成纤维细胞在皮肤老化中的作用机制研究进展
Research Progress on the Mechanism of Fibroblasts in Skin Aging
DOI: 10.12677/ACM.2022.124505, PDF, 下载: 268  浏览: 419 
作者: 张美红:青海大学,青海 西宁
关键词: 成纤维细胞皮肤老化作用机制Fibroblast Skin Aging Mechanism of Action
摘要: 皮肤是人体最大的器官,随着人们年龄的增长,不仅会像其他器官一样出现功能减退,引起各种疾病,而且会逐渐出现皮肤老化的状态。皮肤老化反映在的细胞水平即是细胞老化。而皮下成纤维细胞则是真皮中最主要的细胞成份之一,当皮肤衰老时,成纤维细胞则有数量下降、形状变化,以及分泌与合成功能下降的现象。深入研究成纤维细胞在皮肤老化中的作用机理,主要涉及AGES、ROS-MMP、抑癌基因激活、miRNAs、LncRNA TERRA等,为研究防止和推迟皮肤衰老提出了全新的思想和指导意义。本文将就成纤维细胞在皮肤衰老中的作用机理做出系统综述。
Abstract: The skin is the largest organ of the human body. As people age, not only will the function decline like other organs, causing various diseases, but also the state of skin aging will gradually appear. The cellular level reflected in skin aging is cellular aging. The subcutaneous fibroblasts are one of the most important cell components in the dermis. When the skin ages, the fibroblasts will decrease in number, change in shape, and decrease in secretion and synthesis functions. In-depth study of the mechanism of fibroblasts in skin aging, mainly involving AGES, ROS-MMP, tumor suppressor gene activation, miRNAs, LncRNA TERRA, etc., puts forward new ideas and guiding significance for the study of preventing and delaying skin aging. This article will provide a systematic review on the mechanism of fibroblasts in skin aging.
文章引用:张美红. 成纤维细胞在皮肤老化中的作用机制研究进展[J]. 临床医学进展, 2022, 12(4): 3481-3486. https://doi.org/10.12677/ACM.2022.124505

参考文献

[1] Wang, A.S. and Dreesen, O. (2018) Biomarkers of Cellular Senescence and Skin Aging. Frontiers in Genetics, 9, Article No. 247.
https://doi.org/10.3389/fgene.2018.00247
[2] Young, A.R., Claveau, J. and Rossi, A.B. (2017) Ultraviolet Radiation and the Skin: Photobiology and Sunscreen Photoprotection. Journal of the American Academy of Dermatology, 76, S100-S109.
https://doi.org/10.1016/j.jaad.2016.09.038
[3] Lee, Y.R., Noh, E.M., Jeong, E.Y., et al. (2009) Cordycepin Inhibits UVB-Induced Matrix Metalloproteinase Expression by Suppressing the NF-κB Pathway in Human Dermal Fibroblasts. Experimental & Molecular Medicine, 41, 548-554.
https://doi.org/10.3858/emm.2009.41.8.060
[4] 马淑梅, 刘晓冬, 龚平生, 牟颖, 阎岗林, 罗贵民. 中波紫外线对成纤维细胞的损伤作用[J]. 吉林大学学报(医学版), 2005, 31(3): 365-367.
[5] 李月玲, 杨佳音, 徐睿. 牙髓干细胞对皮肤成纤维细胞衰老及增殖能力的影响[J]. 上海口腔医学, 2020, 29(5): 466-470.
[6] 乔廷廷, 郭玲. 花青素来源、结构特性和生理功能的研究进展[J]. 中成药, 2019, 41(2): 388-392.
[7] 于长春, 孙添添. 三个不同地区黑枸杞花青素的抗氧化活性分析[J]. 吉林师范大学学报(自然科学版), 2019, 40(1): 95-99.
[8] Giardino, R., Giavaresi, G., Fini, M., et al. (2002) The Role of Different Chemical Modifications of Superoxide Dismutase in Preventing a Prolonged Muscular Ischemia/Reperfusion Injury. Artificial Cells, Blood Substitutes, and Biotechnology, 30, 189-198.
https://doi.org/10.1081/BIO-120004339
[9] Jin, S.L. and Yin, Y.G. (2012) In Vivo Antioxidant Activity of Total Flavonoids from Indocalamus Leaves in Aging Mice Caused by D-Galactose. Food and Chemical Toxicology, 50, 3814-3818.
https://doi.org/10.1016/j.fct.2012.07.046
[10] Zhou, B.R., Guo, X.F., Zhang, J.A., et al. (2013) Elevated miR-34c-5p Mediates Dermal Fibroblast Senescence by Ultraviolet Irradiation. International Journal of Biological Sciences, 9, 743 -752.
https://doi.org/10.7150/ijbs.5345
[11] Kim, J., Lee, C.W., Kim, E.K., et al. (2011) Inhibition Effect of Gynura procumbens Extract on UV-B-Induced Matrix-Metalloproteinase Expression in Human Dermal Fibroblasts. Journal of Ethnopharmacology, 137, 427-433.
https://doi.org/10.1016/j.jep.2011.04.072
[12] Suganuma, K., Nakajima, H., Ohtsuki, M., et al. (2010) Astaxanthin Attenuates the UVA-Induced up Regulation of Matrix-Metalloproteinase 1 and Skin Fibroblast Elastase in Human Dermal Fibroblasts. Journal of Dermatological Science, 58, 136-142.
https://doi.org/10.1016/j.jdermsci.2010.02.009
[13] 康玉英, 孙彩虹, 鞠梅, 等. 外周血单一核细胞的体外活化对成纤维细胞增殖和基质金属蛋白酶产生的影响[J]. 中华皮肤科杂志, 2015, 48(11): 801-806.
[14] Permatasari, F., Hu, Y.Y., Zhang, J.A., et al. (2014) Anti-Photoaging Potential of Botulinum Toxin Type A in UVB-Induced Premature Senescence of Human Dermal Fibroblasts in Vitro through Decreasing Senescence Related Proteins. Journal of Photochemistry and Photobiology B: Biology, 133, 115-123.
https://doi.org/10.1016/j.jphotobiol.2014.03.009
[15] Bae, J.T., Ko, H.J., Kim, G.B., et al. (2012) Protective Effects of Fermented Citrus unshiu Peel Extract against Ultraviolet A Induced Photoageing in Human Dermal Fibrobolasts. Phytotherapy Research, 26, 1851-1856.
https://doi.org/10.1002/ptr.4670
[16] 刘仲荣, 刘荣卿, 张国威, 等. 基质金属蛋白酶表达在皮肤光老化皱纹形成中的作用[J]. 中华皮肤科杂志, 2003, 36(6): 332-334.
[17] Kumar, M., Lu, Z., Takwi, A.A., et al. (2011) Negative Regulation of the Tumor Suppressor p53 Gene by MicroRNAs. Oncogene, 30, 843-853.
https://doi.org/10.1038/onc.2010.457
[18] 沈和平. Bcl-2家族和p53在肺癌细胞凋亡中的调控效应[J]. 世界临床医学, 2015, 9(12): 143.
[19] 张仁峰, 公蕾. p53基因与肿瘤治疗研究进展[J]. 现代免疫学, 2016, 36(2): 150-153+161.
[20] Mancini, M., Lena, A.M., Saintigny, G., et al. (2014) MicroRNAs in Human Skin Ageing. Ageing Research Reviews, 17, 9-15.
https://doi.org/10.1016/j.arr.2014.04.003
[21] Mancini, M., Saintigny, G., Mahé, C., et al. (2012) MicroRNA-152 and -181a Participate in Human Dermal Fibroblasts Senescence Acting on Cell Adhesion and Remodeling of the Extra-Cellular Matrix. Aging, 4, 843-853.
https://doi.org/10.18632/aging.100508
[22] Martineza, I., Cazalla, D., Almsteada, L.L., et al. (2011) MiR-29 and miR-30 Regulate B-Myb Expression during Cellular Senescence. Proceedings of the National Academy of Sciences of the United States of America, 108, 522-527.
https://doi.org/10.1073/pnas.1017346108
[23] Hackl, M., Brunner, S., Fortschegger, K., et al. (2010) MiR-17, miR-19b, miR-20a, and miR-106a Are Down-Regulated in Human Aging. Aging Cell, 9, 291-296.
https://doi.org/10.1111/j.1474-9726.2010.00549.x
[24] Kumamoto, K., Spillare, E.A., Fujita, K., et al. (2008) Nutlin-3a Activates p53 to Both Down-Regulate Inhibitor of Growth 2 and Up-Regulate mir-34a, mir-34b, and mir-34c Expression, and Induce Senescence. Cancer Research, 68, 3193-3203.
https://doi.org/10.1158/0008-5472.CAN-07-2780
[25] Yamakuchi, M., Ferlito, M. and Lowenstein, C.J. (2008) MiR-34a Repression of SIRT1 Regulates Apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 105, l3421-13426.
https://doi.org/10.1073/pnas.0801613105
[26] Tazawa, H., Tsuchiya, N., Izumiya, M., et al. (2007) Tumor-Suppressive miR-34a Induces Senescence-Like Growth Arrest through Modulation of the E2F Pathway in Human Colon Cancer Cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 15472-15477.
https://doi.org/10.1073/pnas.0707351104
[27] 李欢, 何丽洁, 娄未娟, 等. lnc-MGC对高糖诱导的人腹膜间皮细胞转分化的影响[J]. 解放军医学杂志, 2018, 43(3): 189-194.
[28] Yang, X.C., Zhao, H., Lau, W.B., et al. (2018) lncRNA ENSMUST00000134285 Increases MAPK11 Activity, Regulating Aging-Related Myocardial Apoptosis. The Journals of Gerontology: Series A, 73, 1010-1017.
https://doi.org/10.1093/gerona/gly020
[29] 李嘉蔚, 胡雪菲, 韩鹏, 等. 斑马鱼体内氧化损伤标志物筛选[J]. 郑州大学学报(医学版), 2018, 53(4): 499-502.
[30] Gao, Y., Zhang, J., Liu, Y., et al. (2017) Regulation of TERRA on Telomeric and Mitochondrial Functions in IPF Pathogenesis. BMC Pulmonary Medicine, 17, Article No. 163.
https://doi.org/10.1186/s12890-017-0516-1
[31] Feuerhahn, S., Iglesias, N., Panza, A., et al. (2010) TERRA Biogenesis, Turnover and Implications for Function. FEBS Letters, 584, 3812-3818.
https://doi.org/10.1016/j.febslet.2010.07.032