血栓弹力图的研究进展
Research Progress of Thrombolysis Diagram
DOI: 10.12677/ACM.2022.125639, PDF, HTML, XML, 下载: 252  浏览: 441 
作者: 胡凯伦, 范顺阳*, 崔琰琰, 谢美君:郑州大学第三附属医院小儿心胸外科,河南 郑州
关键词: 血栓弹力图传统凝血检查凝血止血Thromboelastogram Traditional Coagulation Test Coagulation Blood Transfusion
摘要: 血栓弹力图(TEG)是一种用于反映全血凝血过程的灵敏试验,可以对血小板功能,血浆因子活性,纤维蛋白聚合和溶解进行综合评估。目前TEG已被广泛用于胸部手术、肝移植手术、产科及骨科手术,指导成分输血,检测。本文对TEG在临床中的应用作一综述。
Abstract: Thromboelastogram (TEG) is a sensitive test designed to reflect the whole blood clotting process and to evaluate platelet function, plasma factor activity, and fibrin aggregation and dissolution. At present, TEG has been widely used in chest surgery, liver transplantation, obstetrics and orthopedic surgery, guiding component blood transfusion and detection. This article reviews the clinical ap-plication of TEG.
文章引用:胡凯伦, 范顺阳, 崔琰琰, 谢美君. 血栓弹力图的研究进展[J]. 临床医学进展, 2022, 12(5): 4414-4421. https://doi.org/10.12677/ACM.2022.125639

1. 引言

1948年,Hartert [1] 首次运用血栓弹力图(thromboelastography, TEG)监测全血的凝血过程。TEG是一种用于评估整体止血的粘弹性测试。与传统的血浆凝血试验不同,TEG包括所有血液成分,并评估细胞凝血的所有阶段。它提供了一个图形以表示纤维蛋白聚合速率、整体血栓强度和纤维蛋白溶解 [2],是一种有效、方便的全血凝固监测手段。它能评估全血的弹性特性,并提供止血功能的全面评估,被推荐用于评估肝移植、骨科手术、产科手术和心脏手术期间的止血。它不仅适用于出血患者出血风险的评估,也用于预测术后血栓的形成,TEG监测有助于识别和针对那些需要输血的患者 [3]。

2. TEG设备组成及工作原理

TEG仪器主要由测试杯、金属探针及与之相连接的传感器构成。将测试样品置于37℃振荡杯中。一根针从扭丝上悬吊到血样纤维蛋白链与杯状结构的运动及针状结构结合起来,这种耦合与凝块强度成正比。通过电磁换能器和放大的电信号检测到导线中增加的张力,并在计算机屏幕上显示出来。痕迹的偏移与血块强度成正比。其中除了血凝块形成的相关数据外,还包括纤溶导致血块逐步溶解的过程,所以通常可以将TEG曲线图分为2个部分,即凝血曲线与纤溶曲线。

3. TEG常用指标及意义

3.1. R值

表示从试验开始到最初纤维蛋白形成的潜伏期。这代表了标准的凝血研究。正常范围:15~23分钟(原生血);5~10 min (高岭土活化) [4]。R < 5 min提示凝血因子功能高,患者有患血栓风险,建议抗凝处理,可根据患者病情使用肝素、低分子肝素、华法林、达比加群、利伐沙班等。R > 10 min提示凝血因子功能低,患者有出血风险,建议观察患者皮肤出血点,如果有渗血及出血建议输注血浆达到止血治疗。

3.2. K值

表示达到一定水平的血凝块强度所花费的时间,正常范围:5~10 min (原生血);1~3 min (高岭土活化)。K > 3 min提示纤维蛋白原功能偏低;K < 1 min提示纤维蛋白原功能偏高。

3.3. Angle值

测量纤维蛋白形成和交联发生的速度(凝块强化),从而评估凝块形成的速率。正常范围:22˚~38˚ (原生血);53˚~72˚ (高岭土活化) [5]。Angle > 72˚提示纤维蛋白原水平高,<53˚提示纤维蛋白原水平低。因为纤维蛋白原水平在参与凝血功能作用小,所以不作为重点参考值。

3.4. MA值

MA通过GPIIb/IIIa是纤维蛋白和血小板结合的最大动态特性的直接函数,代表纤维蛋白凝块的最终强度,与血小板功能相关:80%反应血小板功能;20%反应纤维蛋白原功能。正常范围:47~58 mm (原生血);50~70 mm (高岭土活化) [6]。MA > 70 mm提示血小板聚集功能高,患者有血栓风险,建议抗血小板处理,使用阿司匹林、氯吡格雷等药物;MA < 50 mm提示患者有出血风险,如果有渗血及出血建议输注血小板达到止血治疗。

3.5. CI值

由制造商确定的数学公式,它把这四个值中每一个的相对贡献考虑到一个等式中。CI (正常范围3~3 mm)是一个整体的凝血指标,指示正常、低凝或高凝状态。

3.6. EPL、LY30

是纤溶指标。正常值EPL是0%~8%,LY30是0%~15%,这是MA后30分钟振幅下降的百分比,可以测量纤维蛋白溶解程度7.5% (原生血);原发性纤溶亢进是EPL或者LY30有任意指标大于正常值且R值和MA值在正常范围内。

4. TEG的临床应用

4.1. 创伤外科

最近一项系统性回顾得出传统凝血功能检测不适合创伤治疗 [7]。出血创伤患者推动了对TEG的应用,Bernardino C.等 [8] 研究证实了TEG是一种有效的评估高凝性的工具,而传统的凝血试验往往是不准确的。TEG还能识别易发生血栓栓塞的高凝性创伤患者并指导血栓预防 [9] [10]。Kay等 [11] 研究发现孤立性钝性脑损伤后立即出现血小板功能障碍,随着脑损伤严重程度的增加,血小板功能障碍更为明显,这可以通过TEG检测到血小板功能障碍,且功能障碍的程度与脑损伤严重程度的增加和住院死亡率相关。Hampton等 [12] 通过前瞻性多中心观察性研究对795名患者进行TEG测试,对与死亡率显著相关的变量进行了验证。Ly30被观察到是创伤患者24小时死亡率的预测因子(优势比3.7 p = 0.03),这与血红蛋白水平、国际标准化比值、格拉斯哥昏迷评分和穿透伤的存在相结合,形成五变量死亡率预测模型。TEG测量值与创伤死亡率之间的相关性使其成为死亡率预测的有用工具。

4.2. 在新型冠状病毒中的应用

新型冠状病毒病-2019 (COVID-19)大流行是由严重急性呼吸综合征冠状病毒-2 (SARS-CoV-2)引起的,它主要导致肺部疾病,包括急性肺炎、呼吸窘迫综合征(ARDS)和呼吸衰竭 [13] [14],感染也可能有肺外表现,已知表现为明显的凝血功能障碍,COVID-19相关凝血功能障碍,可导致血栓栓塞并发症,尤其在危重患者中COVID-19高凝血症的发病机制尚不清楚。COVID-19患者与任何其他危重患者一样,存在巨大血栓形成的高风险 [15]。临床医生和研究人员已经求助于诸如血栓弹性成像等工具,这些工具可能提供整个止血系统的功能快照。在《印度危重病医学杂志》上,Talla等人 [16] 对32名在重症监护室的COVID-19患者进行了一项简单的回顾研究,在TEG中,通常可以发现高凝状态,包括非常低的R、K和MA,和低或完全缺失LY30。据报道COVID-19患者的TEG谱中,纤溶系统失调是高凝状态的一个突出因素 [17]。TEG评估整体凝血级联反应,已有关于COVID-19中TEG的研究报告,从早期血栓开始,血栓强度(由于增加纤维蛋白原成分)增加,纤维蛋白溶解 [18] [19] 减少,这些变化提示COVID-19患者存在潜在的高凝状态,这与消耗性凝血功能障碍不同 [20]。在Wright等 [21] 研究中TEG测量与COVID-19患者血栓栓塞和死亡风险增加相关。COVID-19诱发的凝血功能障碍,TEG对患者的管理,可能为改善COVID-19评估和临床结果提供机会 [19]。

4.3. 体外循环心脏手术

1996年TEG首次被应用在心脏手术中,1999年Shore等人 [22] 进一步证实,在心脏手术中应用TEG可指导异体红细胞、血小板及冰冻血浆等血制品的合理输注。Koray等 [23] 的一篇综述荟萃分析指出TEG能够评估全球几乎所有的止血系统的组成部分。目前,在体外循环心脏手术中,TEG被用于标准的凝血试验,以减少微血管出血和异体输血。Sharma等 [24] 将50例接受体外循环心脏手术的成人患者纳入本前瞻性研究。术前、术后采集标本进行常规凝血检查和TEG检测。得出术前标本凝血常规凝血酶原时间(Prothrombin time, PT)、活化部分凝血活酶时间(Activate partial thromboplastin time, APTT)与相应TEG参数无显著相关性。而术后标本中血小板计数与MA值显著相关(p = 0.004)。在术前和术后的基线样本中,纤维蛋白原水平和Angle角以及MA之间存在显著相关性(p = 0.001)。术后标本中TEG参数R时间和MA是预测出血的唯一准确参数。但是Wikkelsoe等 [25] 研究发现TEG指导心脏手术也不能有效降低死亡率。但TEG的另一个优势是,即使在心血管手术中出现高水平的治疗性肝素(使用肝素酶杯),也能检测凝血异常 [26]。由此可见TEG指导心脏外科体外循环手术需进一步的研究,探讨更多方面的临床应用价值。

4.4. 肝移植手术

肝移植围手术期间,患者可能会发生进一步的凝血障碍,导致患者出血或者血栓的形成 [27]。多伴有不同程度的出血,临床上一般需要凝血检测工具指导输血。上世纪60年代TEG首次用于肝移植,医师用TEG监测和治疗肝移植患者再灌注后的凝血因子降低、纤维蛋白溶解 [28]。LAWSON等 [29] 研究在肝移植过程中经常需要大量输血。Tripodi等 [30] 认为TEG目前用于辅助肝移植,也适用于研究稳定的肝硬化。其凝血形成时间,和最大凝血硬度是未来临床研究中需要考虑的最有趣的参数,需要把它们作为评估这类患者的出血风险和预后指标。肝移植手术中的稀释性凝血障碍和纤维蛋白溶解是由于移植肝再灌注损伤造成的。肝脏移植手术代表了TEG的理想应用,因为常规的凝血试验(如APTT或PT)是受手术中使用的肝素的影响。此外由于增强纤维蛋白溶解是肝移植最显著的凝血缺陷之一 [31],与常规凝血试验相比,TEG检测纤维蛋白溶解的能力有所提高,因此在肝移植中得到了广泛应用。一份报告也表明,术前使用TEG进行凝血评估可以预测肝移植过程中纤维蛋白溶解的发展 [32]。

4.5. 指导成分输血

现代输血主张成分输血,目前临床医生对输血指征的判断主要通过血常规及传统凝血试验的结果,然而这两种检测方法并不能完全反映凝血系统的全貌。TEG能快速反映患者凝血全貌,及早发现凝血异常且准确判断出血原因。与传统的凝血试验相比,TEG监测患者凝血状态能更好地指导患者成分输血 [33],Grit等 [34] 通过对729例心脏外科治疗患者的床旁TEG结果指导输血分析得累积红细胞单位支出下降25%,血小板浓缩物下降50%。新鲜冰冻血浆支出保持不变。凝血浓缩物池、FXIII显著减少(−80%),然而纤维蛋白原增加了两倍。Bolliger和Tanaka等 [35] 总结了从1995~2013年的13个心脏手术临床试验的6835例患者,发现采用TEG方法较传统凝血指标能更好地指导成分输血,TEG引导的止血管理减少了心脏手术患者输注红细胞、FFP和血小板的比例。临床上对床边TEG进行分析,以验证凝血形成质量,准确判断出血原因,针对具体情况选择成分血输注,寻找经济有效的治疗途径。

4.6. 产科中的应用

随着孕妇孕周的不断增加,雌激素水平也不断的升高,孕妇体内会发生一系列正常的生理变化,如血液粘滞度增高,孕妇处于高凝状态,但持续的高凝状态会引起妊高症的发生 [36]。及时有效的通过凝血检查试验监测孕产妇体内凝血情况,可有效降低一些不良事件的发生率。Orlikowski等 [37] 研究认为TEG全面测量所有阶段和凝结系统的相互作用,它可能更容易代表体内的凝血功能。有助于快速诊断正在进行的纤溶亢进。TEG检测已被报道用于诊断羊水栓塞中的高纤维蛋白溶解 [38]。另一方面,传统的凝血检查无法对妊高症的严重程度进行区分,而TEG能够辨别妊高症且区分妊娠高凝与妊高症的临界值 [39]。有的孕妇会引起血小板减少症 [40],这为麻醉医生评估椎管内麻醉是否安全增加了困难,TEG能有效的评估血小板计数、功能,可以有效的帮助麻醉医师评估孕妇基本凝血状态,以正确选择麻醉方式。另外,TEG也提高了对于妊娠期糖尿病的评估 [41],增加了对妊娠糖尿病的全面的监测。但是和传统的凝血检查一样无法确定凝血异常的原因,这也是未来进一步研究和完善的方向。

4.7. 肿瘤方面

血栓栓塞是除恶性肿瘤本身引起患者死亡的第二大原因 [42] [43]。尽管预防血栓的方法多种多样,静脉血栓栓塞和随后的治疗是发病率和死亡率的重要来源。需要寻找预防静脉血栓的新途径和治疗方法 [44]。近年来TEG越来越多地运用在不同的恶性肿瘤方面,预防性使用并指导血小板的输注。Agha等 [45] 研究TEG结果确定和修改其止血阈值,从而为癌症患者提供更全面的冠状动脉造影的风险分层,不仅帮助定制合适的血液产品,而且当发生出血并发症时指导给药。Liu等 [46] 提示TEG参数中CI值可作为妇科肿瘤静脉血栓栓塞的预测指标。Akay等 [47] 认为实体肿瘤患者的TEG高凝迹象。旋转血栓弹力图能够识别该患者人群中纤维蛋白原和血小板的凝血强度,较传统凝血检测能更好地反映血小板和血栓事件的关系。Kevin等 [48] 研究表明肾癌患者体内处于高凝状态,且与癌症的进展程度呈正相关,根据TEG检测结果可以了解疾病的不同阶段、预测血栓的形成和判断异常出血,比传统的凝血检查更准确、更灵敏。急性早幼粒细胞白血病中由于存在骨髓病态造血,患者体内常常出现抗凝与纤溶失衡,TEG可以全面的评估的急性早幼粒细胞白血病患者的凝血紊乱情况 [49]。

4.8. 儿童

这些年随着TEG性能不断地被发掘,它除了被运用在心脏外科、肝移植、产科、监测凝血等方面,也越来越多地运用在新生儿和儿童的凝血功能检测。Anıl等 [50] 研究TEG结果证实囊性纤维化患儿在全血中表现为高凝性,MA值取决于血小板计数和功能以及血浆纤维蛋白原浓度,且是鉴别高凝血性囊性纤维化患儿最重要的TEG参数,使TEG优于其他止血试验。Leeper等 [51] 对2015年6月1日至2016年7月31日入院的133例0~18岁创伤应激患者进行TEG分析得:损伤后儿童纤维蛋白溶解的抑制和过度激活率较高。心脏骤停是一个特别差的预后指标,占死亡、残疾和需要输血患者的最大比例,以及后来发展为高凝状态。因此,在儿科创伤治疗方案中增加TEG检测应该被考虑,因为它有助于重要的预后和临床信息。另外,一般TEG试剂的厂家判断结果是依据成人的参考区间,可能并不完全适用于儿童,但是虽然与成人结果略有差异但儿童TEG检查可以参考成人TEG的结果 [52]。

5. 存在问题

使用血栓弹性测定法检测全血止血,与标准的实验室测试相比,它们有许多被提出的优点:提供更快的结果,能够识别凝血过程中被打乱的部分,并提供凝血形成和纤维蛋白溶解随着时间的推移而改变的信息 [53]。但它依然存在很多问题:1) TEG需要在固定的温度37℃下进行测试,这就不可避免的受到温度的影响;2) 与血常规、凝血四项等传统的凝血检查相比,TEG没有正式的被血液学家标准化,采集血样后需要在30分钟内处理,如果延迟处理会一定程度的影响检测结果 [53];3) 现在的TEG血液样本试剂杯中需加入枸橼酸钾抗凝剂,患者的年龄、性别、服用抗凝药物等这些都会一定程度的影响检测结果;4) 目前TEG参数的参考范围是由国外的厂家提供,我国目前没有统一的参考标准。且TEG价格昂贵,很多患者无力承担,因此难以作为入院常规筛查或当作一种健康体检的项目。

6. 结论

TEG检测全血凝血功能,不仅可以反应凝血因子的情况,还可以动态地监测血小板的功能,比传统的凝血检查使用范围更广、检查更全面。目前不仅应用在心脏体外循环手术、肝移植、肾移植、产科,还能监测凝血功能、预防静脉血栓的形成、指导成分输血。随着计算机技术的不断精进,TEG的应用也在不断地更新,与时代的需求保持一致,不仅应用在新生儿、早产儿的凝血监测,还应用在新型冠状病毒(COVID-19)患者凝血功能的监测中。它在临床上的作用被越来越多的临床工作者认可,未来TEG如果解决技术和参考范围标准化的问题,进一步地研究验证不同的算法以指导临床应用,进一步研究TEG的成本效应,优化技术问题,相信TEG会发挥更大、更广的临床效用。

NOTES

*通讯作者。

参考文献

[1] Wiinberg, B., Jensen, A.L., Johansson, P.I., Rozanski, E., Tranholm, M. and Kristensen, A.T. (2008) Thromboelastographic Evaluation of Hemostatic Function in Dogs with Disseminated Intravascular Coagulation. Journal of Veterinary Internal Medicine, 22, 357-365.
https://doi.org/10.1111/j.1939-1676.2008.0058.x
[2] Williams, K., Carson, J. and Lo, C. (2019) Genetics of Congenital Heart Disease. Biomolecules, 9, Article No. 879.
https://doi.org/10.3390/biom9120879
[3] Yeung, M.C.F., Tong, S.Y.T., Tong, P.Y.W., et al. (2015) Use of Viscoelastic Haemostatic Assay in Emergency and Elective Surgery. Hong Kong Medical Journal, 21, 45-51.
https://doi.org/10.12809/hkmj134147
[4] Hans, G.A. and Besser, M.W. (2016) The Place of Viscoelastic Testing in Clinical Practice. British Journal of Haematology, 173, 37-48.
https://doi.org/10.1111/bjh.13930
[5] Solomon, C., Schochl, H., Ranucci, M. and Schlimp, C.J. (2015) Can the Viscoelastic Parameter α-Angle Distinguish Fibrinogen from Platelet Deficiency and Guide Fibrinogen Supplementation? Anesthesia & Analgesia, 121, 289-301.
https://doi.org/10.1213/ANE.0000000000000738
[6] Yi, Y., Yao, Z., Dai, W., et al. (2014) Changes of Thrombelastography in Patients Undergoing Elective Primary Total Knee and Total Hip Replacement with Low Mo-lecular Heparin Prophylaxis. Journal of Orthopaedic Surgery & Research, 9, Article No. 52.
https://doi.org/10.1186/s13018-014-0052-0
[7] Hoffman, M. and Monroe, D. (2001) A Cell-Based Model of Haemostasis. Thrombosis and Haemostasis, 85, 958-965.
https://doi.org/10.1055/s-0037-1615947
[8] Branco, B.C., Inaba, K., Ives, C., et al. (2014) Thromboelastogram Evaluation of the Impact of Hypercoagulability in Trauma Patients. Shock, 41, 200-207.
https://doi.org/10.1097/SHK.0000000000000109
[9] Schreiber, M.A., Differding, J., Thorborg, P., Mayberry, J.C. and Mullins, R.J. (2005) Hypercoagulability Is Most Prevalent Early after Injury and in Female Patients. Journal of Trauma, 58, 457-481.
https://doi.org/10.1097/01.TA.0000153938.77777.26
[10] Cotton, B.A., Minei, K.M., Radwan, Z.A., et al. (2012) Admission Rapid Thrombelastography Predicts Development of Pulmonary Embolism in Trauma Patients. Journal of Trauma & Acute Care Surgery, 72, 1470-1477.
https://doi.org/10.1097/TA.0b013e31824d56ad
[11] Kay, A.B., Morris, D.S., Collingridge, D.S., et al. (2019) Platelet Dysfunction on Thromboelastogram Is Associated with Severity of Blunt Traumatic Brain Injury. The American Journal of Surgery, 218, 1134-1137.
https://doi.org/10.1016/j.amjsurg.2019.09.024
[12] Cuffolo, G., Katz-Summercorn, A.C. and Hossain, M.A. (2014) The Role of Rapid Thromboelastography in Trauma. Expert Review of Medical Devices, 11, 435-438.
https://doi.org/10.1586/17434440.2014.940313
[13] Leentjens, J., Haaps, T., Wessels, P.F., et al. (2021) COVID-19-Associated Coagulopathy and Antithrombotic Agents- Lessons after 1 Year. The Lancet Haematology, 8, e524-e533.
https://doi.org/10.1016/S2352-3026(21)00105-8
[14] Thachil, J., Juffermans, N.P., Ranucci, M., et al. (2020) ISTH DIC Subcommittee Communication on Anticoagulation in COVID-19. Journal of Thrombosis and Hae-mostasis, 18, 2138-2144.
https://doi.org/10.1111/jth.15004
[15] Venkataraman, R. (2020) Thromboelastogram to Detect Hypercoagulability in Critically Ill COVID-19 Patients: Has Its Time Come? Indian Journal of Critical Care Medicine, 24, 1154-1155.
https://doi.org/10.5005/jp-journals-10071-23678
[16] Saseedharan, S., Talla, V.B. and Chiluka, A. (2020) Thromboelastography Profile of Patients with COVID-19 Admitted to Intensive Care Unit: A Single-Center Retro-spective Study from India. Indian Journal of Critical Care Medicine, 24, 1218-1222.
https://doi.org/10.5005/jp-journals-10071-23675
[17] Maatman, T.K., Jalali, F., Feizpour, C., et al. (2020) Routine Venous Thromboembolism Prophylaxis May Be Inadequate in the Hypercoagulable State of Severe Coronavirus Disease 2019. Critical Care Medicine, 48, e783-e790.
https://doi.org/10.1097/CCM.0000000000004466
[18] Bareille, M., Hardy, M., Douxfils, J., et al. (2021) Viscoelastometric Testing to Assess Hemostasis of COVID-19: A Systematic Review. Journal of Clinical Medicine, 10, Article No. 1740.
https://doi.org/10.3390/jcm10081740
[19] Hartmann, J., Ergang, A., Dan, M., et al. (2021) The Role of TEG Analysis in Patients with COVID-19-Associated Coagulopathy: A Systematic Review. Diagnostics, 11, Article No. 172.
https://doi.org/10.3390/diagnostics11020172
[20] Collett, L.W., Gluck, S., Strickland, R.M. and Reddi, B.J. (2020) Evaluation of Coagulation Status Using Viscoelastic Testing in Intensive Care Patients with Coronavirus Disease 2019 (COVID-19): An Observational Point Prevalence Cohort Study. Australian Critical Care, 34, 155-159.
https://doi.org/10.1016/j.aucc.2020.07.003
[21] Flwf, A., Tov, C., Eemfa, E., et al. (2020) Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. Journal of the American College of Surgeons, 231, 193-203e1.
https://doi.org/10.1016/j.jamcollsurg.2020.05.007
[22] Shore-Lesserson, L., Manspeizer, H.E., Deperio, M., Francis, S., Vela-Cantos, F. and Ergin, M.A. (1999) Thromboelastography-Guided Transfusion Algorithm Reduces Transfusions in Complex Cardiac Surgery. Anesthesia & Analgesia, 88, 312-319.
https://doi.org/10.1213/00000539-199902000-00016
[23] Ak, K., Atalan, N., Tekeli, A., et al. (2008) Tromboelastografi Ve Kalp Cerrahisinde Kullanm. Anatolian Journal of Cardiology/Anadolu Kardiyoloji Dergisi, 8, 154-162. (Turkish).
[24] Sharma, S., Kumar, S., Tewari, P., et al. (2018) Utility of Thromboelastography Versus Rou-tine Coagulation Tests for Assessment of Hypocoagulable State in Patients Undergoing Cardiac Bypass Surgery. Annals of Cardiac Anesthesia 21, 151-157.
[25] Wikkelsoe, A.J., Afshari, A., Wetterslev, J., Brok, J. and Moeller, A.M. (2011) Monitoring Patients at Risk of Massive Transfusion with Thrombelastography or Thromboelastometry: A Sys-tematic Review. Acta Anaesthesiologica Scandinavica, 55, 1174-1189.
https://doi.org/10.1111/j.1399-6576.2011.02534.x
[26] Royston, D. and Von, K.S. (2001) Reduced Haemostatic Factor Transfusion Using Heparinase-Modified Thrombelastographyduring Cardiopulmonary Bypass. British Journal of Anaesthesia, 86, 575-578.
https://doi.org/10.1093/bja/86.4.575
[27] Arroyo, V., Moreau, R. and Jalan, R. (2020) Acute-on-Chronic Liver Failure. The New England Journal of Medicine, 382, 2137-2145.
https://doi.org/10.1056/NEJMra1914900
[28] Karon, B.S. (2014) Why Is Everyone So Excited about Thromboelastrography (TEG)? Clinica Chimica Acta, 436, 143-148.
https://doi.org/10.1016/j.cca.2014.05.013
[29] Lawson, P.J., Moore, H.B., Moore, E.E., et al. (2017) Preoperative Thrombelastography Maximum Amplitude Predicts Massive Transfusion in Liver Transplantation. Journal of Surgical Research, 220, 171-175.
https://doi.org/10.1016/j.jss.2017.05.115
[30] Tripodi, A., Primignani, M., Chantarangkul, V., et al. (2009) The Coagulopathy of Cirrhosis Assessed by Thromboelastometry and Its Correlation with Conventional Coagulation Pa-rameters. Thrombosis Research, 124, 132-136.
https://doi.org/10.1016/j.thromres.2008.11.008
[31] Kang, Y., Lewis, J.H., Navalgund, A., et al. (1987) Epsi-lon-Aminocaproic Acid for Treatment of Fibrinolysis during Liver Transplantation. Anesthesiology, 66, 766-773.
https://doi.org/10.1097/00000542-198706000-00010
[32] Steib, A., Gengenwin, N., Freys, G., et al. (1994) Pre-dictive Factors of Hyperfibrinolytic Activity during Liver Transplantation in Cirrhotic Patients. British Journal of An-aesthesia, 73, 645-648.
https://doi.org/10.1093/bja/73.5.645
[33] Goerlinger, K., Fries, D., Dirkmann, D., et al. (2012) Reduction of Fresh Frozen Plasma Requirements by Perioperative Point-of-Care Coagulation Management with Early Calculated Goal-Directed Therapy. Transfusion Medicine and Hemotherapy, 39, 104-113.
https://doi.org/10.1159/000337186
[34] Spalding, G.J., Martin, H., Tobias, S., et al. (2007) Cost Reduction of Perioperative Coagulation Management in Cardiac Surgery: Value of ‘Bedside’ Thrombelastography (ROTEM). Eu-ropean Journal of Cardio Thoracic Surgery, 31, 1052-1057.
https://doi.org/10.1016/j.ejcts.2007.02.022
[35] Bolliger, D. and Tanaka, K.A. (2013) Roles of Thrombelastography and Thromboelastometry for Patient Blood Management in Cardiac Surgery. Transfusion Medicine Reviews, 27, 213-220.
https://doi.org/10.1016/j.tmrv.2013.08.004
[36] Antonio, S.L., Favilli, A., Triolo, O., et al. (2016) Early Serum Markers of Pre-eclampsia: Are We Stepping Forward? The Journal of Maternal-Fetal& Neonatal Medicine, 29, 3019-3023.
https://doi.org/10.3109/14767058.2015.1113522
[37] Collins, S.B., Macintyre, C. and Hewer, I. (2016) Thromboelastography: Clinical Application, Interpretation, and Transfusion Management. AANA Journal, 84, 129-134.
[38] Orlikowski, C.E., Payne, A.J., Moodley, J., et al. (1992) Thrombelastography after Aspirin Ingestion in Pregnant and Non-Pregnant Subjects. British Journal of Anaesthesia, 69, 159-161.
https://doi.org/10.1093/bja/69.2.159
[39] Annecke, T., Geisenberger, T., Kürzl, R., et al. (2010) Algorithm-based Coagulation Management of Catastrophic Amniotic Fluid Embolism. Blood Coagulation & Fibrinolysis, 21, 95-100.
https://doi.org/10.1097/MBC.0b013e328332cfe2
[40] 高丽钦, 陈惠娟, 陈小琦, 何丽丹, 陈曦, 梁晓华, 等. 血栓弹力图分析在妊娠高血压综合征中的应用价值[J]. 中华高血压杂志, 2018, 26(12): 1177-1181.
[41] Girolami, A., Cosi, E., Ferrari, S., et al. (2018) Thrombotic and Hemorrhagic Conditions Due to a Gain of Function of Coagulation Proteins: A Special Type of Clotting Disorders. Clinical and Applied Thrombosis/Hemostasis, 24, 560-565.
https://doi.org/10.1177/1076029617721012
[42] Petterson, T.M., Marks, R.S., Ashrani, A.A., et al. (2015) Risk of Site-specific Cancer in Incident Venous Thromboembolism: A Population-Based Study. Thrombosis Research, 135, 472-478.
https://doi.org/10.1016/j.thromres.2014.12.013
[43] Kruger, S., Haas, M., Burkl, C., et al. (2017) Incidence, Outcome and Risk Stratification Tools for Venous Thromboembolism in Advanced Pancreatic Cancer—A Retrospective Cohort Study. Thrombosis Research, 157, 9-15.
https://doi.org/10.1016/j.thromres.2017.06.021
[44] Krepline, A.N., Christians, K.K., George, B., et al. (2016) Venous Thromboembolism Prophylaxis during Neoadjuvant Therapy for Resectable and Borderline Resectable Pan-creatic Cancer—Is It Indicated? Journal of Surgical Oncology, 114, 581-586.
https://doi.org/10.1002/jso.24361
[45] Agha, A.M., Gill, C., Balanescu, D.V., et al. (2020) Identifying Hemostatic Thresholds in Cancer Patients Undergoing Coronary Angiography Based on Platelet Count and Thromboelastography. Frontiers in Cardiovascular Medicine, 7, Article No. 9.
https://doi.org/10.3389/fcvm.2020.00009
[46] Liu, J., Wang, N., Chen, Y., Lu, R., and Ye, X. (2017) Thrombelastography Coagulation Index May Be a Predictor of Venous Thromboembolism in Gynecological Oncology Patients. Journal of Obstetrics and Gynaecology Research, 43, 202-210.
https://doi.org/10.1111/jog.13154
[47] Akay, O.M., Ustuner, Z., Canturk, Z., et al. (2009) Laboratory Investigation of Hypercoagulability in Cancer Patients Using Rotation Thrombelastography. Medical Oncology, 26, Article No. 358.
https://doi.org/10.1007/s12032-008-9129-0
[48] Meier, K., Saenz, D.M., Torres, G.L., et al. (2018) Thrombelastography Suggests Hypercoagulability in Patients with Renal Dysfunction and Intracerebral Hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 27, 1350-1356.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.12.026
[49] Sanz, M.A., Grimwade, D., Tallman, M., et al. (2009) Management of Acute Promyelocytic Leukemia: Recommendations from An Expert Panel on Behalf of the European LeukemiaNet. Blood, 113, 1875-1891.
https://doi.org/10.1182/blood-2008-04-150250
[50] Anıl, H., Kılıç Yıldırım, G., Harmancı, K., et al. (2018) Thromboelastogram as a Tool to Predict Hypercoagulabilityin Children with Cystic Fibrosis. Clinical and Applied Thrombosis/Hemostasis, 24, 348-352.
https://doi.org/10.1177/1076029616683045
[51] Leeper, C.M., Neal, M.D., McKenna, C., et al. (2017) Catanach B. Abnormalities in Fibrinolysis at the Time of Admission Are Associated with Deep Vein Thrombosis, Mortality and Disability in Pediatric Trauma Population. Journal of Trauma and Acute Care Surgery, 82, 27-34.
https://doi.org/10.1097/TA.0000000000001308
[52] Sewell, E.K., Forman, K.R., Wong, E., et al. (2017) Thromboelastography in Term Neonates: An Alternative Approach to Evaluating Coagulopathy. Archives of Disease in Childhood—Fetal and Neonatal Edition, 102, F79-F84.
https://doi.org/10.1136/archdischild-2016-310545
[53] Whiting, P., Al, M.J., Westwood, M., et al. (2015) Viscoe-lastic Point-of-Care Testing to Assist with the Diagnosis, Management and Monitoring of Haemostasis: A Systematic Review and Cost-Effectiveness Analysis. Health Technology Assessment, 19, 1-228.
https://doi.org/10.3310/hta19580