甘油三酯葡萄糖乘积指数与胰岛素抵抗在肾脏疾病中的研究进展
Research Progress of Triglyceride Glucose Product Index and Insulin Resistance in Re-nal Disease
DOI: 10.12677/ACM.2022.124515, PDF, HTML, XML,  被引量 下载: 379  浏览: 842 
作者: 李雯静, 杨小娟*:延安大学附属医院肾内科,陕西 延安
关键词: 甘油三酯葡萄糖乘积指数胰岛素抵抗慢性肾脏病Triglyceride Glucose Product Index Insulin Resistance Chronic Kidney Disease
摘要: 近年来,甘油三酯葡萄糖乘积指数(TyG指数)已经成为研究热点,是评估胰岛素抵抗(IR)的新型指标。有研究发现该指数是评估蛋白尿、慢性肾脏病(CKD)及心血管疾病(CVD)等的有效生物标志物。同时,目前已被证明与2型糖尿病、代谢综合征、血管性认知功能障碍、多囊卵巢综合征、恶性肿瘤等多种疾病风险相关。本文主要针对TyG指数在肾脏疾病中的研究进展做一综述,以期为肾脏疾病进展、并发症防治和预后的预测提供新依据,为临床早期诊断和干预提供新思路。
Abstract: In recent years, the Triglyceride-Glucose Index (TyG index) has become a research hotspot and is a new index for evaluating insulin resistance (IR). Studies have found that the index is an effective biomarker for evaluating proteinuria, chronic kidney disease (CKD) and cardiovascular disease (CVD). At the same time, it has been proven to be associated with the risk of various diseases, such as type 2 diabetes, metabolic syndrome, vascular cognitive impairment, polycystic ovary syndrome and malignant tumors. This article mainly reviews the research progress of TyG index in renal disease, in order to provide a new basis for the prediction of renal disease progression, complication prevention and prognosis, and to provide new ideas for early clinical diagnosis and intervention.
文章引用:李雯静, 杨小娟. 甘油三酯葡萄糖乘积指数与胰岛素抵抗在肾脏疾病中的研究进展[J]. 临床医学进展, 2022, 12(4): 3550-3558. https://doi.org/10.12677/ACM.2022.124515

1. 引言

研究表明,无论有无合并2型糖尿病(type 2 diabetes mellitus, T2DM)的慢性肾脏病(chronic kidney disease, CKD)患者均存在不同程度的胰岛素抵抗(insulin resistance, IR) [1]。心血管疾病(cardiovascular disease, CVD)是导致终末期肾脏病(end-stage kidney disease, ESKD)患者死亡的主要原因之一 [2]。据统计,ESKD患者因CVD导致的死亡风险是非肾脏病患者的20倍 [3]。研究认为,IR是引起CKD、CVD共同的致病因素 [4] [5],这促使研究者们重新开始关注IR。目前发现许多指标都与IR相关,如体重指数、甘油三酯、高密度脂蛋白–胆固醇、高尿酸、空腹血糖等。最近,甘油三酯葡萄糖乘积指数(triglyceride-glouseindex, TyG)作为一种新型评估IR的简易指标 [6] [7] [8],引起了学者的研究兴趣。大量数据表明,TyG指数可能是蛋白尿、CKD及CVD等的有力预测因子 [9] [10] [11]。

2. TyG指数与IR

TyG指数主要来源于空腹血糖和甘油三酯水平,最早于2008年由西门塔尔·门迪亚等人 [12] 在一项基于健康人群的个体横断面研究中首次提及,其计算公式为TyG指数 = 1n [空腹甘油三酯(mg/dL) × 空腹血糖(mg/dL)/2]。IR又称“胰岛素不敏感”,主要是由于外周组织,尤其是肌肉、脂肪及肝组织对葡萄糖的摄取和利用率降低,而产生的对正常循环胰岛素水平反应受损的状态。评估IR的金标准是由DeFronzo等人 [13] 设计的高胰岛素正葡萄糖钳夹技术(hyperinsulinemic euglycemic clamp technique, HIET),但因技术复杂、检测周期长、价格昂贵而不能在临床广泛应用 [14]。最近,国内外许多研究认为,TyG指数可以替代HIET来识别IR,二者有效性类似,且该指数具有易获取、成本低、可行性高的特点 [15] [16] [17]。

该指数目前已逐渐在多种疾病的预测和诊断中发现明确价值。据报道,TyG指数与T2DM发病风险显著相关,它可能成为T2DM的新型独立预测因子 [18]。先前韩国一项横断面研究发现,随着IR的增加,年轻人和非糖尿病个体患抑郁症的风险分别增加4%和17% [19]。他们认为解释TyG指数与抑郁症关联的机制可能与IR、炎症和氧化应激以及健康状态差等有关。还有一项日本队列研究首次证明TyG指数可以预测结直肠癌的发病率,其潜在机制与IR本身引起的高胰岛素血症、IGF-1水平升高以及NF-κB和PPAR-γ信号传导改变有关 [8]。此外,近期大量研究发现TyG指数还可能与代谢综合征 [20]、非酒精性脂肪肝 [21]、多囊卵巢综合征 [22]、血管性认知功能障碍 [23]、乳腺癌 [24] 等疾病的发生密切相关。

由此可见,TyG指数简单易获取,可以常规计算而不增加检测成本,无疑是一种很好的IR评价指标。TyG指数有望提高各亚临床疾病的检出率,并为临床工作者提供新的诊疗思路。

3. IR与肾损害

最近,许多研究还发现TyG指数在各类肾脏疾病中具有预测价值,他们认为IR是二者之间的“桥梁”。先前有研究报道,CKD患者IR水平高于普通人群,甚至在CKD早期的时候已经存在IR,且与肾功能下降呈线性关系 [25]。肾脏病变与IR的相互影响是多因素、复杂的,主要与炎症和氧化应激、RAAS系统的激活、脂肪细胞因子紊乱、毒素蓄积和酸中毒等有关。

3.1. 炎症和氧化应激

由于长期营养不良、抗氧化剂摄入不足以及受到内毒素、补体等物质的影响,CKD患者机体内普遍存在微炎症状态。研究表明,IL-6通过诱导细胞因子信号抑制因子-3 (SOCS-3)的表达阻止胰岛素受体底物-1 (IRS-1)与胰岛素受体结合,并增加泛素介导的IRS-1降解,从而促进IR;TNF-α通过增强IRS-1磷酸化诱发IR [26]。此外,长期慢性炎症诱发氧化应激,增多的活性氧能够降低外周组织对胰岛素的敏感性。因此,炎症和氧化应激共同参与IR过程。

3.2. RAAS系统的激活

CKD患者长期肾缺血、灌注不足导致肾素–血管紧张素–醛固酮系统(RAAS)激活,肾素分泌增多,继而出现醛固酮、血管紧张素II (AngII)增多。体内过量的醛固酮、AngII通过多种机制诱发IR:① 盐皮质激素受体激活使不对称二甲基精氨酸(ADMA)表达增加,这是一种连接尿毒症和IR的毒性物质,ADMA可降低DDAH1和DDAH2的表达,损害CKD患者脂肪组织中的胰岛素信号,进而导致IR [27]。② AngII能够刺激体内IL-6、血清淀粉样蛋白的表达,从而增强SOCS3表达,导致IRS-1减少和胰岛素信号受损 [28]。这与先前研究结果 [28] 相符合,认为使用ACEI类药物或螺内酯可以降低CKD患者体内炎症因子的表达,从而削弱IR。

3.3. 脂肪细胞因子紊乱

研究发现,脂肪细胞因子对于胰岛素信号传导途径具有调节作用。正常情况下,脂联素通过周边效应提高内皮细胞功能,对抗炎症信号,增强机体对胰岛素的敏感性 [26];而巨噬细胞产生的抵抗素正是促发IR的关键肽 [29]。研究发现,抵抗素/脂联素比值升高与IR呈明显相关 [30]。瘦素通过激活IRS/PI3K信号通路和减少脂肪氧化间接引起胰腺β细胞损害,从而抑制胰岛素分泌,诱发IR [31]。此外,还包括大网膜素、纤溶酶原激活物抑制剂-1等都参与了IR的过程。

3.4. 毒素蓄积和酸中毒

肾功能不全者,体内硫酸吲哚酯、血尿素氮(BUN)、对甲酚硫酸盐(PCS)、不对称二甲基精氨酸(ADMA)、三甲胺-N-氧化物(TMAO)等毒素大量蓄积,通过各种直接或间接途径抑制胰岛素与其受体结合,减少胰岛素分泌,引起IR [26]。与此同时,毒素大量蓄积一方面干扰血管平滑肌细胞增殖迁移,引起内皮功能障碍;另一方面白细胞过度活化导致慢性炎症,促进炎症因子与血管壁的粘附增加,进一步加重心血管损伤。以上几种机制相互作用,共同导致心脏收缩功能障碍、左心室肥大,诱发CVD [32]。此外,CKD患者肾小管泌H+功能障碍, HCO 3 重吸收下降导致酸中毒,当细胞外PH值超出正常范围时,就会改变蛋白质三级结构,导致蛋白质分解变性,降低各种酶活性,促进胰岛素与受体分离,进一步放大IR效应。

3.5. 高胰岛素血症

IR状态下多伴有高胰岛素血症,致肾血管扩张,钠离子重吸收增加,激活RAAS系统并导致肾小球高灌注、高滤过。研究证实,肾小球持续高滤过导致部分肾单位丢失及肾动脉高压,加重肾小球硬化和肾功能障碍 [33]。这说明IR本身也会加肾功能损害。

4. TyG与蛋白尿

蛋白尿(proteinuria)是指尿中蛋白质含量超出正常范围,即24 h尿蛋白持续超过150 mg或尿蛋白/肌酐比值(UACR) > 200 mg/g。研究发现,蛋白尿与肾功能进展和肾衰竭密切相关。在一个大型人群队列中发现蛋白尿增加4倍,随后肾衰竭风险会随之增加3倍 [34]。蛋白尿既是诊断肾脏疾病和风险评估的核心,也是预测CKD发生发展的“重要窗口”。机体发生蛋白尿后通过足细胞骨架重建、受体介导的内吞途径激活、特定过滤化合物(如白蛋白结合脂肪酸和转铁蛋白/铁)的系膜毒性、炎症因子募集、上调趋化因子(如MCP-1)和诱导细胞凋亡、促纤维分子(如AngII、内皮素和TGF-β)形成以及肾小管超载和增生等机制加速CKD进展 [35]。

最近,Wei Gao等人 [11] 报告了一项基于2446名中国社区人群的前瞻性队列研究,目的是比较TyG指数和HOMA-IR与蛋白尿事件风险的关联,在3.9年的中位随访期间,共有203人出现了蛋白尿(8.3%)。回归分析显示,与低三分位数组相比,高TyG指数三分位数组发生白蛋白尿的风险高出1.71倍(95%CI: 1.07~2.72)。因此他们得出结论,TyG指数异常增高的患者发生白蛋白尿的风险显著增加。这与先前一项基于社区的横断面研究结论是一致的,发现较高的TyG指数与发生微量白蛋白尿(OR: 1.61, 95%CI: 1.22~2.13)的风险有关 [36]。此外,Yu-LunOu等人 [37] 发现所有纳入测量的肥胖相关指数(BMI、WHR、WHtR、LAP、BRI、CI、VAI、BAI、AVI、BSI和TyG指数)都与T2DM和CKD患者的白蛋白尿显著相关。还有两项基于2型糖尿病人群的队列研究得出相同结论,认为TyG指数与糖尿病微血管损伤和微量白蛋白尿(MAU)相关联 [38] [39]。因此,我们有理由认为TyG指数与蛋白尿之间存在密切联系,我们可以通过该指数来评估CKD患者肾损害的严重程度,但后期仍需要通过更多基于CKD人群的大型临床研究来支撑和完善这一结论。

5. TyG指数与CKD

CKD具有患病率高、不可逆、预后差等特点,是全球公民主要的公共健康问题 [40],给全人类带来极大的健康负担。据报告,我国成年人CKD患病率约为10.8% [41]。因此对CKD的早期识别至关重要。

最近,越来越多研究认为TyG指数可以作为CKD早期识别和进展评估的独立预测因子。一项包含13,055名高血压患者横断面研究显示,在65岁以上的参与者中更高水平的TyG指数较内脏肥胖指数(VAI)、TG/HDL比值与CKD患病率的增加更密切相关 [9]。先前Okamura∙T等人 [6] 开展的一项基于11,712名日本参与者(6026名男性,5686名女性)的NAGALA队列研究主要探究了TyG指数对CKD事件的影响,其中男性中位随访时间4.0年,女性3.7年,结果中261人(男性120人,女性141人)出现CKD,Cox比例风险模型提示,TyG指数与受试者发生CKD的风险相关联。在男性中,TyG指数每增加1个单位,发生CKD的风险增加32%,女性TyG指数每增加1个单位,CKD风险增加50%。另有在国内开展的基于3439例40~75岁人群的前瞻性队列研究报告,高TyG指数是eGFR异常和CKD发生发展的独立危险因素(P < 0.05)。与TyG指数≤8.47相比,TyG指数>9.20的人群患CKD的风险增加了1.815倍 [42]。此外,Josef Fritz等人 [43] 首次发现了TyG指数与ESKD发病风险的关联,并分析了该指数在BMI相关ESKD风险中的中介作用,发现基线TyG指数与平均随访22.7年的ESKD风险增加独立相关。

众所周知,IR是肾功能损害的关键机制。TyG指数是有效预测IR的新型标志物,由此可见TyG指数可能成为预测CKD发生发展的独立危险因素,以期为CKD早诊早治提供科学依据。

6. TyG与CVD

CVD是世界范围内最常见的死亡原因,同时也是CKD患者最严重的并发症之一。先前研究认为TyG指数与CVD密切关联,这可能是基于IR在CVD进展中发挥作用,导致慢性炎症和氧化应激、血管内皮损伤、凝血功能障碍以及诱导血管发生粥样硬化等 [44] [45],具体作用机制尚且不明确。

一项包括5,731,294名参与者,涵盖八项队列研究的荟萃分析结果显示,TyG指数类别最高的参与者与更高的动脉粥样硬化性心血管疾病(ASCVD)风险独立相关 [10]。这一发现与将TyG指数作为连续变量分析的荟萃分析结果一致(TyG指数每增加1个单位,发生ASCVD的风险增加39% [10]。Park等人 [46] 将1175名韩国受试者纳入一项关于TyG指数与冠状动脉钙化(CAC)进展的回顾性研究中发现,在4.2年的随访期间,312名(27%)受试者观察到CAC进展,校正各危险因素后显示,随着TyG指数增加,CAC进展的风险增加1.82倍(95%CI: 1.20~2.77),结果表明TyG指数是CAC进展的独立预测因子。TyG指数还可以作为反映冠状动脉粥样硬化和左心室功能障碍的标志物 [47] [48] [49]。此外,还有三项基于研究健康成年人TyG指数与肱–踝脉搏波速度(baPWV)相关性的横断面研究(分别包括6028、2830、3587名参与者)结果均显示,TyG指数较高的个体更容易出现动脉僵硬和微血管损伤 [36] [50] [51],并且这种相关性明显优于HOMA-IR。另有研究表明,较高的TyG指数与ST段抬高型心肌梗死(STEMI)患者接受经皮冠状动脉介入治疗(PCI) [40] 的主要不良心脑血管事件风险增加相关,并且缺血性卒中的风险与随着TyG指数的成比例和线性增加 [52]。

以上研究说明,TyG指数与ASCVD、CAC、左心室功能障碍、动脉僵硬度和微血管损伤、缺血性脑卒中的发生均存在不同程度的关联,这一系列病变最终都会导致CVD不良预后。这种结论在我国某地区一项腹膜透析(PD)人群的大型前瞻性队列研究中也得到证实,发现TyG指数可能是初始PD患者心血管死亡风险的新预测因素。与TyG指数<8.10的新发PD患者相比,TyG指数>8.69的新发PD患者心血管死亡风险几乎高出3倍 [53]。同时,在北卡·罗来纳州移植中心维持性血液透析(MHD)患者中也发现高TyG指数与心血管疾病高风险相关 [54]。但值得关注的是,目前国内外关于TyG指数与CKD相关CVD风险的临床研究甚少,因此这一结论亟待更多临床证据支撑。

7. TyG指数与DKD

糖尿病肾病(diabetic kidney disease, DKD)起病隐匿,一旦出现大量蛋白尿,最终进展至ESKD的速度是其他肾脏疾病的14倍。最新报告显示,DKD已经取代原发性肾小球疾病,成为我国CKD的首要病因。指南建议根据GFR和UACR诊断DKD,然而临床研究发现血清胱抑素C (Cys-C)、视黄醇结合蛋白(RBP)、α1-微球蛋白(α1-MG)、中性粒细胞明胶酶相关脂质运载蛋白(NAGL)等都是预测DKD的新型生物标志物 [55]。

此外,研究者还发现TyG指数可能是DKD的新型预测因子。刘莉、夏瑞等人的研究表明 [56],TyG指数与T2DM患者的DKD独立相关(OR: 1.91, P = 0.001),是比HOMA-IR更好的识别DKD的标志物。ROC曲线分析表示,在识别DKD时,最佳截点TyG指数>9.66的曲线下面积0.67略大于HOMA-IR。且经控制变量后,TyG指数还与ln 24 h尿白蛋白显著相关(r = 0.173, P = 0.006)。这与Sangeetha等人 [57] 的研究结果相似,他们的研究显示:较高的TyG指数与糖尿病患者的视网膜病变和肾病进展有关。另一项基于424名T2DM患者的纵向研究旨在阐明TyG指数与DKD之间的关联,中位随访时间21个月,结果发现基线检查时高TyG指数组患者发生DKD的风险更大(HR = 1.727, 95%CI: 1.042~2.863, p = 0.034),即TyG指数每增加1个单位,发生DKD的风险增加72.3% [58]。此外,还有基于剂量–反应关系的研究显示,高TyG指数(尤其TyG指数≥9.07)与DKD发病高风险呈非线性相关,且该指数最佳阈值范围是9.05~9.09 [59]。TyG指数阈值的确定对于临床工作意义重大,可以作为一个较强关联的预后指标,对高危人群进行更严密的监测和更早期的强化治疗,以延缓疾病进展。

研究表明,IR在DKD发展中起重要病理生理作用。其潜在机制可能是,肾脏包含的多种胰岛素敏感细胞(如足细胞)可以表达胰岛素受体葡萄糖转运蛋白1、4 (GLUT-1、GLUT-4)。当T2DM患者发生IR时,胰岛素信号传导受损,肾小球滤过压升高,导致肾小球超滤过。此外,细胞骨架重塑、线粒体功能障碍、炎症和脂质毒性等都参与DKD发展 [56]。

8. TyG指数与其他肾脏疾病

肾结石(kidney stones)是由于尿中一些有形成分沉积形成,是目前全球患者中最多见的泌尿系统结石,在我国患病率高达1.6%~20%。研究者认为,除了受到遗传、环境及营养因素的影响外,肾结石的发生还可能受到代谢因素影响,IR可能是促使肾结石发生潜在病理生理学原因之一 [60]。越来越多证据表明TyG指数与肾结石独立相关,可作为临床预测肾结石发生率的新型生物标志物。对NHANES数据库中的检索到的相关人群队列进行逻辑回归分析评估TyG指数与肾结石发生率之间的关系,优化偏倚条件后显示,高TyG组的肾结石风险比低TyG组高19% [61]。同期另一项研究也发现TyG指数每增加一个单位,肾结石的患病率和复发率分别会增加12%和26% [62]。

造影剂肾病(contrast-induced nephropathy, CIN)是指血管内注射造影剂后引起的肾功能下降,即在对比剂暴露后的最初48~72小时内,血肌酐(SCr)较基线增加超过25%或44.2 umol/L (0.5 mg/dL) [63]。CIN是冠状动脉造影和经皮冠状动脉介入治疗(PCI)后常见且可能严重的并发症。最近的数据表明,升高的TyG指数是高危CIN组的潜在标志物,尤在接受植入药物洗脱支架(DES)的男性非ST段抬高急性冠状动脉综合征(NSTE-ACS)患者中更为明显 [64]。这与先前Qin等人的观察结果一致,高TyG与对比剂诱发的急性肾损伤(CI-AKI)发病率增加密切相关 [65]。研究者将TyG指数与CIN的这种相关性归因于IR,认为是IR引起的足细胞病变以及NO途径受损导致的肾血流动力学改变,最终引起CIN。

9. 结语和展望

综上,大量研究结果支持TyG指数的临床价值,廉价且容易获取的TyG指数将可能成为评估CKD、CVD、DKD及肾结石等多种肾脏疾病的新型有效生物标志物。然而,仍需要通过大量研究来确定TyG指数的最佳阈值范围,未来应该进一步结合临床证据验证TyG指数与慢性肾脏疾病及其并发的心血管事件关联程度,并探究IR在CVD进展中的作用机制。以期能够早期识别肾脏病变及并发症,尽早干预和治疗,从而改善患者生活质量,延缓疾病进展。

NOTES

*通讯作者。

参考文献

[1] Schrauben, S.J., Jepson, C., Hsu, J.Y., et al. (2019) Insulin Resistance and Chronic Kidney Disease Progression, Car-diovascular Events, and Death: Findings from the Chronic Renal Insufficiency Cohort Study. BMC Nephrology, 20, Article No. 60.
https://doi.org/10.1186/s12882-019-1220-6
[2] Gansevoort, R.T., Correa-Rotter, R., Hemmelgarn, B.R., et al. (2013) Chronic Kidney Disease and Cardiovascular Risk: Epidemiology, Mechanisms, and Prevention. The Lancet, 382, 339-352.
https://doi.org/10.1016/S0140-6736(13)60595-4
[3] 王青. 终末期肾病患者死因与心血管疾病相关性的探讨[J]. 中国热带医学, 2007, 7(8): 1398-1399.
[4] Patel, T.P., Rawal, K., Bagchi, A.K., et al. (2016) Insulin Resistance: An Additional Risk Factor in the Pathogenesis of Cardiovascular Disease in Type 2 Diabetes. Heart Failure Reviews, 21, 11-23.
https://doi.org/10.1007/s10741-015-9515-6
[5] Chan, D.T., Watts, G.F., Irish, A.B., et al. (2017) Insulin Re-sistance and Vascular Dysfunction in Chronic Kidney Disease: Mechanisms and Therapeutic Interventions. Nephrology Dialysis Transplantation, 32, 1274-1281.
[6] Okamura, T., Hashimoto, Y., Hamaguchi, M., et al. (2019) Triglyc-eride-Glucose Index Is a Predictor of Incident Chronic Kidney Disease: A Population-Based Longitudinal Study. Clinical and Experimental Nephrology, 23, 948-955.
https://doi.org/10.1007/s10157-019-01729-2
[7] Sánchez-García, A., Rodríguez-Gutiérrez, R., Mancillas-Adame, L., et al. (2020) Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. International Journal of Endocrinology, 2020, Article ID: 4678526.
https://doi.org/10.1155/2020/4678526
[8] Okamura, T., Hashimoto, Y., Hamaguchi, M., et al. (2020) Triglyc-eride-Glucose Index (TyG Index) Is a Predictor of Incident Colorectal Cancer: A Population-Based Longitudinal Study. BMC Endocrine Disorders, 20, Article No. 113.
https://doi.org/10.1186/s12902-020-00581-w
[9] Shi, Y., Hu, L., Li, M., et al. (2022) Association between the Surrogate Markers of Insulin Resistance and Chronic Kidney Disease in Chinese Hypertensive Patients. Frontiers in Medicine (Lausanne), 9, Article ID: 831648.
https://doi.org/10.3389/fmed.2022.831648
[10] Ding, X., Wang, X., Wu, J., et al. (2021) Triglyceride-Glucose Index and the Incidence of Atherosclerotic Cardiovascular Diseases: A Meta-Analysis of Cohort Studies. Cardiovascular Diabetology, 20, 76.
https://doi.org/10.1186/s12933-021-01268-9
[11] Gao, W., Wang, J., Chen, Y., et al. (2021) Discordance between the Triglyceride Glucose Index and HOMA-IR in Incident Albuminuria: A Cohort Study from China. Lipids in Health and Disease, 20, 176.
https://doi.org/10.1186/s12944-021-01602-w
[12] Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerre-ro-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304.
https://doi.org/10.1089/met.2008.0034
[13] DeFronzo, R.A., Tobin, J.D. and Andres, R. (1979) Glucose Clamp Technique: A Method for Quantifying Insulin Secretion and Resistance. American Journal of Physiology, 237, E214-E223.
https://doi.org/10.1152/ajpendo.1979.237.3.E214
[14] 李光伟. 胰岛素抵抗评估及其临床应用[J]. 中华老年多器官疾病杂志, 2004, 3(1): 11-12.
[15] Lim, J., Kim, J., Koo, S.H., et al. (2019) Comparison of Triglyceride Glucose Index, and Related Parameters to Predict Insulin Resistance in Korean Adults: An Analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey. PLoS ONE, 14, e212963.
https://doi.org/10.1371/journal.pone.0212963
[16] Er, L.K., Wu, S., Chou, H.H., et al. (2016) Triglyceride Glu-cose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Indi-viduals. PLoS ONE, 11, e149731.
https://doi.org/10.1371/journal.pone.0149731
[17] 张琴. TyG指数对胰岛素抵抗及胰岛β细胞功能的双重评估[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2014.
[18] Wang, Z., Zhao, L. and He, S. (2021) Triglyceride-Glucose Index as Predictor for Future Type 2 Diabetes Mellitus in a Chinese Population in Southwest China: A 15-Year Prospective Study. Endocrine, 72, 124-131.
https://doi.org/10.1007/s12020-020-02589-7
[19] Lee, J.H., Park, S.K., Ryoo, J.H., et al. (2017) The Association between Insulin Resistance and Depression in the Korean General Population. Journal of Affective Disorders, 208, 553-559.
https://doi.org/10.1016/j.jad.2016.10.027
[20] de Cuevillas, B., Alvarez-Alvarez, I., Riezu-Boj, J.I., et al. (2021) The Hypertriglyceridemia-Waist Phenotype as a Valuable and Integrative Mirror of Metabolic Syndrome Traits. Scientific Reports, 11, Article No. 21859.
https://doi.org/10.1038/s41598-021-01343-x
[21] Huanan, C., Sangsang, L., Amoah, A.N., et al. (2020) Rela-tionship between Triglyceride Glucose Index and the Incidence of Non-Alcoholic Fatty Liver Disease in the Elderly: A Retrospective Cohort Study in China. BMJ Open, 10, e39804.
https://doi.org/10.1136/bmjopen-2020-039804
[22] Kheirollahi, A., Teimouri, M., Karimi, M., et al. (2020) Evaluation of Lipid Ratios and Triglyceride-Glucose Index as Risk Markers of Insulin Resistance in Iranian Polycystic Ovary Syndrome Women. Lipids in Health and Disease, 19, 235.
https://doi.org/10.1186/s12944-020-01410-8
[23] Jiang, T., Zhou, Y., Zhang, D., et al. (2021) Association of Se-rum Interleukin-34 and Insulin Resistance with Cognitive Impairment in Patients with Cerebral Small Vessel Disease. Current Neurovascular Research, 18, 446-455.
https://doi.org/10.2174/1567202618666211110113323
[24] Panigoro, S.S., Sutandyo, N., Witjaksono, F., et al. (2021) The Association Between Triglyceride-Glucose Index as a Marker of Insulin Resistance and the Risk of Breast Cancer. Frontiers in Endocrinology (Lausanne), 12, Article ID: 745236.
https://doi.org/10.3389/fendo.2021.745236
[25] Kobayashi, S., Maesato, K., Moriya, H., et al. (2005) Insulin Re-sistance in Patients with Chronic Kidney Disease. American Journal of Kidney Diseases, 45, 275-280.
https://doi.org/10.1053/j.ajkd.2004.09.034
[26] Spoto, B., Pisano, A. and Zoccali, C. (2016) Insulin Resistance in Chronic Kidney Disease: A Systematic Review. American Journal of Physiology-Renal Physiology, 311, F1087-F1108.
https://doi.org/10.1152/ajprenal.00340.2016
[27] Hosoya, K., Minakuchi, H., Wakino, S., et al. (2015) Insulin Resistance in Chronic Kidney Disease Is Ameliorated by Spironolactone in Rats and Humans. Kidney International, 87, 749-760.
https://doi.org/10.1038/ki.2014.348
[28] Dave, N., Wu, J. and Thomas, S. (2018) Chronic Kidney Dis-ease-Induced Insulin Resistance: Current State of the Field. Current Diabetes Reports, 18, 44.
https://doi.org/10.1007/s11892-018-1010-8
[29] Abdalla, M. (2021) Salivary Resistin Level and Its Association with Insulin Resistance in Obese Individuals. World Journal of Diabetes, 12, 1507-1517.
https://doi.org/10.4239/wjd.v12.i9.1507
[30] 夏灵伟. 腹膜透析患者脂联素、抵抗素和脂代谢状态及胰岛素抵抗的相关性研究[D]: [硕士学位论文]. 天津: 天津医科大学, 2016.
[31] Zhao, A.Z., Bornfeldt, K.E. and Beavo, J.A. (1998) Leptin Inhibits Insulin Secretion by Activation of Phosphodiesterase 3B. The Journal of Clinical Investigation, 102, 869-873.
https://doi.org/10.1172/JCI3920
[32] Valkenburg, S., Glorieux, G. and Vanholder, R. (2021) Uremic Toxins and Cardiovascular System. Cardiology Clinics, 39, 307-318.
https://doi.org/10.1016/j.ccl.2021.04.002
[33] Helal, I., Fick-Brosnahan, G.M., Reed-Gitomer, B., et al. (2012) Glomerular Hyperfiltration: Definitions, Mechanisms and Clinical Implications. Nature Reviews Nephrology, 8, 293-300.
https://doi.org/10.1038/nrneph.2012.19
[34] Carrero, J.J., Grams, M.E., Sang, Y., et al. (2017) Albuminuria Changes Are Associated with Subsequent Risk of End-Stage Renal Disease and Mortality. Kidney International, 91, 244-251.
https://doi.org/10.1016/j.kint.2016.09.037
[35] Liu, D. and Lv, L.L. (2019) New Understanding on the Role of Proteinuria in Progression of Chronic Kidney Disease. Advances in Experimental Medicine and Biology, 1165, 487-500.
https://doi.org/10.1007/978-981-13-8871-2_24
[36] Zhao, S., Yu, S., Chi, C., et al. (2019) Association between Macro- and Microvascular Damage and the Triglyceride Glucose Index in Community-Dwelling Elderly Individuals: The Northern Shanghai Study. Cardiovascular Diabetology, 18, 95.
https://doi.org/10.1186/s12933-019-0898-x
[37] Ou, Y.L., Lee, M.Y., Lin, I.T., et al. (2021) Obesity-Related In-dices Are Associated with Albuminuria and Advanced Kidney Disease in Type 2 Diabetes Mellitus. Renal Failure, 43, 1250-1258.
https://doi.org/10.1080/0886022X.2021.1969247
[38] Pan, Y., Zhong, S., Zhou, K., et al. (2021) Association between Diabetes Complications and the Triglyceride-Glucose Index in Hospitalized Patients with Type 2 Diabetes. Journal of Diabetes Research, 2021, Article ID: 8757996.
https://doi.org/10.1155/2021/8757996
[39] Chiu, H., Tsai, H.J., Huang, J.C., et al. (2020) Associations between Triglyceride-Glucose Index and Micro- and Macro-Angiopathies in Type 2 Diabetes Mellitus. Nutrients, 12, 328.
https://doi.org/10.3390/nu12020328
[40] Ammirati, A.L. (2020) Chronic Kidney Disease. Revista da Associacao Medica Brasileira (1992), 66, s3-s9.
https://doi.org/10.1590/1806-9282.66.s1.3
[41] Zhang, L., Wang, F., Wang, L., et al. (2012) Prevalence of Chronic Kidney Disease in China: A Cross-Sectional Survey. The Lancet, 379, 815-822.
https://doi.org/10.1016/S0140-6736(12)60033-6
[42] Xu, X., Tang, X., Che, H., et al. (2021) Triglyceride-Glucose Product Is an Independent Risk Factor for Predicting Chronic Kidney Disease in Middle-Aged and Elderly Population: A Prospective Cohort Study. Journal of Southern Medical University, 41, 1600-1608.
[43] Fritz, J., Brozek, W., Concin, H., et al. (2021) The Triglyceride-Glucose Index and Obesity-Related Risk of End-Stage Kidney Disease in Austrian Adults. JAMA Network Open, 4, e212612.
https://doi.org/10.1001/jamanetworkopen.2021.2612
[44] Lambie, M., Bonomini, M., Davies, S.J., et al. (2021) Insulin Resistance in Cardiovascular Disease, Uremia, and Peritoneal Dialysis. Trends in Endocrinology & Metabolism, 32, 721-730.
https://doi.org/10.1016/j.tem.2021.06.001
[45] Artunc, F., Schleicher, E., Weigert, C., et al. (2016) The Impact of Insulin Resistance on the Kidney and Vasculature. Nature Reviews Nephrology, 12, 721-737.
https://doi.org/10.1038/nrneph.2016.145
[46] Park, K., Ahn, C.W., Lee, S.B., et al. (2019) Elevated TyG Index Predicts Progression of Coronary Artery Calcification. Diabetes Care, 42, 1569-1573.
https://doi.org/10.2337/dc18-1920
[47] Alizargar, J., Bai, C.H., Hsieh, N.C., et al. (2020) Use of the Triglycer-ide-Glucose Index (TyG) in Cardiovascular Disease Patients. Cardiovascular Diabetology, 19, 8.
https://doi.org/10.1186/s12933-019-0982-2
[48] Da, S.A., Caldas, A., Hermsdorff, H., et al. (2019) Triglycer-ide-Glucose Index Is Associated with Symptomatic Coronary Artery Disease in Patients in Secondary Care. Cardio-vascular Diabetology, 18, 89.
https://doi.org/10.1186/s12933-019-0893-2
[49] Chiu, T.H., Tsai, H.J., Chiou, H.C., et al. (2021) A High Tri-glyceride-Glucose Index Is Associated with Left Ventricular Dysfunction and Atherosclerosis. International Journal of Medical Sciences, 18, 1051-1057.
https://doi.org/10.7150/ijms.53920
[50] Wu, S., Xu, L., Wu, M., et al. (2021) Association between Triglycer-ide-Glucose Index and Risk of Arterial Stiffness: A Cohort Study. Cardiovascular Diabetology, 20, 146.
https://doi.org/10.1186/s12933-021-01342-2
[51] Lee, S.B., Ahn, C.W., Lee, B.K., et al. (2018) Association be-tween Triglyceride Glucose Index and Arterial Stiffness in Korean Adults. Cardiovascular Diabetology, 17, 41.
https://doi.org/10.1186/s12933-018-0692-1
[52] Glassock, R.J., Warnock, D.G. and Delanaye, P. (2017) The Global Burden of Chronic Kidney Disease: Estimates, Variability and Pitfalls. Nature Reviews Nephrology, 13, 104-114.
https://doi.org/10.1038/nrneph.2016.163
[53] Yan, Z., Yu, D., Cai, Y., et al. (2019) Triglyceride Glucose Index Predicting Cardiovascular Mortality in Chinese Initiating Peritoneal Dialysis: A Cohort Study. Kidney and Blood Pressure Research, 44, 669-678.
https://doi.org/10.1159/000500979
[54] Torres, M.L., Caldas, S.A., Da, S.E.S.F., et al. (2021) Use of Neck Cir-cumference as a Predictor of Cardiovascular Risk in Chronic Kidney Patients Undergoing Haemodialysis Who Are Candidates for Transplantation. Journal of Human Nutrition and Dietetics, 34, 758-767.
https://doi.org/10.1111/jhn.12909
[55] 张素兰, 陈铖, 苏可. 糖尿病肾病生物标志物的研究进展[J]. 中华实用诊断与治疗杂志, 2022, 36(3): 314-316.
[56] Liu, L., Xia, R., Song, X., et al. (2021) Association between the Tri-glyceride-Glucose Index and Diabetic Nephropathy in Patients with Type 2 Diabetes: A Cross-Sectional Study. Journal of Diabetes Investigation, 12, 557-565.
https://doi.org/10.1111/jdi.13371
[57] Srinivasan, S., Singh, P., Kulothungan, V., et al. (2021) Relationship be-tween Triglyceride Glucose Index, Retinopathy and Nephropathy in Type 2 Diabetes. Endocrinology, Diabetes & Me-tabolism, 4, e151.
https://doi.org/10.1002/edm2.151
[58] Lv, L., Zhou, Y., Chen, X., et al. (2021) Relationship between the TyG Index and Diabetic Kidney Disease in Patients with Type-2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity, 14, 3299-3306.
https://doi.org/10.2147/DMSO.S318255
[59] Shang, J., Yu, D., Cai, Y., et al. (2019) The Triglyceride Glucose Index Can Predict Newly Diagnosed Biopsy-Proven Diabetic Nephropathy in Type 2 Diabetes: A Nested Case Control Study. Medicine (Baltimore), 98, e17995.
https://doi.org/10.1097/MD.0000000000017995
[60] Spatola, L., Ferraro, P.M., Gambaro, G., et al. (2018) Met-abolic Syndrome and Uric Acid Nephrolithiasis: Insulin Resistance in Focus. Metabolism, 83, 225-233.
https://doi.org/10.1016/j.metabol.2018.02.008
[61] Jiang, H., Li, L., Liu, J., et al. (2021) Triglyceride-Glucose Index as a Novel Biomarker in the Occurrence of Kidney Stones: A Cross-Sectional Population-Based Study. Interna-tional Journal of General Medicine, 14, 6233-6244.
https://doi.org/10.2147/IJGM.S334821
[62] Qin, Z., Zhao, J., Geng, J., et al. (2021) Higher Triglyceride-Glucose Index Is Associated With Increased Likelihood of Kidney Stones. Frontiers in Endocrinology (Lausanne), 12, Article ID: 774567.
https://doi.org/10.3389/fendo.2021.774567
[63] Stacul, F., van der Molen, A.J., Reimer, P., et al. (2011) Contrast Induced Nephropathy: Updated ESUR Contrast Media Safety Committee Guidelines. European Radiology, 21, 2527-2541.
https://doi.org/10.1007/s00330-011-2225-0
[64] Li, M., Li, L., Qin, Y., et al. (2022) Elevated TyG Index Predicts Incidence of Contrast-Induced Nephropathy: A Retrospective Cohort Study in NSTE-ACS Patients Im-planted with DESs. Frontiers in Endocrinology (Lausanne), 13, Article ID: 817176.
https://doi.org/10.3389/fendo.2022.817176
[65] Qin, Y., Tang, H., Yan, G., et al. (2020) A High Triglycer-ide-Glucose Index Is Associated with Contrast-Induced Acute Kidney Injury in Chinese Patients with Type 2 Diabetes Mellitus. Frontiers in Endocrinology (Lausanne), 11, Article ID: 522883.
https://doi.org/10.3389/fendo.2020.522883