肠道菌群参与术后认知功能障碍发病的研究进展
Research Progress of Gut Microbiota in the Pathogenesis of Postoperative Cognitive Dysfunction
DOI: 10.12677/ACM.2022.124514, PDF, HTML, XML, 下载: 210  浏览: 394  科研立项经费支持
作者: 欧茂塔, 杜 江, 段礼良, 柯天成, 王 晶*:暨南大学第一附属医院骨科,广东 广州
关键词: 老年骨科患者术后认知功能肠道菌群Elderly Orthopedic Patients Postoperative Cognitive Function Gut Microbiota
摘要: 术后认知功能障碍(Postoperative Cognitive Dysfunction, POCD)是外科手术常见并发症之一,好发于老年骨科手术患者,尤其是老年髋部骨折患者。近年来研究发现,术后认知功能障碍患者存在明显的肠道菌群紊乱,提示肠道菌群在POCD发生发展中发挥重要作用。本文基于目前的有关基础实验及临床研究,对肠道菌群参与术后认知功能障碍发生发展途径及机制进行综述,以望对其科学研究和临床治疗提供新思路。
Abstract: Postoperative cognitive dysfunction (POCD) is one of the common complications of surgery. It often occurs in elderly orthopaedic patients, especially elderly patients with hip fracture. Recent studies have found that patients with postoperative cognitive dysfunction have obvious intestinal flora disorder, suggesting that gut microbiota plays an important role in the occurrence and de-velopment of POCD. Based on the current basic experimental and clinical research, this paper summarizes the ways and mechanisms of gut microbiota involved in the occurrence and develop-ment of postoperative cognitive dysfunction, in order to provide new ideas for its scientific research and clinical treatment.
文章引用:欧茂塔, 杜江, 段礼良, 柯天成, 王晶. 肠道菌群参与术后认知功能障碍发病的研究进展[J]. 临床医学进展, 2022, 12(4): 3542-3549. https://doi.org/10.12677/ACM.2022.124514

1. 引言

术后认知功能障碍(POCD)是指麻醉和手术后出现的中枢神经系统并发症,主要表现为认知能力、心理行为、社交能力等方面较术前水平下降。它可以发生在所有年龄段的患者中,在65岁以上的老年患者中发病率较高。许多外科手术都会引发术后认知功能障碍的发生,如腹部手术、胸科手术、心血管手术等,在非心脏外科手术中,老年髋部骨折患者发病率较高 [1]。越来越多的研究及证据表明发生术后认知功能障碍将会延长患者的住院时间,延迟其康复进程,增加患者以后发生痴呆甚至增加其死亡的风险 [2]。术后认知功能障碍在住院的老年患者中普遍存在 [3] [4] [5]。这不仅会给患者的躯体功能和生活质量造成不利影响,而且在经济上对整个社会的医疗保健服务支出带来沉重负担。我国目前正逐步进入老年社会,在近年来国内及全球医疗保健支出迅速增加的背景下,对术后认知功能障碍进行积极有效的干预将对改善患者预后和降低医疗成本具有重要意义!目前对POCD发病机制和预防治疗的相关研究越来越受到重视,成为了麻醉及围手术期医学研究的热点。

同时,宏基因组测序等技术的发展使深入研究肠道菌群成为可能。肠道微生物的复杂组合是控制健康和疾病的重要因素。肠道微生物群赋予宿主机体的几个基本功能证明了其重要性:如将不可消化的食物成分发酵成可吸收的代谢物、合成必需维生素、去除有毒化合物、消除病原体、加强肠道屏障以及刺激和调节免疫系统等 [6]。当机体内外变化导致肠道菌群紊乱时,将影响机体新陈代谢和免疫反应,进而导致各种疾病的发生,特别是中枢系统疾病 [7]。研究发现,肠道微生物群的异常组成与孤独症、抑郁症、精神分裂症和阿尔茨海默病的发病密切相关 [8] [9] [10] [11]。而近年来有研究显示,特定肠道菌群变化与术后认知功能障碍也存在密切相关性 [12] [13]。基于此,本文拟对肠道菌群紊乱及其代谢产物在术后认知功能障碍的相关危险因素及其致病机制进行综述,以助于探索POCD早期预防及治疗策略。

2. 术后认知功能障碍危险因素与肠道菌群紊乱关系密切

临床流行病学研究发现,术后认知功能障碍发生的危险因素有多种,但其中患者高龄,糖尿病及高血压与其发生关系更为密切,而这些疾病均与肠道菌群紊乱存在密切联系。

2.1. 年龄与肠道菌群紊乱

年龄被认为是POCD独立危险因素。研究表明,尽管POCD可以发生在如何年龄段患者中,但在老年患者中发病率显然更高,并且患病风险随着年龄的增加而增高 [14]。近来的研究发现,随着年龄增加肠道菌群也会随之发生变化。一项对老年人群进行的关于饮食、生活方式和药物的大规模调查显示,某些肠道微生物种类的增加或减少随着年龄的增长而发生变化 [15]。肠道菌群多样性是维持机体健康的一个重要因素,而肠道菌群多样性的减少也与年龄的增加有明显相关性,尤其是宿主肠道内大肠杆菌的增加和双歧杆菌的减少 [16]。研究显示,将老年鼠的粪菌移植到年轻小鼠体内,发现年轻小鼠出现了记忆、空间学习障碍,并且改变了海马突触可塑性和神经递质相关蛋白质的表达,其中87种学习相关蛋白的表达发生了下调 [17] [18]。还有研究发现,将老年鼠和年轻小鼠的粪菌分别移植到无菌(Germ Free, GF)小鼠体内,发现移植年轻小鼠粪菌的GF小鼠体内产生更多的肠道菌群代谢产物乙酸、丙酸、异丁酸、丁酸、异戊酸、戊酸等短链脂肪酸(Short chain fatty acids, SCFAs),同时认知功能未受到影响。相反,移植老年鼠粪菌组别的GF小鼠体内SCFAs远低于移植年轻小鼠组的GF小鼠,并且出现了认知障碍 [17]。这些研究表明,年龄相关的肠道菌群变化有可能与认知功能障碍发生存在因果关系。

2.2. 糖尿病与肠道菌群紊乱

糖尿病被认为是老年人群发生术后认知障碍的重要危险因素。与无糖尿病人群相比,糖尿病患者发生POCD的风险更高。同时,在糖尿病患者中,血糖控制不佳,随着糖化血红蛋白(HbA1c)升高,发生POCD风险可能进一步增加 [19] [20]。这些结果提示我们,良好的血糖控制可能是降低糖尿病患者POCD发生风险的有效措施。还有研究发现,2型糖尿病患者肠道内微生物群的组成与非糖尿病人群存在差异,糖尿病患者的厚壁菌、梭状芽孢杆菌和双歧杆菌比例明显低于非糖尿病者 [21] [22]。这些研究都提示,肠道菌群失衡可能与糖尿病发生有着密切关系。通过益生菌和益生元改变肠道菌群组成可有效减少肠内毒素浓度和改变机体能量平衡以改善胰岛素敏感性,其机制可能是通过降低肠道渗透性,降低氧化应激来发挥作用。另外,益生菌代谢产物短链脂肪酸(SCFAs)通过多种潜在的机制在维持血糖稳态中也可能发挥重要作用。SCFA通过激活L细胞上的G蛋白偶联受体促进胰高血糖素样肽-1和肽YY的释放,导致胰岛素增加和胰高血糖素分泌减少,并可以抑制机体的食欲。同时,SCFA可以降低肠道渗透性并降低血液循环中的内毒素,来降低机体炎症反应和氧化应激。而且,SCFA还可以通过肌肉和肝组织中的5’-AMP活化的蛋白激酶信号传导,通过葡萄糖转运蛋白来改善胰岛素敏感性 [23]。ZHAO等人发现高纤维饮食改善了糖尿病患者肠道“有益菌”浓度,促进SCFAs产生,并升高胰高血糖素样肽-1,降低乙酰化血红蛋白水平,以及改善的血糖控制 [24]。这些研究表明肠道菌群多样性以及益生菌代谢产物中的短链脂肪酸都有助于改善糖尿病患者血糖水平,从而有可能降低POCD发生风险。

2.3. 高血压和肠道菌群紊乱

除了高龄及糖尿病外,高血压也是发生POCD的危险因素。目前观点认为,高血压患者的脑血管弹性较差,麻醉后脑组织血液灌注不足和缺氧等程度也会相对增加,从而导致术后发生一过性认知功能障碍。研究发现,与普通小鼠相比,完全没有肠道细菌的无菌小鼠血压相对较低 [25]。最近,许多证据显示,异常的肠道微生物群落与宿主的血压变化存在密切相关性。有研究发现,在对高血压动物模型及高血压患者的检测中发现了肠道菌群紊乱现象,表现为肠道内微生物丰富度、多样性、均匀性降低和厚壁菌/拟杆菌比率增加 [26]。此外,通过高血压大鼠模型和随机人体临床试验中的荟萃分析,研究人员发现服用益生菌可以降低血压 [27] [28]。这些研究强调了肠道菌群紊乱与高血压之间具有明显相关性,并进一步暗示了肠道菌群在血压调节中的重要性。由此我们猜想,稳定的肠道菌群似乎有助于调节血压这一POCD高危因素,从而降低其发生风险。

通过上述研究,我们不难发现,术后认知功能障碍常见的危险因素常伴有肠道菌群紊乱发生,肠道菌群紊乱及其代谢产物似乎在一定程度上增加了POCD发生风险,提示着肠道菌群及其代谢产物可在POCD发生过程中发挥重要作用。

3. 肠道菌群紊乱参与术后认知功能障碍发生

肠道菌群紊乱除了与许多POCD的危险因素间关系密切外,还直接参与了POCD的发病过程。现有的研究显示,麻醉和手术可对肠道菌群产生巨大影响,其主要表现为肠道内菌群多样性下降、结构比例发生改变以及多种潜在致病菌表达丰度增加等。同时,越来越多的研究也聚焦肠道菌群紊乱与术后认知功能障碍之间潜在联系。Jiang [13] 等通过胫骨骨折内固定术构建老年小鼠POCD模型,通过将POCD小鼠与对照组肠道菌群比较,发现肠道菌群α多样性显著降低,同时β多样性也存在着显著的差异。在菌群表达丰度上也显示出差异,在POCD小鼠中,有五种致病性细菌数量显著增加(真杆菌、放线菌、拟杆菌、丁酸菌和对羟基苯甲酸杆菌),但双歧杆菌等显著减少。另外,该研究发现术前复合抗生素治疗小鼠,消除肠道细菌,可以防止了POCD的发生;而术前予以口服益生菌,改善肠道菌群结构可以达到同样的效果。这些结果表明,肠道菌群紊乱可能参与了术后发生认知障碍的发生。

在另一项研究中,证实了术后谵妄(Postoperative Delirium, POD)小鼠肠道α-多样性和β-多样性较非POD小鼠明显降低,且实验数据显示POD和非POD小鼠间大约有20种肠道细菌存在显著差异。将POD小鼠和非POD小鼠的粪菌移植到存在认知障碍的伪无菌(pseudo germfree, PGF)小鼠体内,发现接受非POD小鼠粪菌移植的PGF鼠认知得到改善,而接受POD小鼠粪菌移植的PGF小鼠则未见改善。该研究结果同样证明了肠道菌群紊乱极有可能参与了术后认知障碍的发生 [29]。

4. 肠道菌群紊乱参与术后认知功能障碍的病理生理学机制

4.1. 肠道菌群紊乱导致神经炎症

尽管发现许多病理因素参与了POCD的发生,但目前大多数研究表明,中枢神经系统特别是参与记忆形成和学习的海马体的神经炎症和氧化应激是POCD发生的重要机制 [30] [31] [32]。临床研究发现,手术后患者全身循环系统和中枢神经系统中促炎细胞因子水平升高,且升高的水平与认知功能障碍的严重程度有关 [30] [33] [34]。人体在经历手术创伤时,局部组织的损伤和细胞破环,可释放出损伤相关分子模式(DAMPs),它可作用于骨髓来源的单核细胞,通过Toll样受体(Toll like receptor, TLR)及晚期糖基化终产物受体,激活NF-κB信号通路,释放TNFα、IL-1β、IL-6等前炎症因子。这些炎症因子进而通过破坏血脑屏障完整性的进入脑内引发神经炎症和氧化应激 [30] [35]。小胶质细胞是脑内主要的固有免疫细胞,是脑内促炎细胞因子和活性氧(ROS)的主要来源。有一项研究显示,手术通过增强NADPH依赖性ROS的产生,激活小胶质细胞并引发海马的神经炎症,从而导致老年大鼠的认知功能障碍 [32]。且有研究显示,手术时减少促炎细胞因子合成或活性氧生成等干预措施可显著减轻老年动物手术后的神经炎症和认知障碍 [31] [32]。

肠道菌群紊乱加剧术后神经炎症。手术术后引发的肠道菌群紊乱时,肠道内革兰氏阴性杆菌比例显著提高。脂多糖(LPS)是革兰氏阴性细菌合成,具有强大的促炎作用。LPS不但可以加重外周炎症,还可以穿过受损的血脑屏障,激活小胶质细胞,从而加重中枢神经炎症反应 [36]。另外,有研究显示,LPS还可以经迷走神经途径引发中枢神经炎症反应发生 [37]。此外,肠道菌群代谢产物也在神经炎症中发挥着重要作用。肠道微生物群衍生的代谢物三甲胺N-氧化物(TMAO)可以通过血脑屏障,对神经产生毒性作用,该衍生代谢产物增加与认知功能损伤有着密切相关。有研究显示,循环中的TMAO水平升高进一步增加了手术大鼠海马中的小胶质细胞活性、神经炎症和ROS的产生,从而加重了机体的认知功能障碍 [38]。

4.2. 肠道菌群紊乱破坏血脑屏障

血脑屏障(Blood Brain Barrier, BBB)损伤是术后认知功能障碍的重要病理基础。BBB在大脑与外周循环之间形成保护屏障,它是由脑微血管内皮细胞(cerebral microvascular endothelial cells, BMECs)、周细胞、星形胶质细胞和神经元等结构组成,其中BMECs通过紧密连接(tight junction, TJ)蛋白连接。TJ蛋白在BBB控制脑血管通透性中具有重要功能,BBB功能障碍通常与内皮细胞紧密连接的破坏或过度通透性有关。BBB可以限制外周大分子蛋白、细胞毒性物质、外周免疫细胞等进入神经中枢,维持中枢神经系统内环境稳定,维护脑细胞的正常功能。该屏障可以限制有害物质从循环系统向中枢神经系统扩散,同时允许营养等必要物质进入大脑以保证其发挥基本生理功能 [39]。如前所述,TJ蛋白在控制BBB通透性中具有重要作用,紧密连接蛋白表达的改变破坏了BBB的完整性,使其成为有害毒素从外周进入中枢神经的可行途径,从而引发神经系统炎症。据报道,与无病原体(PF)小鼠相比,缺乏肠道微生物群的小鼠通过调节紧密连接蛋白如claudin-5、occludin和zona occludens的表达,更容易破坏BBB的通透性 [40]。研究发现,LPS诱导炎性细胞因子,从而导致屏障通透性破坏 [41]。向血脑屏障受损的SPF小鼠予以丁酸盐(SCFAs)干预则改善了其通透性 [42]。因此,在术后,肠道菌群紊乱加剧了血脑屏障损害。

4.3. 肠道菌群紊乱加剧神经退行性变

术后认知功能障碍的发生是多种因素相互作用的结果,其中神经退行性变是POCD发生的重要机制,这也是POCD好发于老年人的原因之一。神经退行性变在认知功能障碍中主要表现为β淀粉样沉积、TAU蛋白过度磷酸化和神经元凋亡。研究发现,麻醉和手术使海马Aβ水平急剧增加 [43]、TAU蛋白过度磷酸化 [44]、神经元凋亡 [45] 从而导致术后认知功能障碍。其中,肠源性Aβ扮演重要作用。麻醉和手术导致的肠道菌群紊乱,使机会性致病菌占据优势(大肠杆菌、金黄色葡萄球菌等),从而释放Aβ。研究显示,肠源性Aβ穿过高通透性的肠粘膜和血脑屏障进入大脑沉淀积累,引起神经炎症,造成神经损伤 [46]。

5. 调节肠道菌群紊乱改善术后认知功能障碍

研究表明,肠道菌群多样性受损可引起术后认知功能障碍,通过调节肠道菌群紊乱改善术后认知障碍,主要目标是恢复肠道内正常菌群的丰度和多样性。目前主要干预方式有益生菌、益生元补充。

5.1. 益生菌

益生菌是活的、对宿主有益的微生物。在动物实验中,术前予以喂食益生菌,改善了肠道菌群结构,减轻了术后神经炎症以及防止了术后认知障碍的发生 [47]。在临床试验中,Wang [48] 等人纳入非心脏手术的老年患者120名,随机分组。试验组入院后开始喂食混合益生菌直到出院,对照组予以安慰剂喂食。该研究显示:围手术期应用口服益生菌减轻了外周炎症和应激反应,并且预防非心脏手术后老年患者术后认知障碍。

5.2. 益生元

益生元是能被宿主肠道微生物选择性利用的底物,有助于改善菌群结构,提高乳酸杆菌、双歧杆菌等益生菌丰度。Han [49] 等人在成年小鼠腹部手术前6周予以喂食益生元,发现术前益生元干预有效地减轻了手术引起的认知功能障碍和肠道微生物群改变,减少了炎症反应,改善了肠道屏障和血脑屏障完整性。

5.3. 粪菌移植

Zhang [29] 等人通过将POD小鼠和非POD小鼠肠道菌群提取物移植到存在认知功能障碍的PGF小鼠体内,发现接受非POD小鼠粪菌移植的PGF鼠认知得到改善,而接受POD小鼠粪菌移植的PGF小鼠则未见改善。表明肠道菌群多样性有利于改善术后认知障碍。

6. 小结

综上所述,肠道菌群紊乱与术后认知功能障碍间存在密切联系。肠道菌群紊乱通过迷走神经、循环系统等多种途径影响大脑神经功能,进而影响患者认知和行为改变。术前通过益生菌和益生元辅助进食维持肠道菌群稳态对预防术后认知功能障碍有一定效果。目前有关于调节肠道菌群多样性预防术后认知功能障碍的研究仍处于动物实验阶段,其作用机理尚未阐明,且临床试验比较匮乏。因此,未来需要更多的基础实验及临床研究来明确改善肠道菌群紊乱在预防和治疗术后认知功能障碍方面的作用及其机制。

基金项目

广州市科技计划项目(No. 202102010107);暨南大学第一临床医学院临床研究项目(No. 2018005)。

NOTES

*通讯作者。

参考文献

[1] Uzoigwe, C.E., O’Leary, L., Nduka, J., et al. (2020) Factors Associated with Delirium and Cognitive Decline Following Hip Fracture Surgery. The Bone & Joint Journal, 102-B, 1675-1681.
https://doi.org/10.1302/0301-620X.102B12.BJJ-2019-1537.R3
[2] MacLullich, A.M. and Hall, R.J. (2011) Who Understands Delirium? Age and Ageing, 40, 412-414.
https://doi.org/10.1093/ageing/afr062
[3] Naeije, G. and Pepersack, T. (2014) Delirium in Elderly People. The Lancet (London, England), 383, 2044-2045.
https://doi.org/10.1016/S0140-6736(14)60993-4
[4] Gleason, L.J., Schmitt, E.M., Kosar, C.M., et al. (2015) Ef-fect of Delirium and Other Major Complications on Outcomes after Elective Surgery in Older Adults. JAMA Surgery, 150, 1134-1140.
https://doi.org/10.1001/jamasurg.2015.2606
[5] Jones, R.N., Cizginer, S., Pavlech, L., et al. (2019) Assessment of Instruments for Measurement of Delirium Severity: A Systematic Review. JAMA Internal Medicine, 179, 231-239.
https://doi.org/10.1001/jamainternmed.2018.6975
[6] Heintz-Buschart, A. and Wilmes, P. (2018) Human Gut Microbiome: Function Matters. Trends in Microbiology, 26, 563-574.
https://doi.org/10.1016/j.tim.2017.11.002
[7] Morais, L.H., Schreiber, H.L. and Mazmanian, S.K. (2021) The Gut Microbiota-Brain Axis in Behaviour and Brain Disorders. Nature Reviews Microbiology, 19, 241-255.
https://doi.org/10.1038/s41579-020-00460-0
[8] Zhan, G., Yang, N., Li, S., et al. (2018) Abnormal Gut Microbiota Composition Contributes to Cognitive Dysfunction in SAMP8 Mice. Aging, 10, 1257-1267.
https://doi.org/10.18632/aging.101464
[9] Li, Q., Han, Y., Dy, A.B.C., et al. (2017) The Gut Microbiota and Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 11, Article No. 120.
https://doi.org/10.3389/fncel.2017.00120
[10] Lv, F., Chen, S., Wang, L., et al. (2017) The Role of Microbiota in the Pathogenesis of Schizophrenia and Major Depressive Disorder and the Possibility of Targeting Microbiota as A Treatment Option. Oncotarget, 8, 100899-100907.
https://doi.org/10.18632/oncotarget.21284
[11] Yang, C., Qu, Y., Fujita, Y., et al. (2017) Possible Role of the Gut Microbiota-Brain Axis in the Antidepressant Effects of (R)-ketamine in a Social Defeat Stress Model. Translational Psychiatry, 7, 1294.
https://doi.org/10.1038/s41398-017-0031-4
[12] Jiang, X.L., Gu, X.Y., Zhou, X.X., et al. (2019) Intestinal Dysbacteriosis Mediates the Reference Memory Deficit Induced by Anaesthesia/Surgery in Aged Mice. Brain, Behavior, and Immunity, 80, 605-615.
https://doi.org/10.1016/j.bbi.2019.05.006
[13] Zhan, G., Hua, D., Huang, N., et al. (2019) Anesthesia and Surgery Induce Cognitive Dysfunction in Elderly Male Mice: The Role of Gut Microbiota. Aging, 11, 1778-1790.
https://doi.org/10.18632/aging.101871
[14] Moller, J.T., Cluitmans, P., Rasmussen, L.S., et al. (1998) Long-Term Postoperative Cognitive Dysfunction in the Elderly ISPOCD1 Study. ISPOCD Investigators. International Study of Post-Operative Cognitive Dysfunction. The Lancet (London, England), 351, 857-861.
https://doi.org/10.1016/S0140-6736(97)07382-0
[15] Jeffery, I.B., Lynch, D.B. and O’Toole, P.W. (2016) Com-position and Temporal Stability of the Gut Microbiota in Older Persons. The ISME Journal, 10, 170-182.
https://doi.org/10.1038/ismej.2015.88
[16] Claesson, M.J., Jeffery, I.B., Conde, S., et al. (2012) Gut Microbiota Composition Correlates with Diet and Health in the Elderly. Nature, 488, 178-184.
https://doi.org/10.1038/nature11319
[17] Lee, J., Venna, V.R., Durgan, D.J., et al. (2020) Young versus Aged Microbiota Transplants to Germ-Free Mice: Increased Short-Chain Fatty Acids and Improved Cognitive Performance. Gut Microbes, 12, 1-14.
https://doi.org/10.1080/19490976.2020.1814107
[18] D’Amato, A., Di Cesare Mannelli, L., Lucarini, E., et al. (2020) Faecal Microbiota Transplant from Aged Donor Mice Affects Spatial Learning and Memory via Modulating Hippocampal Synaptic Plasticity- and Neurotransmission-Related Proteins in Young Recipients. Microbiome, 8, 140.
https://doi.org/10.1186/s40168-020-00914-w
[19] Feinkohl, I., Winterer, G. and Pischon, T. (2017) Diabetes Is Associated with Risk of Postoperative Cognitive Dysfunction: A Meta-Analysis. Diabetes/Metabolism Research and Reviews, 33, e2884.
https://doi.org/10.1002/dmrr.2884
[20] Kadoi, Y., Saito, S., Fujita, N., et al. (2005) Risk Factors for Cognitive Dysfunction after Coronary Artery Bypass Graft Surgery in Patients with Type 2 Diabetes. The Journal of Thoracic and Cardiovascular Surgery, 129, 576-583.
https://doi.org/10.1016/j.jtcvs.2004.07.012
[21] Larsen, N., Vogensen, F.K., van den Berg, F.W., et al. (2010) Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE, 5, e9085.
https://doi.org/10.1371/journal.pone.0009085
[22] Wu, X., Ma, C., Han, L., et al. (2010) Molecular Characterisa-tion of the Faecal Microbiota in Patients with Type II Diabetes. Current Microbiology, 61, 69-78.
https://doi.org/10.1007/s00284-010-9582-9
[23] Kim, Y.A., Keogh, J.B. and Clifton, P.M. (2018) Probiotics, Prebiotics, Synbiotics and Insulin Sensitivity. Nutrition Research Reviews, 31, 35-51.
https://doi.org/10.1017/S095442241700018X
[24] Zhao, L., Zhang, F., Ding, X., et al. (2018) Gut Bacteria Se-lectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science (New York, NY), 359, 1151-1156.
https://doi.org/10.1126/science.aao5774
[25] Moghadamrad, S., McCoy, K.D., Geuking, M.B., et al. (2015) At-tenuated Portal Hypertension in Germ-Free Mice: Function of Bacterial Flora on the Development of Mesenteric Lymphatic and Blood Vessels. Hepatology (Baltimore, Md), 61, 1685-1695.
https://doi.org/10.1002/hep.27698
[26] Yang, T., Santisteban, M.M., Rodriguez, V., et al. (2015) Gut Dysbiosis Is Linked to Hypertension. Hypertension (Dallas, Tex: 1979), 65, 1331-1340.
https://doi.org/10.1161/HYPERTENSIONAHA.115.05315
[27] Khalesi, S., Sun, J., Buys, N., et al. (2014) Effect of Probiotics on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Hyper-tension (Dallas, Tex: 1979), 64, 897-903.
https://doi.org/10.1161/HYPERTENSIONAHA.114.03469
[28] Gómez-Guzmán, M., Toral, M., Romero, M., et al. (2015) Antihypertensive Effects of Probiotics Lactobacillus Strains in Spontaneously Hypertensive Rats. Molecular Nutrition & Food Research, 59, 2326-2336.
https://doi.org/10.1002/mnfr.201500290
[29] Zhang, J., Bi, J.J., Guo, G.J., et al. (2019) Abnormal Composition of Gut Microbiota Contributes to Delirium-Like Behaviors after Abdominal Surgery in Mice. CNS Neuroscience & Therapeutics, 25, 685-696.
https://doi.org/10.1111/cns.13103
[30] Skvarc, D.R., Berk, M., Byrne, L.K., et al. (2018) Post-Operative Cognitive Dysfunction: An Exploration of the Inflammatory Hypothesis and Novel Therapies. Neuroscience and Biobehavioral Reviews, 84, 116-133.
https://doi.org/10.1016/j.neubiorev.2017.11.011
[31] Barrientos, R.M., Hein, A.M., Frank, M.G., et al. (2012) Intracisternal Interleukin-1 Receptor Antagonist Prevents Postoperative Cognitive Decline and Neuroinflammatory Response in Aged Rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 14641-14648.
https://doi.org/10.1523/JNEUROSCI.2173-12.2012
[32] Qiu, L.L., Ji, M.H., Zhang, H., et al. (2016) NADPH Oxidase 2-Derived Reactive Oxygen Species in the Hippocampus Might Contribute to Microglial Activation in Postoperative Cognitive Dysfunction in Aged Mice. Brain, Behavior, and Immunity, 51, 109-118.
https://doi.org/10.1016/j.bbi.2015.08.002
[33] Beloosesky, Y., Hendel, D., Weiss, A., et al. (2007) Cytokines and C-Reactive Protein Production in Hip-Fracture-Operated Elderly Patients. The Journals of Gerontology Series A, Bio-logical Sciences and Medical Sciences, 62, 420-426.
https://doi.org/10.1093/gerona/62.4.420
[34] Buvanendran, A., Kroin, J.S., Berger, R.A., et al. (2006) Upregulation of Prostaglandin E2 and Interleukins in the Central Nervous System and Peripheral Tissue during and after Surgery in Humans. Anesthesiology, 104, 403-410.
https://doi.org/10.1097/00000542-200603000-00005
[35] Safavynia, S.A. and Goldstein, P.A. (2018) The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving from Hypothesis to Treatment. Frontiers in Psychiatry, 9, Article No. 752.
https://doi.org/10.3389/fpsyt.2018.00752
[36] Lukiw, W.J. (2016) Bacteroides Fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease. Frontiers in Microbiology, 7, Article No. 1544.
https://doi.org/10.3389/fmicb.2016.01544
[37] de La Serre, C.B., de Lartigue, G. and Raybould, H.E. (2015) Chronic Exposure to Low Dose Bacterial Lipopolysaccharide Inhibits Leptin Signaling in Vagal Afferent Neurons. Physiology & Behavior, 139, 188-194.
https://doi.org/10.1016/j.physbeh.2014.10.032
[38] Meng, F., Li, N., Li, D., et al. (2019) The Presence of Elevated Circulating Trimethylamine N-Oxide Exaggerates Postoperative Cognitive Dysfunction in Aged Rats. Behavioural Brain Research, 368, Article ID: 111902.
https://doi.org/10.1016/j.bbr.2019.111902
[39] Obermeier, B., Daneman, R. and Ransohoff, R.M. (2013) Devel-opment, Maintenance and Disruption of the Blood-Brain Barrier. Nature Medicine, 19, 1584-1596.
https://doi.org/10.1038/nm.3407
[40] Zhu, S., Jiang, Y., Xu, K., et al. (2020) The Progress of Gut Microbiome Research Related to Brain Disorders. Journal of Neuroinflammation, 17, 25.
https://doi.org/10.1186/s12974-020-1705-z
[41] Wu, S.C., Cao, Z.S., Chang, K.M., et al. (2017) Intestinal Mi-crobial Dysbiosis Aggravates the Progression of Alzheimer’s Disease in Drosophila. Nature Communications, 8, Article No. 24.
https://doi.org/10.1038/s41467-017-00040-6
[42] Braniste, V., Al-Asmakh, M., Kowal, C., et al. (2014) The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Science Translational Medicine, 6, 263ra158.
https://doi.org/10.1126/scitranslmed.3009759
[43] Zhang, J., Zhu, S., Jin, P., et al. (2020) Graphene Oxide Improves Postoperative Cognitive Dysfunction by Maximally Alleviating Amyloid Beta Burden in Mice. Theranostics, 10, 11908-11920.
https://doi.org/10.7150/thno.50616
[44] Huang, C., Chu, J.M., Liu, Y., et al. (2018) Varenicline Reduces DNA Damage, Tau Mislocalization and Post Surgical Cognitive Impairment in Aged Mice. Neuropharmacology, 143, 217-227.
https://doi.org/10.1016/j.neuropharm.2018.09.044
[45] Li, Y., Yuan, Y., Li, Y., et al. (2021) α Inhibition of -Synuclein Accumulation Improves Neuronal Apoptosis and Delayed Postoperative Cognitive Recovery in Aged Mice. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5572899.
https://doi.org/10.1155/2021/5572899
[46] Hill, J.M. and Lukiw, W.J. (2015) Microbial-Generated Amyloids and Alzheimer’s Disease (AD). Frontiers in Aging Neuroscience, 7, Article No. 9.
https://doi.org/10.3389/fnagi.2015.00009
[47] Mao, L., Zeng, Q., Su, W., et al. (2021) Elevation of miR-146a In-hibits BTG2/BAX Expression to Ameliorate Postoperative Cognitive Dysfunction Following Probiotics (VSL#3) Treatment. Molecular Neurobiology, 58, 3457-3470.
https://doi.org/10.1007/s12035-021-02330-z
[48] Wang, P., Yin, X., Chen, G., et al. (2021) Perioperative Probiotic Treatment Decreased the Incidence of Postoperative Cognitive Impairment in Elderly Patients Following Non-Cardiac Surgery: A Randomised Double-Blind and Placebo-Controlled Trial. Clinical Nutrition (Edinburgh, Scotland), 40, 64-71.
https://doi.org/10.1016/j.clnu.2020.05.001
[49] Han, D., Li, Z., Liu, T., et al. (2020) Prebiotics Regulation of Intestinal Microbiota Attenuates Cognitive Dysfunction Induced by Surgery Stimulation in APP/PS1 Mice. Aging and Disease, 11, 1029-1045.
https://doi.org/10.14336/AD.2020.0106