Src蛋白酪氨酸激酶抑制剂在骨质疏松症中的研究进展
Research Progress of the Treatment on Osteoporotic Disease with Src Protein Tyrosine Kinase Inhibitor
DOI: 10.12677/ACM.2022.125552, PDF, HTML, XML, 下载: 362  浏览: 691 
作者: 刘宝成, 屈孝东:西安医学院,陕西 西安;常彦海*, 杨 波:陕西省人民医院,陕西 西安
关键词: Src蛋白酪氨酸激酶骨质疏松症Src蛋白酪氨酸激酶抑制剂Src Protein Tyrosine Kinase Osteoporosis Src Protein Tyrosine Kinase Inhibitor
摘要: 骨质破坏发生在衰老和许多疾病中,其中最常见的是骨质疏松。骨质疏松症(Osteoporosis, OP)是中国中老年患者最常见且发病率高的全身代谢性骨病,其发生是多种因素造成人体骨密度及骨质量下降,骨骼微小结构破坏,骨骼易脆性增高,导致老年人更容易在日常活动中发生骨折。Src蛋白酪氨酸激酶抑制剂能够抑制Src蛋白酪氨酸激酶活性,对于骨质疏松的靶向治疗具有精准、稳定性强、副作用小,可直接进入病灶、无明显毒副作用等特点。本文就Src蛋白酪氨酸激酶抑制剂在骨质疏松症中的研究进展做一综述。
Abstract: Bone destruction occurs with aging and in many diseases, the most common of which is osteoporo-sis. Osteoporosis (OP) is a kind of systemic metabolic bone disease with high incidence as a common disease in middle-aged and elderly patients in China. Its occurrence is caused by a variety of factors resulting in the reduction of bone density and bone mass of the human body, the destruction of bone micro-structure, resulting in increased brittleness of the bone, resulting in the elderly more prone to fracture in daily activities. Src protein tyrosine kinase inhibitor can inhibit the activity of Src protein tyrosine kinase. It has the characteristics of precision, low side effects, strong stability, direct access to the focus and no obvious toxic and side effects for the targeted treatment of osteo-porosis. Now we review the research progress of SRC protein tyrosine kinase inhibitors in the treatment of osteoporosis.
文章引用:刘宝成, 屈孝东, 常彦海, 杨波. Src蛋白酪氨酸激酶抑制剂在骨质疏松症中的研究进展[J]. 临床医学进展, 2022, 12(5): 3827-3833. https://doi.org/10.12677/ACM.2022.125552

1. 引言

当代中国正趋于人口老龄化社会,发生骨质疏松性骨折的患者越来越多,因骨质疏松导致骨微损伤,进而导致骨质破坏诱发骨折,这一现状的源头在于骨质疏松症(Osteoporosis, OP)。根据全国人口普查的最新数据调查,预计在2033年,我国将成为老年人口占比超过总人口20%的超级老龄化社会 [1]。临床上对骨质疏松症的防治非常有限,主要是药物治疗来进行预防 [2],但目前尚无有效的防治骨质疏松症的方法。抗骨吸收药物 [3] 主要包括双膦酸盐、单克隆抗体、组织蛋白酶K抑制剂、Src激酶抑制剂等。除此之外,人们改变生活方式,选择更健康的生活方式,比如适当增加日常体育锻炼时间、戒烟、适当饮酒、增加户外活动、多晒太阳等,将会大大有助于骨质疏松症的治疗。临床上最常用的是双膦酸盐类药物 [4],代表药物有阿伦膦酸钠、利塞膦酸钠。单克隆抗体包括狄诺塞麦 [5],可抑制骨吸收过程以保持骨量,临床一般适用于绝经后女性和骨质疏松骨折风险高的男性。组织蛋白酶K抑制剂 [6] 作为新型抗再吸收药物,它选择性地靶向骨基质,降解蛋白酶而不干扰破骨细胞的活性或形成。其抑制剂包括奥达卡替、ONO-5334。促进骨形成药物包括硬化蛋白抗体、DKK-1抗体,除此之外还有如阿伦膦酸钠骨化三醇片 [7];纳米抗体ALX-0141 [8] 通过RANK/RANKL之间的相互作用对破骨细胞形成和骨吸收的调节,目前正在进行I期临床研究,以评估注射后的耐受性和免疫原性。Src蛋白酪氨酸激酶是一种非受体蛋白酪氨酸激酶 [9],在脑、血小板和骨吸收破骨细胞中的浓度尤其高。抑制剂对于骨质疏松的靶向治疗具有精准、副作用小、稳定性强、可直接进入病灶、无明显毒副作用等特点。以下文章将从Src蛋白酪氨酸激酶的结构与功能、Src蛋白酪氨酸激酶抑制剂目前的研究状况、Src激酶在骨质疏松症的作用、展望四个方面进行论述。

2. Src蛋白酪氨酸激酶的结构与功能

2.1. Src蛋白结构

Src作为蛋白激酶家族的一种非受体蛋白酪氨酸激酶,三十年来一直是研究的热点,部分原因是它与恶性转化和肿瘤发生有关。从分子生物学的发病机制来看,结合国内外相关文献,Src蛋白通路在骨质疏松症中具有重要临床指导意义,不仅被认为是破骨发挥细胞功能和骨吸收过程所需要的,而且在人体日常的生理功能中起至关重要作用。Src蛋白质大部分由两种形态组成,同时这两种形态在生物学上具有遗传同源性。其中,前一种病毒癌基因表达蛋白,它目前归属为鸡肉瘤病毒编码的蛋白质 [10];另一种细胞癌基因表达蛋白,分别由6个结构域组成:N端豆蔻酰化序(M)、单一序列(U)、由N-lobe与C-联合的激酶域、4个β折叠片的SH2、5个β折叠片的SH3、含有激酶结构域的C末端邻。SH2和SH3结构域有四个重要功能 [11] [12]。首先,它们通过分子内接触限制酶的活性 [13]。其次,含有SH2或SH3结合伙伴的蛋白质不仅可以与Src蛋白激酶的SH2或SH3结构域发生相互作用,并将它们吸引到特定的细胞位置。第三,由于取代分子内SH2或SH3结构域,蛋白质导致Src激酶活性的激活 [14]。第四,含有SH2或SH3结合伙伴的蛋白质可能优先作为Src蛋白酪氨酸激酶的底物 [15]。Src蛋白酪氨酸激酶参与体内细胞粘附、迁移和趋化性,在增殖、粘附和运动中起着重要作用,主要在机体正常的细胞活动及异常的病理状态中发挥基本作用,如新生毛细血管生成、炎症和骨吸收,促进细胞生理效应方面的发挥。Src参与各种特殊细胞类型的细胞存活和细胞内运输,在抑制肿瘤生长、肿瘤血管生成和骨吸收方面具有治疗价值。

2.2. Src的功能

Src在生理和病理条件下参与多种受体酪氨酸激酶诱导的细胞生长和增殖的过程,特别是在肿瘤中,比如乳腺癌和肺癌,Src表达升高,这显示了它与肿瘤生长之间的相关性。此外,一些其他类型的肿瘤(如胰腺、肝脏、食管和膀胱)可能涉及Src,并且已在人类结肠癌中发现Src突变 [16]。前列腺癌和乳腺癌细胞优先向骨转移,导致临床上患者感到明显的痛苦,还因为一些肿瘤细胞在向骨骼转移过程中导致患者骨质疏松发病率的增加和骨骼病变的进展。在其他疾病中,如自身免疫性和炎症性皮肤病中 [17],酪氨酸激酶介导各种白细胞群体的募集和激活。通过动物研究表明Src蛋白络氨酸的小型化学抑制剂可以减轻组织损伤,提高急性炎症反应相关的各种病理条件下的存活率。在胰腺腺泡细胞中,Src激酶家族(SFK)参与了多种信号级联的激活,这些信号级联与介导细胞过程(生长、细胞骨架变化、凋亡)有关,胰蛋白酶原、各种MAP激酶(p42/44,JNK)、转录因子(转录激活因子-3和信号转导子、核因子-κB、激活蛋白-1)发生激活,诱导凋亡。急性炎症反应是多种疾病(如缺血再灌注损伤、脓毒症和急性肺损伤)都会发生,并引起组织损伤的,通过使用细胞和分子方法以及转基因动物,已经确定Src蛋白酪氨酸激酶家族成员对于单核细胞、巨噬细胞、中性粒细胞和其他免疫细胞的募集和激活至关重要,这也是急性炎症反应致病主要潜在机制之一。Massaro [18] 研究表明,Src激酶家族是急性胰腺炎炎症和胰腺腺泡细胞死亡的关键介质,提示它可能是急性胰腺炎的潜在治疗靶点。Jak、Src、Syk和Btk家族的非受体酪氨酸激酶在各种免疫介导的疾病中发挥着重要作用,小分子酪氨酸激酶抑制剂正在许多此类疾病中出现新的治疗方法,特应性皮炎和银屑病的特征是炎症微环境激活与Jak-Stat信号通路耦合的细胞因子受体。Jak激酶也与斑秃和白癜风(由细胞毒性T淋巴细胞介导的皮肤疾病)有关,遗传研究表明Src家族激酶和Syk在自身抗体介导的起泡性皮肤病动物模型中起着关键作用。Src蛋白酪氨酸在组织细胞的血管通透性和炎症反应的调节中也起着关键作用,不仅如此,通过动物研究表明,Src蛋白络氨酸的小型化学抑制剂可以减轻组织损伤,提高急性炎症反应相关的各种病理条件下的存活率。期待进一步的研究成果,从而促进这些抑制剂的临床应用,比如应用在急性肺损伤和多器官功能障碍综合征等疾病上。

3. Src蛋白酪氨酸激酶抑制剂目前的研究状况

3.1. Src蛋白酪氨酸作用位点

Src蛋白酪氨酸激酶抑制剂包括有MAPK信号通路、STAT通路、PLC通路;转导途径包括αvβ3,FAK,P130Cas等。低分子量化合物对Src细胞功能的抑制可在Src蛋白质内的几个位点实现,包括:1) Src的SH2和SH3结构域与其底物、衔接蛋白或决定Src亚细胞定位的蛋白质之间的蛋白质–蛋白质相互作用 [19];2) 蛋白质底物与底物结合位点的相互作用 [20];3) ATP与Src酪氨酸激酶结构域内的ATP结合位点结合,通过对分子生物学中酪氨酸磷酸化的调控C端Src激酶磷酸化抑制位点,调节Src蛋白的合成或降解。

3.2. Src蛋白酪氨酸作用靶点

低分子量化合物对Src细胞功能的抑制可在Src蛋白质内的几个位点实现,包括:1) Src的SH2和SH3结构域与其底物、衔接蛋白或决定Src亚细胞定位的蛋白质之间的蛋白质–蛋白质相互作用 [19];2) 蛋白质底物与底物结合位点的相互作用 [20];3) ATP与Src酪氨酸激酶结构域内的ATP结合位点结合,通过对分子生物学中酪氨酸磷酸化的调控C端Src激酶磷酸化抑制位点,调节Src蛋白的合成或降解。按Src蛋白酪氨酸激酶抑制剂靶点的差异分两类 [21]:一种是通过竞争性抑制c-Src蛋白酪氨酸激酶结构域中的TP结合位点以此抑制靶蛋白的磷酸化 [22],像达沙替尼、尼洛替尼和伊马替尼。另一种作用靶点则针对SH2和SH3结构域的药物阻断了c-Src和其他底物之间的相互作用 [23],作为癌症和骨转移的治疗方法,代表如药物AP23451和AP22408。小分子Src激酶抑制剂主要分为三大类,包括ATP竞争性抑制剂、ATP非竞争性抑制剂、Src激酶共价抑制剂 [24]。ATP竞争性蛋白激酶抑制剂分为I型和II型,以结合天冬氨酸–苯丙氨酸–甘氨酸区域激活结构域的I型抑制剂,主要包括PP1、PP2、A420983和CGP76030。II型抑制剂以天冬氨酸–苯丙氨酸–甘氨酸区域非活化的构象结合,Ⅱ型Src激酶抑制剂发展迅速,四种医药产品,即博舒替尼、达沙替尼、塞卡替尼和凡德他尼已成功上市 。此外,还有xl228和Src多靶点酪氨酸激酶抑制剂以及微管蛋白双靶点抑制剂kx2-361和kx2-391,它们也处于临床试验阶段。从远期生存率来评估慢性髓系白血病患者(CML)的患者治疗效果,酪氨酸激酶抑制剂的临床使用极大提高了这类患者的生存时间 [25]。ATP非竞争性抑制剂又认为是酪氨酸激酶III型抑制剂,目前临床使用的Src激酶抑制剂只有普纳替尼(ponatinib) [26],它是一种有效的口服多靶点激酶抑制剂,但会引起严重的并发症,如动脉血栓形成、肝毒性、骨髓抑制等。因此,使用普纳替尼时应谨慎。IV型小分子抑制剂可与激酶形成不可逆共价键,也称为Src激酶共价抑制剂,它的代表药物是来那替尼,它对早期乳腺癌的术后治疗产生了良好的效果,而在针对非典型小细胞肺癌的临床试验也在进行中。Src激酶影响细胞周期。其表达增加通常促进细胞增殖和有丝分裂,并导致肿瘤细胞增殖 [27] (表1)。

Table 1. Classification of Src kinase inhibitors

表1. Src激酶抑制剂的分类

4. Src激酶在骨质疏松症的作用

4.1. 动物实验

目前在以小鼠动物的模型证明Src基因敲除 [28] 小鼠无法建立骨重吸收微环境,Takeshita S教授发现c-Src蛋白在破骨细胞上表达增高,完全去除c-Src基因不会在大鼠体内产生肌动蛋白环或皱褶缘,从而导致骨吸收障碍和骨硬化。国内郑教授 [29] 在兔模型中通过siRNA敲除Src来预防骨小梁中类固醇相关的骨质流失,并发现兔子股骨颈的皮质骨厚度增加。

4.2. 体外实验

有学者发现Pkn3 [30] 促进Wnt5a-Ror2-Rho信号传导下游的骨吸收,Rho效应激酶Pkn3结合并增强了c-Src的活性,Ror2中破骨细胞特异性缺陷的小鼠骨量增加。在破骨细胞中,苄唑衍生物刺激–钙蛋白酶活性并抑制Src活性。5-氮杂胞苷诱导蛋白2是TNF受体相关因子家族成员相关的结合蛋白,成年的AZI2基因敲除小鼠患有严重的骨质疏松症,AZI2 [31] 通过与Hsp90伴侣蛋白Cdc37相互作用间接抑制c-Src活性,导致原癌基因酪氨酸蛋白激酶Src (c-Src)的活化增强,施用c-Src抑制剂可显着预防AZI2基因敲除小鼠的骨质流失。

4.3. 临床应用

从Hannon [32] 等人完成的I期临床研究结果分析,成年健康男性服用塞卡替尼能使骨代谢标志物I型胶原交联氨基末端肽和空腹尿中羟脯氨酸/肌酐比值显著降低,这一研究结果对塞卡替尼对骨质疏松症的临床新药发展意义重大。苦参碱 [33] 显着抑制了由骨髓单核细胞和RAW264.7细胞中NF-B配体和M-CSF的受体激活剂诱导的破骨细胞分化,来抑制破骨细胞生成。丹参醇 [34] 减弱了活性氧生成、p66表达磷酸化、TUNEL阳性细胞和KLF15在GC条件下引起的caspase-3活性的增加。葛根素 [35] 减少了破骨细胞的骨吸收,有助于体外长骨的生长,通过增加类固醇激素受体辅激活因子的表达增强经典雌激素免疫应答元件的激活。

5. 展望

回顾目前对骨质疏松症发病机制的各类研究,分子通路及各种靶点已愈发清晰,例如,信号素3A [36] 通过协调感觉神经系统,既能抑制破骨细胞的活性,也能对成骨细胞、破骨细胞中标记蛋白的活性起到促进作用。雄激素受体调节剂 [37] 会促进成骨细胞、性激素调节组织的机械负荷,通过增加肌肉质量等方式增加骨密度。miRNA [38] 不仅一直作用在成骨细胞的分化和破骨形成过程,而且研究发现miR-214拮抗剂对骨形成有促进作用。microRNA (miR)-25-3p [39] 通过核因子IX负向调节破骨细胞功能,进而抑制破骨细胞增殖。整合素 [40] 是存在于肿瘤细胞中的分子,可通过招募和激活受体酪氨酸激酶,形成双激酶复合物的粘着斑激酶来改变细胞行为,激酶复合物结合并能磷酸化各种衔接蛋白,如p130Cas和paxillin。Src家族激酶抑制剂是一种潜在的治疗剂,可降低骨转移的发生率,对有或无转移性骨病的实体瘤患者的进一步试验正在进行中 [41]。通过对Src蛋白酪氨酸激酶抑制剂进一步研究探索,其在增强骨密度、预防骨折风险、改善骨质疏松症患者的生活质量的作用也会更加完善。

参考文献

[1] 王群. 新形势下我国社会保障面临的新问题及应对——基于第七次全国人口普查数据的分析[J]. 重庆行政(公共论坛), 2021(6): 105-106.
[2] Qaseem, A., Forciea, M.A., McLean, R.M., et al. (2017) Treatment of Low Bone Densi-ty or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update from the American College of Physicians. Annals of Internal Medicine, 166, 818-839.
https://doi.org/10.7326/M15-1361
[3] Ferrari, S., Eastell, R., Napoli, N., et al. (2020) Denosumab in Postmenopausal Women with Osteoporosis and Diabetes: Sub-group Analysis of FREEDOM and FREEDOM Extension. Bone, 134, Article ID: 115268.
https://doi.org/10.1016/j.bone.2020.115268
[4] Clemens, K.K., Jeyakumar, N., Ouedraogo, A.M., et al. (2020) Bisphosphonate and Denosumab Initiation in Older Adults in Ontario, Canada: A Population-Based Cohort Study. Ar-chives of Osteoporosis, 15, 133.
https://doi.org/10.1007/s11657-020-00796-3
[5] Pang, K.L., Low, N.Y. and Chin, K.Y. (2020) A Review on the Role of Denosumab in Fracture Prevention. Drug Design, Development and Therapy, 14, 4029-4051.
https://doi.org/10.2147/DDDT.S270829
[6] Drake, M.T., Clarke, B.L., Oursler, M.J., et al. (2017) Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned. Endocrine Reviews, 38, 325-350.
https://doi.org/10.1210/er.2015-1114
[7] Yoo, J.I., Ha, Y.C., Won, Y.Y., et al. (2017) Fracture Preventing Effects of Maxmarvil® Tablets (Alendronate 5 mg + Calcitriol 0.5 µg) in Patients with Osteoporosis. Journal of Bone Metabo-lism, 24, 91-96.
https://doi.org/10.11005/jbm.2017.24.2.91
[8] Jin, S.S., He, D.Q., Luo, D., et al. (2019) A Biomimetic Hierar-chical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment to Promote Endog-enous Bone Regeneration. ACS Nano, 13, 6581-6595.
https://doi.org/10.1021/acsnano.9b00489
[9] Bruno, F., Carboni, N., Palumbo, P., et al. (2021) O2-O3 Che-modiscolysis: How Much, How Long? Retrospective Outcome Evaluation of Different Treatment Sessions in Partial-ly-Responder Patients. Interventional Neuroradiology, 23, 444-450.
https://doi.org/10.1177/1591019917703784
[10] Guo, L., Han, J., Guo, H., et al. (2019) Pathway and Network Analysis of Genes Related to Osteoporosis. Molecular Medicine Reports, 20, 985-994.
https://doi.org/10.3892/mmr.2019.10353
[11] Levaot, N., Simoncic, P.D., Dimitriou, I.D., et al. (2011) 3BP2-Deficient Mice Are Osteoporotic with Impaired Osteoblast and Osteoclast Functions. Journal of Clinical Investi-gation, 121, 3244-3257.
https://doi.org/10.1172/JCI45843
[12] Nishioku, T., Kubo, T., Kamada, T., et al. (2020) (-)-Epigallocatechin-3-Gallate Inhibits RANKL-Induced Osteoclastogenesis via Downregulation of NFATc1 and Sup-pression of HO-1-HMGB1-RAGE Pathway. Biomedical Research, 41, 269-277.
https://doi.org/10.2220/biomedres.41.269
[13] Xie, Y., Gao, Y., Zhang, L., et al. (2018) Involvement of Se-rum-Derived Exosomes of Elderly Patients with Bone Loss in Failure of Bone Remodeling via Alteration of Exosomal Bone-Related Proteins. Aging Cell, 17, e12758.
https://doi.org/10.1111/acel.12758
[14] Faltermeier, C.M., Drake, J.M., Clark, P.M., et al. (2016) Functional Screen Identifies Kinases Driving Prostate Cancer Visceral and Bone Metastasis. Proceedings of the National Academy of Sciences of the United States of America, 113, E172-E181.
https://doi.org/10.1073/pnas.1521674112
[15] Huang, Y., Li, Y., Zhong, X., et al. (2017) SRC-Family Kinases Activation in Spinal Microglia Contributes to Central Sensitiza-tion and Chronic Pain after Lumbar Disc Herniation. Molecular Pain, 13.
https://doi.org/10.1177/1744806917733637
[16] Bagnato, G., Leopizzi, M., Urciuoli, E., et al. (2020) Nuclear Functions of the Tyrosine Kinase Src. International Journal of Molecular Sciences, 21, 2675.
https://doi.org/10.3390/ijms21082675
[17] Szilveszter, K.P., Nemeth, T. and Mocsai, A. (2019) Tyrosine Kinases in Autoimmune and Inflammatory Skin Diseases. Frontiers in Immunology, 10, Article No. 1862.
https://doi.org/10.3389/fimmu.2019.01862
[18] Antonarakis, E.S., Heath, E.I., Posadas, E.M., et al. (2013) A Phase 2 Study of KX2-391, an Oral Inhibitor of Src Kinase and Tubulin Polymerization, in Men with Bone-Metastatic Castration-Resistant Prostate Cancer. Cancer Chemotherapy and Pharmacology, 71, 883-892.
https://doi.org/10.1007/s00280-013-2079-z
[19] Liu, L., Zhu, Q., Wang, J., et al. (2015) Gene Expression Changes in Human Mesenchymal Stem Cells from Patients with Osteoporosis. Molecular Medicine Reports, 12, 981-987.
https://doi.org/10.3892/mmr.2015.3514
[20] Sapkota, M., Li, L., Kim, S.W., et al. (2018) Thymol Inhibits RANKL-Induced Osteoclastogenesis in RAW264.7 and BMM Cells and LPS-Induced Bone Loss in Mice. Food and Chemical Toxicology, 120, 418-429.
https://doi.org/10.1016/j.fct.2018.07.032
[21] 王琴, 刘力, 乐意, 等. Src激酶抑制剂研究进展[J]. 中国药物化学杂志, 2021, 31(4): 312-319.
[22] Botter, S.M., Neri, D. and Fuchs, B. (2014) Recent Advances in Osteosarcoma. Current Opinion in Pharmacology, 16, 15-23.
https://doi.org/10.1016/j.coph.2014.02.002
[23] Heusschen, R., Muller, J., Binsfeld, M., et al. (2016) SRC Kinase Inhibition with Saracatinib Limits the Development of Osteolytic Bone Disease in Multiple Myeloma. Oncotarget, 7, 30712-30729.
https://doi.org/10.18632/oncotarget.8750
[24] Cao, H., Lei, S., Deng, H.W., et al. (2012) Identification of Genes for Complex Diseases Using Integrated Analysis of Multiple Types of Genomic Data. PLoS ONE, 7, e42755.
https://doi.org/10.1371/journal.pone.0042755
[25] Chen, H., Fang, C., Zhi, X., et al. (2020) Neobavaisoflavone Inhibits Osteoclastogenesis through Blocking RANKL Signalling-Mediated TRAF6 and c-Src Recruitment and NF-κB, MAPK and Akt Pathways. Journal of Cellular and Molecular Medicine, 24, 9067-9084.
https://doi.org/10.1111/jcmm.15543
[26] Nuche-Berenguer, B., Ramos-Álvarez, I. and Jensen, R.T. (2016) SRC Kinases Play a Novel Dual Role in Acute Pancreatitis Affecting Severity But No Role in Stimulated Enzyme Secretion. The American Journal of Physiology- Gastrointestinal and Liver Physiology, 310, G1015-G1027.
https://doi.org/10.1152/ajpgi.00349.2015
[27] Lee, J., Son, H.S., Lee, H.I., et al. (2019) Skullcapflavone II Inhibits Osteoclastogenesis by Regulating Reactive Oxygen Species and Attenuates the Survival and Resorption Function of Os-teoclasts by Modulating Integrin Signaling. FASEB Journal, 33, 2026-2036.
https://doi.org/10.1096/fj.201800866RR
[28] Takeshita, S., Fumoto, T., Ito, M., et al. (2018) Serum CTX Levels and Histomorphometric Analysis in SRC versus RANKL Knockout Mice. Journal of Bone and Mineral Metabolism, 36, 264-273.
https://doi.org/10.1007/s00774-017-0838-3
[29] Brar, K.S. (2010) Prevalent and Emerging Therapies for Osteo-porosis. Medical Journal Armed Forces India, 66, 249- 254.
https://doi.org/10.1016/S0377-1237(10)80050-4
[30] Huang, Y., Ren, K., Yao, T., et al. (2020) MicroRNA-25-3p Regulates Osteoclasts through Nuclear Factor IX. Biochemical and Biophysical Research Communications, 522, 74-80.
https://doi.org/10.1016/j.bbrc.2019.11.043
[31] Stone, J.A., McCrea, J.B., Witter, R., et al. (2019) Clinical and Translational Pharmacology of the Cathepsin K Inhibitor Odanacatib Studied for Osteoporosis. British Journal of Clinical Pharmacology, 85, 1072-1083.
https://doi.org/10.1111/bcp.13869
[32] Hannon, R.A., Clack, G., Rimmer, M., et al. (2010) Effects of the SRC Ki-nase Inhibitor Saracatinib (AZD0530) on Bone Turnover in Healthy Men: A Randomized, Double-Blind, Place-bo-Controlled, Multiple-Ascending-Dose Phase I Trial. Journal of Bone and Mineral Research, 25, 463-471.
https://doi.org/10.1359/jbmr.090830
[33] Lotinun, S., Ishihara, Y., Nagano, K., et al. (2019) Cathepsin K-Deficient Osteocytes Prevent Lactation-Induced Bone Loss and Parathyroid Hormone Suppression. Journal of Clinical Investiga-tion, 129, 3058-3071.
https://doi.org/10.1172/JCI122936
[34] Gavali, S., Gupta, M.K., Daswani, B., et al. (2019) LYN, a Key Mediator in Estrogen-Dependent Suppression of Osteoclast Differentiation, Survival, and Function. Biochimica et Biophysica Ac-ta—Molecular Basis of Disease, 1865, 547-557.
https://doi.org/10.1016/j.bbadis.2018.12.016
[35] Portal-Núñez, S., Ardura, J.A., Lozano, D., et al. (2018) Parathyroid Hormone-Related Protein Exhibits Antioxidant Features in Osteo-blastic Cells through Its N-terminal and Osteostatin Domains. Bone & Joint Research, 7, 58-68.
https://doi.org/10.1302/2046-3758.71.BJR-2016-0242.R2
[36] Qiao, Q., Song, Y.L. and Li, F.L. (2018) Sema-phorin 3A-Stimulated Bone Marrow Mesenchymal Stem Cells Sheets Promotes Osteogenesis of Type 2 Diabetic Rat. Chinese Journal of Stomatology, 53, 333-338.
[37] Christiansen, A.R., Lipshultz, L.I., Hotaling, J.M., et al. (2020) Se-lective Androgen Receptor Modulators: The Future of Androgen Therapy? Translational Andrology and Urology, 9, S135-S148.
https://doi.org/10.21037/tau.2019.11.02
[38] Kobayakawa, M., Matsubara, T., Mizokami, A., et al. (2020) Kif1c Regulates Osteoclastic Bone Resorption as a Downstream Molecule of p130Cas. Cell Biochemistry and Function, 38, 300-308.
https://doi.org/10.1002/cbf.3476
[39] Brömme, D., Panwar, P. and Turan, S. (2016) Ca-thepsin K Osteoporosis Trials, Pycnodysostosis and Mouse Deficiency Models: Commonalities and Differences. Expert Opinion on Drug Discovery, 11, 457-472.
https://doi.org/10.1517/17460441.2016.1160884
[40] Zheleznyak, A., Mixdorf, M., Marsala, L., et al. (2021) Or-thogonal Targeting of Osteoclasts and Myeloma Cells for Radionuclide Stimulated Dynamic Therapy Induces Multidi-mensional Cell Death Pathways. Theranostics, 11, 7735- 7754.
https://doi.org/10.7150/thno.60757
[41] Rucci, N., Susa, M. and Teti, A. (2008) Inhibition of Protein Kinase c-SRC as a Therapeutic Approach for Cancer and Bone Metas-tases. Anti-Cancer Agents in Medicinal Chemistry, 8, 342-349.
https://doi.org/10.2174/187152008783961905