变量

c) 控制变量

Figure 2. The trend of changes in the amount of FDI actually utilized by the manufacturing industry in Jiangsu Province

4.3. 回归结果分析

Figure 3. Trend chart of actual utilization of foreign direct use amount of manufacturing industry in Jiangsu Province

Table 4. Estimated results of the impact of textile industry agglomeration on the TFP index

5. 结论

6. 启示

 [1] Krugman, P. (1991) Increasing Returns and Economic Geography. Journal of Political Economy, 99, 483-499. https://doi.org/10.1086/261763 [2] Ellison, G. and Glaeser, E.L. (1997) Geographic Concentration in U.S. Manufacturing Industries: A Dartboard Approach. Journal of Political Economy, 105, 889-927. https://doi.org/10.1086/262098 [3] 朱英明. 区域制造业规模经济、技术变化与全要素生产率——产业集聚的影响分析[J]. 数量经济技术经济研究, 2009, 26(10): 3-18. [4] 张妍. 三次产业协同发展视角下的开发区产业集群效应分析——以兰州新区为例[J]. 北京交通大学学报(社会科学版), 2020, 19(4): 35-44. [5] 李丹, 胡小娟. 中国制造业企业相对效率和全要素生产率增长研究——基于1999-2005年行业数据的实证分析[J]. 数量经济技术经济研究, 2008, 25(7): 31-41. [6] 刘光岭, 卢宁. 全要素生产率的测算与分解: 研究述评[J]. 经济学动态, 2008(10): 79-82. [7] 张公嵬, 陈翔, 李赞. FDI、产业集聚与全要素生产率增长一基于制造业行业的实证分析[J]. 科研管理, 2013(9): 114-122. [8] 陈柳. 中国制造业产业集聚与全要素生产率增长[J]. 山西财经大学学报, 2010(12): 60-66. [9] 张建磊, 程隆棣, 刘蕴莹. 纺织产业集聚与全要素生产率——以新疆、江苏和浙江为例[J]. 新疆大学学报(自然科学版), 2018, 35(1): 121-126. [10] 陈捷, 计冰燕. 环渤海地区制造业产业集聚与全要素生产率增长——基于DEA-Malnlquist指数[J]. 经营与管理, 2013(12): 20-23. [11] 胡玫, 刘春生, 陈飞. 产业集聚对中国企业全要素生产率的影响——基于广东省制造业的实证研究[J]. 经济问题, 2015(4): 78-82. [12] 杨安. 产业集聚对京津冀地区制造业全要素生产率的影响研究[D]: [硕士学位论文]. 西安: 西安石油大学, 2020.