金属纳米复合材料型非酶葡萄糖传感器的研究进展
Research Progress of Metal Nanocomposite Non-Enzymatic Glucose Sensors
摘要: 葡萄糖检测在临床医学、食品工业和环境工程等众多领域具有十分重要的意义。在众多的葡萄糖分析方法中,电化学非酶促葡萄糖传感器由于自身操作简单、灵敏度高等优点获得了快速发展。本文简要综述了多种过渡金属:Au、Pt及其合金、Ni、Cu、Co、Zn的复合物等复合功能材料型非酶促葡萄糖传感器。最后展望了电化学非酶促葡萄糖传感器的研究趋势。
Abstract: Glucose detection is of great significance in many fields such as clinical medicine, food industry and environmental engineering. Among the many glucose analysis methods, electrochemical non-enzymatic glucose sensors have gained rapid development due to their simplicity of operation and high sensitivity. This paper briefly reviews a variety of transition metals: Au, Pt with their alloys, Ni, Cu, Co, Zn with their complexes, and other composite functional materials-based non-enzymatic glucose sensors. Finally, we look forward to the future research trend of electrochemical non-enzymatic glucose sensors.
文章引用:张燕, 高渝萌, 黄瑶瑶, 张珊, 刘恩余, 徐春丽, 苏小东. 金属纳米复合材料型非酶葡萄糖传感器的研究进展[J]. 分析化学进展, 2022, 12(2): 85-93. https://doi.org/10.12677/AAC.2022.122012

1. 引言

人体血液中葡萄糖起着重要作用,在细胞中传递信号,以维持人体的正常生理功能。在现代的生活中,人们摄取过多高糖分的食物,引起血糖浓度的失调,进而引发糖尿病以及其他疾病。因此,在食品和临床医学等众多领域,检测葡萄糖的浓度具有十分重要的意义 [1]。

随着研究不断深入,已经建立了多种检测葡萄糖的方法,其中电化学法因其具有操作简单、检测速度快、灵敏度高、选择性好等优势而备受关注 [2]。构筑传感器是采用电化学方法检测葡萄糖的桥梁,主要分为酶型传感器 [3] [4] 和非酶型传感器 [5] [6],酶型传感器性能良好,但其成本高、稳定性差、固定酶的过程复杂且需在独特的条件下才能发挥酶的高效专一性,进而限制了酶型传感器的实际应用 [7] [8]。为了避免上述存在问题,研究者们将注意力转移至非酶型传感器。纳米材料的出现,成为构建非酶传感器的关键,采用不同的功能性纳米材料来构建葡萄糖传感器具有良好的生物相容性和选择性,且操作简单、灵敏度高、检出限低 [6] [9]。根据纳米材料的性质,将其分为三种类型:导电聚合物纳米材料、碳纳米材料和金属纳米材料三种类型 [10] [11] [12]。本文主要介绍了过渡金属复合纳米材料在构筑葡萄糖传感器中的应用,并对金属复合纳米材料在葡萄糖传感器的应用前景进行了展望。

2. 贵金属纳米材料在非酶葡萄糖传感器中的应用

贵金属纳米材料如Au [5]、Ag [13]、Pt [14] 等,因其物理化学特性独特而被广泛应用于构筑葡萄糖传感器 [15]。H. Shu等人 [16] 在未添加任何模板、表面活性剂和稳定剂的条件下,采用恒电位法直接将金纳米沉积到玻碳电极上,通过对沉积电位、沉积时间和前驱体浓度进行调控,进而获得不同形貌的金纳米材料,筛选出催化氧化效果最佳的材料并以此作为工作电极,在pH为7.4的PBS缓冲液中检测葡萄糖,结果表明该传感器的灵敏度为190.7 mA∙cm−2∙mM−1,线性范围为0.1~25 mM,检出限为0.05 mM。采用单一的贵金属纳米材料来构建葡萄糖传感器虽然具有宽线性范围,但其灵敏度较低且选择性较差。通过将贵金属和其他金属复合形成合金,发挥双金属协同效应,使得复合材料活性位点增加且能提高电子转移速率,进而能改善传感器的灵敏度和选择性等性能,为非酶葡萄糖传感器的发展提供广阔的空间 [17] [18]。K. Shim等人 [14] 以K2PtCl4和HAuCl4∙3H2O为前驱体,采用声化学法合成了Au为核,Pt为壳的Au@Pt纳米复合材料,以此复合材料为工作电极在PBS缓冲液中检测葡萄糖,该传感器拥有两个动态线性范围0.5~10.0 µM和0.01~10.0 mM,并且获得了极低的检出限,为445.7 (±10.3) nM;同时在抗坏血酸、对乙酰氨基酚、尿酸、多巴胺干扰物质存在下,Au@Pt复合材料的选择性好,且该材料经过20多天后,催化氧化葡萄糖的电流密度变化较小,说明其稳定性好。P. Chakraborty等人 [19] 采用水热法将CuO生长到涂覆有氟掺杂氧化锡(FIO)的玻璃基板上,再将金纳米粒子修饰到CuO上形成Au-CuO复合材料,用该复合材料为工作电极在0.1 M NaOH电解液中检测葡萄糖,传感器的灵敏度高达1740 µA∙mM−1∙cm−2,线性范围为5~1325 µM,检出限为0.17 µM。鉴于贵金属类纳米材料本身的固有特性,使它们在非酶葡萄糖传感器中具有许多突出的特点,如:导电性好、催化效果佳、性能稳定等,然而,贵金属类材料的成本高、易被毒化等不足,限制了贵金属类纳米材料在非酶葡萄糖传感器中的应用;通过将贵金属与其他材料复合,进而改变其形貌等情况,在保持贵金属原有的优良性能的基础上,有效减少贵金属的用量,从而达到降低成本、改善贵金属性能中不足的目的。一些基于贵金属葡萄糖传感器的电化学性能如表1所示。

Table 1. Non-enzymatic glucose sensors of noble metal nanocomposite

表1. 贵金属纳米复合材料的非酶葡萄糖传感器

3. 非贵金属纳米材料在生物传感器中检测葡萄糖的应用

以贵金属纳米材料为基础的生物传感器虽然具有良好的电化学性能,但其造价费高,且易被氯离子毒化,导致催化活性降低甚至消失,不具有普适性 [23],使得该传感器的应用受到了一定的限制。近年来,非贵金属(Ni、Cu、Co等)因其在电化学生物传感器所具备的优良的特性,逐渐引起了研究者的关注。与贵金属相比,金属氧化物成本低、毒性小、生物相容性较好 [24]。然而非贵金属材料的导电性和催化性也存在一定的不足,从而成为基于非贵金属非酶葡萄糖传感器商业化的主要障碍;因此,研究者们致力于将非贵金属类材料与其他金属类材料等进行复合,使得材料与材料之间产生有效的协同作用,以改善非贵金属类材料的催化导电性,进而提高该类非酶葡萄糖传感器应用中的整体性能。本部分简要总结了近几年非贵金属复合物用于构筑葡萄糖传感器的研究进展。

3.1. 基于Ni及其复合物的葡萄糖传感器

Ni是过渡金属之一,被广泛应用于化学催化。经过研究发现,Ni基纳米材料在有机化学反应中可以起到催化作用,且在碱性条件下能直接催化氧化葡萄糖 [25]。然而,研究者发现单一Ni纳米材料存在导电性较差,易受外界条件影响,易发生团聚等问题 [26] [27]。针对以上问题,大量研究者对Ni纳米材料进行改性或与其他过渡金属及其氧化物等结合形成复合型材料以期获得性能优良的镍基葡萄糖传感器。

目前,基于NiO纳米材料对葡萄糖检测进行了广泛的研究,通过对结构进行调控获得多种不同形貌的NiO纳米结构(如:空心球、壳核结构等),并成功应用于非酶葡萄糖传感器。Z. Cui等人 [28] 以碳球为模板,通过简便的水热法可控地制备了分层的花状NiO空心微球。研究结果表明,分层花状NiO空心微球由相互连接的多孔NiO纳米片组成,每个纳米片由长约12.5 nm、宽约10 nm的NiO纳米颗粒组装而成,说明该材料分布均匀,且能有效地避免因Ni基材料团聚而掩蔽活性位点,提高了NiO纳米材料的导电性;此外,通过对温度的优化,发现在550℃下获得的分层花状NiO空心微球葡萄糖传感器表现出最佳性能,线性范围为5~364 μM,灵敏度为288.87 mA∙mM−1∙cm−2。从结构上对该材料进行分析,由于其分层中空结构,使其具有丰富的活性位点,提高了电子转移速率,增加了比表面积,获得了长期稳定性和良好的抗干扰性。

除此以外,Ni基复合材料因其在耐腐蚀和电子转移方面的优势而受到关注,这些电化学传感器表现出了优异的性能。T. Zhe等人 [29] 采用一步恒电位沉积合成路线,以CuSO4∙5H2O和NiSO4∙6H2O为前驱体,通过氨水调节体系pH,使溶液呈弱碱性,在泡沫镍上沉积50秒,制备了新型三维多孔Ni/Cu(OH)2纳米微球。这些孔洞不仅提供了丰富的活性位点,还提高了电解质的渗透和扩散性能,以此材料作为工作电极检测葡萄糖,灵敏度高达8722 μA∙mM−1∙cm−2,检出限为1.27 μM,且抗干扰能力强、重现性好。S. Sun等人 [30] 采用一步溶剂热法,并以碳布(CC)为载体,成功制备出CuO/Ni(OH)2/CC电极,该传感器具有宽线性范围(0.05~8.50 mM)和低检出限(0.31 μM),此外,还具备良好的选择性和长期稳定性,是一种很有前景的非酶葡萄糖传感电极。例外研究者还构筑了Ni(OH)2/TiO2 [31]、Ni-MOFs [32] 和Ni7S6/NiO [33] 葡萄糖传感器。一些基于Ni基葡萄糖传感器的电化学性能如表2所示。

Table 2. Non-enzymatic glucose sensors of Ni nanocomposite

表2. Ni基复合物的非酶葡萄糖传感器

3.2. 基于Cu基的葡萄糖传感器

Cu基纳米材料由于其具有较好的催化性,毒性低、绿色经济等优势,常作为葡萄糖的催化材料,其主要材料包括Cu、CuO、Cu2O [34] [35]。H. Wei等 [24] 研究者采用恒电位沉积法,在泡沫镍上直接制备Cu-Ni合金材料,最后在NaOH溶液中进行氧化处理,获得树枝状壳核铜镍合金@金属氧化物(CuO和NiO)复合材料。该材料特殊的形貌结构可促进葡萄糖的扩散,且双金属氧化物壳层和导电电子传输的金属核发挥协同作用,可进一步提高对葡萄糖的催化氧化活性。研究结果表明,该传感器表现出较高的灵敏度(11.34 mA∙mM−1∙cm−2),低检出限(2 μM);同时还具有选择性高、响应时间快、持续时间长等优点。X. Cheng等人 [36] 报道了通过电位振荡制备了均匀分布的Cu/Cu2O纳米复合材料,由于两者之间的协同效应,纳米杂化物和Cu2O表现出低电阻率和较高的葡萄糖催化活性,基于该纳米复合物应用于非酶葡萄糖传感器,其灵敏度为1434.12 μA∙cm−2∙mM−1

除了上述所提的铜基材料外,Cu(OH)2由于具备较大的比表面积、较好的催化性和导电性、廉价、良好的生物相容性等优势,在葡萄糖传感器中得到广泛应用,尤其是在核壳型纳米复合材料中Cu(OH)2作为核是最佳的选择之一,因为其稳定性好,且具有开放的中空结构,可以提供大量的活性位点,将更多的电解质离子沿低阻力的纵向转移到Cu(OH)2的空位中,并通过纵向快速运输电子,为壳的构建提供大量暴露的成核位点 [37] [38] [39]。S. Saeed等人 [40] 通过快速、简单、绿色、高度可控的三步原位法设计了高度多孔的三维阵列层状杂Cu(OH)2 @ CoNi-LDH核壳纳米管,将其直接生长在玻碳电极上,利用原位合成法制备具有中空导电核和高多孔催化活性壳的开放型结构,得到了多级自支撑核壳纳米管。这种材料提供了更大的活性表面积、更易到达的催化位点、更快的电子传递、简便的电解质离子扩散途径并增加了结构稳定性,从而提高对葡萄糖电氧化的电催化性能和持久性,这体现在该传感器对葡萄糖的快速灵敏响应上,对应两个线性范围有不同的灵敏度,线性范围为0.002~3.2 mM时,灵敏度为1895 µA∙mM−1∙cm−2,线性范围为3.2~7.7 mM时,灵敏度为1322 µA∙mM−1∙cm−2。两个动态范围内都具有较高的灵敏度,说明具有通用性和精细结构可控性的自支撑、成本低廉、简单快速的电极制备方法为高性能葡萄糖传感器和微型化检测器件的发展提供了新的架构。一些基于Cu基葡萄糖传感器的电化学性能如表3所示。

Table 3. Non-enzymatic glucose sensors of Cu nanocomposite

表3. Cu及其复合物的非酶葡萄糖传感器

3.3. 基于其他金属复合物的葡萄糖传感器

除了上述提及的镍基、铜基纳米材料,其他金属,如Co、Zn、Fe、Mn等也被利用来设计成非酶葡萄糖传感器。Co氧化物具有多种晶型物,常见的有CoO、Co2O3、Co3O4 [44]。因Co3O4具备成本低、绿色环保、良好的生物相容和电催化性等优势 [45] [46] 比其他两种氧化物在葡萄糖传感器中的应用较多。为克服其导电性不足常将Co3O4与导电聚合物、碳纳米材料等其他材料相结合。T. Zhou等人 [47] 通过简单的水热处理合成了Co3O4/MWCNTs复合材料,MWCNTs的加入不仅改善了Co3O4颗粒的分散性,增加有效接触面积,还可以促进电子的传输速率;该材料检测葡萄糖的最低检出限为0.95 μM。在Zn基材料中,因为ZnO化学性质稳定,比表面积大,具有良好的电子转移速率 [48] 而常用于检测构筑葡萄糖传感器。R. Ahmad等人 [49] 在掺氟氧化锡(FTO)电极上生长垂直排列的ZnO纳米棒,并用CuO对其进行装饰,获得了灵敏度为2961.7 μA∙mM−1 ∙cm−2,检出限为0.40 μM,响应时间极短小于2 s的非酶葡萄糖传感器。一些基于其他金属葡萄糖传感器的电化学性能如表4所示。

Table 4. Non-enzymatic glucose sensors of other metals nanocomposite

表4. 其他金属复合物的非酶葡萄糖传感器

4. 总结与展望

本文总结了近年来基于过渡金属复合纳米材料构建非酶葡萄糖传感器的工作进展,并比较了各传感器的灵敏度、线性范围、检出限和选择性等电化学性能。通过对比分析各种金属纳米复合材料非酶促葡萄糖传感器性能及机理,我们认为非酶葡萄糖传感器的研究可从以下几个方面入手:

1) 提高在中性溶液中葡萄糖传感器灵敏度的研究。以单一贵金属为基底的非酶葡萄糖传感器在中性溶液中检出限高、选择性较差,且灵敏度较低。通过贵金属之间复合,可以一定程度改善检出限和选择性存在的不足,但其灵敏度仍较低。采用贵金属和非贵金属进行复合,可以提高传感器的灵敏度,但必须在碱性条件下检测葡萄糖。因此,采用复合贵金属构建非酶葡萄糖传感器并于中性条件下检测葡萄糖灵敏度的提高是迫切需要解决的关键问题之一。

2) 进一步开展金属复合材料检测葡萄糖的机理研究。现有的机理主要根据单一金属离子间转化推测得到,不能够清楚地解释复合材料间的协同效应,需要进一步探索复合材料中各种材料在葡萄糖传感过程中所起的作用和如何实现协同效应。

3) 非贵金属的导电性和催化性等存在一定局限性,是构建非酶葡萄糖传感器主要的商业化障碍。通过将非贵金属与其他金属复合,可以使得材料与材料之间产生有效的协同作用,以改善非贵金属类材料的催化导电性,同时还能提高在非酶葡萄糖传感器应用中的整体性能。

4) 基于非贵金属类非酶葡萄糖传感器的电化学性能不仅要依靠复合材料间的协同作用,还与材料本身的性质、尺寸大小、形貌结构、比表面积、孔隙大小等息息相关。通过对纳米材料的尺寸、形貌和比表面积等进行调控,从而获得丰富的活性位点,提高电子转移速率、降低传感过程中的电阻,促进非贵金属类纳米材料与葡萄糖之间的界面接触。

基金项目

重庆科技学院硕士研究生创新计划项目(YKJCX2020531)。

NOTES

*通讯作者。

参考文献

[1] Ali, S.M.U., Nur, O., Willander, M., et al. (2010) A Fast and Sensitive Potentiometric Glucose Microsensor Based on Glucose Oxidase Coated ZnO Nanowires Grown on a Thin Silver Wire. Sensors & Actuators B: Chemical, 145, 869-874.
https://doi.org/10.1016/j.snb.2009.12.072
[2] 龙玲. 过渡金属基纳米电催化剂的设计及其电催化应用[D]: [硕士学位论文]. 合肥: 中国科学技术大学, 2021.
[3] Zhou, F., Jing, W., Xu, Y., et al. (2019) Performance Enhancement of ZnO Nanorod-Based Enzymatic Glucose Sensor via Reduced Graphene Oxide Deposition and UV Irradiation. Sensors and Actuators B: Chemical, 284, 377-385.
https://doi.org/10.1016/j.snb.2018.12.141
[4] Zhou, Y., Uzun, S.D., Watkins, N.J., et al. (2019) Three-Dimensional CeO2woodpile Nanostructures to Enhance Performance of Enzymatic Glucose Biosensors. ACS Applied Materials & Interfaces, 11, 1821-1828.
https://doi.org/10.1021/acsami.8b16985
[5] Su, Y., Guo, H., Wang, Z., et al. (2018) Au@Cu2O Core-Shell Structure for High Sensitive Non-Enzymatic Glucose Sensor. Sensors and Actuators B: Chemical, 255, 2510-2519.
https://doi.org/10.1016/j.snb.2017.09.056
[6] Yang, Z. and Bai, X. (2021) Synthesis of Au Core Flower Surrounding with Sulphur-Doped Thin Co3O4 Shell for Enhanced Nonenzymatic Detection of Glucose. Microchemical Journal, 160, Article ID: 105601.
https://doi.org/10.1016/j.microc.2020.105601
[7] Tsai, T.W., Heckert, G., Neves, L.F., et al. (2009) Adsorption of Glucose Oxidase onto Single-Walled Carbon Nanotubes and Its Application in Layer-by-Layer Biosensors. Analytical Chemistry, 81, 7917-7925.
https://doi.org/10.1021/ac900650r
[8] Chen, C., Xie, Q., Yang, D., et al. (2013) Recent Advances in Electrochemical Glucose Biosensors: A Review. RSC Advances, 3, 4473-4491.
https://doi.org/10.1039/c2ra22351a
[9] Lin, K.C., Lin, Y.C. and Chen, S.M. (2013) A Highly Sensitive Nonenzymatic Glucose Sensor Based on Multi-Walled Carbon Nanotubes Decorated with Nickel and Copper Nanoparticles. Electrochimica Acta, 96, 164-172.
https://doi.org/10.1016/j.electacta.2013.02.098
[10] 许伟娜. 基于碳布上生长氧化物纳米结构的柔性无酶生物传感器研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2016.
[11] 高艳莎. 基于导电聚合物和碳纳米材料构建的电化学免疫传感器的研究[D]: [硕士学位论文]. 南昌: 江西科技师范大学, 2016.
[12] 张怡. 金属氧化物多级结构的构建及其无酶生物传感性能的研究[D]: [硕士学位论文]. 济南: 山东大学, 2020.
[13] Dayakar, T., Venkateswara Rao, K., Vinodkumar, M., et al. (2018) Novel Synthesis and Characterization of Ag@TiO2 Core Shell Nanostructure for Non-Enzymatic Glucose Sensor. Applied Surface Science, 435, 216-224.
https://doi.org/10.1016/j.apsusc.2017.11.077
[14] Shim, K., Lee, W.C., Park, M.S., et al. (2019) Au Decorated Core-Shell Structured Au@Pt for the Glucose Oxidation Reaction. Sensors and Actuators B: Chemical, 278, 88-96.
https://doi.org/10.1016/j.snb.2018.09.048
[15] 王兰芳. 镍基/贵金属复合纳米阵列的制备及其电化学性质研究[D]: [博士学位论文]. 临汾: 山西师范大学, 2019.
[16] Shu, H., Cao, L., Chang, G., et al. (2014) Direct Electrodeposition of Gold Nanostructures onto Glassy Carbon Electrodes for Non-Enzymatic Detection of Glucose. Electrochimica Acta, 132, 524-532.
https://doi.org/10.1016/j.electacta.2014.04.031
[17] Ryu, J., Kim, K., Kim, H.S., et al. (2010) Intense Pulsed Light Induced Platinum-Gold Alloy Formation on Carbon Nanotubes for Non-Enzymatic Glucose Detection. Biosensors and Bioelectronics, 26, 602-607.
https://doi.org/10.1016/j.bios.2010.07.021
[18] Yuan, M., Liu, A., Zhao, M., et al. (2014) Bimetallic PdCu Nanoparticle Decorated Three-Dimensional Graphene Hydrogel for Non-Enzymatic Amperometric Glucose Sensor. Sensors and Actuators B: Chemical, 190, 707-714.
https://doi.org/10.1016/j.snb.2013.09.054
[19] Chakraborty, P., Dhar, S., Debnath, K., et al. (2019) Non-Enzymatic and Non-Invasive Glucose Detection Using Au Nanoparticle Decorated CuO Nanorods. Sensors and Actuators B: Chemical, 283, 776-785.
https://doi.org/10.1016/j.snb.2018.12.086
[20] Wang, X., Xia, X., Zhang, X., et al. (2017) Nonenzymatic Glucose Sensor Based on Ag&Pt Hollow Nanoparticles Supported on TiO2 Nanotubes. Materials Science and Engineering: C, 80, 174-179.
https://doi.org/10.1016/j.msec.2017.05.137
[21] Şavk, A., Aydın, H., Cellat, K., et al. (2020) A Novel High Performance Non-Enzymatic Electrochemical Glucose Biosensor Based on Activated Carbon-Supported Pt-Ni Nanocomposite. Journal of Molecular Liquids, 300, Article ID: 112355.
https://doi.org/10.1016/j.molliq.2019.112355
[22] Ngo, Y.L.T., Hoa, L.T, Chung, J.S., et al. (2017) Multi-Dimensional Ag/NiO/Reduced Graphene Oxide Nanostructures for a Highly Sensitive Non-Enzymatic Glucose Sensor. Journal of Alloys and Compounds, 712, 742-751.
https://doi.org/10.1016/j.jallcom.2017.04.131
[23] Weremfo, A., Fong, S.T.C., Khan, A., Hibbert, D.B. and Zhaom C, (2017) Electrochemically Roughened Nanoporous Platinum Electrodes for Non-Enzymatic Glucose Sensors. Electrochimica Acta, 231, 20-26.
https://doi.org/10.1016/j.electacta.2017.02.018
[24] Wei, H., Xue, Q., Li, A., et al. (2021) Dendritic Core-Shell Copper-Nickel Alloy@metal Oxide for Efficient Non-Enzymatic Glucose Detection. Sensors and Actuators B: Chemical, 337, Article ID: 129687.
https://doi.org/10.1016/j.snb.2021.129687
[25] Sb, A., Wu, A. and Auhas, B. (2018) Polyaniline@CuNi Nanocomposite: A Highly Selective, Stable and Efficient Electrode Material for Binder Free Non-Enzymatic Glucose Sensor. Electrochimica Acta, 284, 382-391.
https://doi.org/10.1016/j.electacta.2018.07.165
[26] Da Rvishi, S., Souissi, M., Karimzadeh, F., et al. (2017) Ni Nanoparticle-Decorated Reduced Graphene Oxide for Non-Enzymatic Glucose Sensing: An Experimental and Modeling Study. Electrochimica Acta, 240, 388-398.
https://doi.org/10.1016/j.electacta.2017.04.086
[27] Niu, X., Lan, M., Zhao, H., et al. (2013) Highly Sensitive and Selective Nonenzymatic Detection of Glucose Using Three-Dimensional Porous Ni Nanostructures. Analytical Chemistry, 85, 3561-3569.
https://doi.org/10.1021/ac3030976
[28] Cui, Z., Yin, H., Nie, Q., et al. (2015) Hierarchical Flower-Like NiO Hollow Microspheres for Non-Enzymatic Glucose Sensors. Journal of Electroanalytical Chemistry, 757, 51-57.
https://doi.org/10.1016/j.jelechem.2015.09.011
[29] Zhe, T., Sun, X., Liu, Y., et al. (2019) An Integrated Anode Based on Porous Ni/Cu(OH)2 Nanospheres for Non-Enzymatic Glucose Sensing. Microchemical Journal, 151, Article ID: 104197.
https://doi.org/10.1016/j.microc.2019.104197
[30] Sun, S., Shi, N., Liao, X., et al. (2020) Facile Synthesis of CuO/Ni(OH)2 on Carbon Cloth for Non-Enzymatic Glucose Sensing. Applied Surface Science, 529, Article ID: 147067.
https://doi.org/10.1016/j.apsusc.2020.147067
[31] Pal, N., Banerjee, S. and Bhaumik, A. (2018) A Facile Route for the Syntheses of Ni(OH)2 and NiO Nanostructures as Potential Candidates for Non-Enzymatic Glucose Sensor. Journal of Colloid and Interface Science, 516, 121-127.
https://doi.org/10.1016/j.jcis.2018.01.027
[32] Xuan, X., Qian, M., Pan, L., et al. (2018) A Longitudinally Expanded Ni-Based Metal-Organic Framework with Enhanced Double Nickel Cation Catalysis Reaction Channels for Non-Enzymatic Sweat Glucose Biosensor. Journal of Materials Chemistry B, 6, 393-400.
https://doi.org/10.1039/D0TB01657H
[33] Tan, Z., Huang, Y., Wang, S., et al. (2019) Production of Ni7S6/NiO Hybrids as a Highly Sensitive Amperometric Sensor for Glucose. Ionics, 25, 3961-3969.
https://doi.org/10.1007/s11581-019-02926-5
[34] Zhang, H., Yu, Y., Shen, X., et al. (2020) A Cu2O/Cu/carbon Cloth as a Binder-Free Electrode for Non-Enzymatic Glucose Sensors with High Performance. New Journal of Chemistry, 44, 1993-2000.
https://doi.org/10.1039/C9NJ05256A
[35] Xu, Y., Ding, Y., Zhang, L., et al. (2021) Highly Sensitive Enzyme-Free Glucose Sensor Based on CuO-NiO Nanocomposites by Electrospinning. Composites Communications, 25, Article ID: 100687.
https://doi.org/10.1016/j.coco.2021.100687
[36] Cheng, X., Zhang, J., Chang, H., et al. (2016) High Performance Cu/Cu2O Nanohybrid Electrocatalyst for Nonenzymatic Glucose Detection. Journal of Materials Chemistry B, 4, 4652-4656.
https://doi.org/10.1039/C6TB01158F
[37] Zhou, S., Feng, X., Shi, H., et al. (2013) Direct Growth of Vertically Aligned Arrays of Cu(OH)2 Nanotubes for the Electrochemical Sensing of Glucose. Sensors and Actuators B: Chemical, 177, 445-452.
https://doi.org/10.1016/j.snb.2012.11.035
[38] Li, Z., Xin, Y., Wu, W., et al. (2016) Topotactic Conversion of Copper(I) Phosphide Nanowires for Sensitive Electrochemical Detection of H2O2 Release From Living Cells. Analytical Chemistry, 88, 7724-7729.
https://doi.org/10.1021/acs.analchem.6b01637
[39] Kang, J., Sheng, J., Xie, J., et al. (2018) Tubular Cu(OH)2 Arrays Decorated with Nanothorny Co-Ni Bimetallic Carbonate Hydroxide Supported on Cu Foam: A 3D Hierarchical Core-Shell Efficient Electrocatalyst for the Oxygen Evolution Reaction. Journal of Materials Chemistry A, 6, 10064-10073.
https://doi.org/10.1039/C8TA02492H
[40] Shahrokhian, S., Khaki Sanati, E. and Hosseini, H. (2019) Advanced On-Site Glucose Sensing Platform Based on a New Architecture of Free-Standing Hollow Cu(OH)2 Nanotubes Decorated with CoNi-LDH Nanosheets on Graphite Screen-Printed Electrode. Nanoscale, 11, 12655-12671.
https://doi.org/10.1039/C9NR02720C
[41] Viswanathan, P., Park, J., Kang, D.K., et al. (2019) Polydopamine-Wrapped Cu/Cu(II) Nano-Heterostructures: An Efficient Electrocatalyst for Non-Enzymatic Glucose Detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580, Article ID: 123689.
https://doi.org/10.1016/j.colsurfa.2019.123689
[42] Li, K., Fan, G., Yang, L., et al. (2014) Novel Ultrasensitive Non-Enzymatic Glucose Sensors Based on Controlled Flower-Like CuO Hierarchical Films. Sensors and Actuators B: Chemical, 199, 175-182.
https://doi.org/10.1016/j.snb.2014.03.095
[43] Yang, Q., Long, M., Tan, L., et al. (2015) Helical TiO2 Nanotube Arrays Modified by Cu-Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-Oxidation of Glucose. ACS Applied Materials & Interfaces, 7, 12719-12730.
https://doi.org/10.1021/acsami.5b03401
[44] Shinde, V.R., Mahadik, S.B., Gujar, T.P., et al. (2006) Supercapacitive Cobalt Oxide (Co3O4) Thin Films by Spray Pyrolysis. Applied Surface Science, 252, 7487-7492.
https://doi.org/10.1016/j.apsusc.2005.09.004
[45] Ding, Y., Wang, Y., Su, L., et al. (2010) Electrospun Co3O4 Nanofibers for Sensitive and Selective Glucose Detection. Biosensors and Bioelectronics, 26, 542-548.
https://doi.org/10.1016/j.bios.2010.07.050
[46] Ibupoto, Z.H., Elhag, S., AlSalhi, M.S., et al. (2014) Effect of Urea on the Morphology of Co3O4 Nanostructures and Their Application for Potentiometric Glucose Biosensor. Electroanalysis, 26, 1773-1781.
https://doi.org/10.1002/elan.201400116
[47] Zhou, T., Gao, W., Gao, Y., et al. (2017) Co3O4 Nanoparticles/MWCNTs Composites: A Potential Scaffold for Hydrazine and Glucose Electrochemical Detection. RSC Advances, 7, 50087-50096.
https://doi.org/10.1039/C7RA10892C
[48] Wei, M., Qiao, Y., Zhao, H., et al. (2018) Electrochemical Non-Enzymatic Glucose Sensors: Recent Progress and Perspectives. Chemical Communications, 56, 14553-14569.
https://doi.org/10.1039/D0CC05650B
[49] Ahmad, R., Tripathy, N., Ahn, M.S., et al. (2017) Highly Efficient Non-Enzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode. Scientific Reports, 7, Article No. 5715.
https://doi.org/10.1038/s41598-017-06064-8
[50] Wang, Y., Bai, W., Nie, F., et al. (2015) A Non-Enzymatic Glucose Sensor Based on Ni/MnO2 Nanocomposite Modified Glassy Carbon Electrode. Electroanalysis, 27, 2399-2405.
https://doi.org/10.1002/elan.201500049
[51] Wang, H., Yang, W., Wang, X., et al. (2020) A CeO2@MnO2 Core-Shell Hollow Heterojunction as Glucose Oxidase-Like Photoenzyme for Photoelectrochemical Sensing of Glucose. Sensors and Actuators B: Chemical, 304, Article ID: 127389.
https://doi.org/10.1016/j.snb.2019.127389
[52] Li, X., Sun, Y., Zhang, X., et al. (2018) CO3O4 Nanosheets Anchored on SiO2 Nanospheres for Non-Enzymatic Glucose Sensor. Journal of Nanoscience and Nanotechnology, 18, 7251-7254.
https://doi.org/10.1166/jnn.2018.15450
[53] Tang, X.Q., Zhang, Y.D., Jiang, Z.W., et al. (2018) Fe3O4 and Metal-Organic Framework MIL-101(Fe) Composites Catalyze Luminol Chemiluminescence for Sensitively Sensing Hydrogen Peroxide and Glucose. Talanta, 179, 43-50.
https://doi.org/10.1016/j.talanta.2017.10.049
[54] Liu, Y., Zhao, W., Li, X., et al. (2020) Hierarchical α-Fe2O3 Microcubes Supported on Ni Foam as Non-Enzymatic Glucose Sensor. Applied Surface Science, 512, Article ID: 145710.
https://doi.org/10.1016/j.apsusc.2020.145710