铁酸镧纳米材料的制备及其压电催化性能研究
Investigation on Synthesis and Piezoelectric Catalytic Performance of Lanthanum Ferrite Nanomaterials
DOI: 10.12677/APP.2022.125031, PDF, HTML, XML, 下载: 406  浏览: 1,398 
作者: 管景斐, 沈盈辰:浙江师范大学,物理与电子信息工程学院,浙江 金华;贾艳敏*:西安邮电大学,理学院,陕西 西安
关键词: 铁酸镧纳米材料压电效应压电催化染料降解LaFeO3 Nanomaterials Piezoelectric Effect Piezoelectric Catalysis Dye Decomposition
摘要: 随着印染行业的发展,大量染料废水被排放到水环境中,造成了水体污染、生态环境破坏等问题。染料废水具有很强的抗氧化性、抗生化性,导致用普通的方法难以处理。研究发现压电催化技术可以充分利用振动能实现低能耗、高效率去除染料污染物。本论文采用共沉淀法制备了铁酸镧(LaFeO3)压电纳米材料,利用其压电效应与电化学之间的耦合实现了甲基橙染料的降解。经过180分钟的超声振动激励,LaFeO3可以降解98.15%的甲基橙染料。通过添加自由基抑制剂后发现LaFeO3压电催化性能主要受•O2-和•OH的影响。LaFeO3纳米材料在压电催化降解染料废水方面具有潜在的应用前景。
Abstract: With the development of printing and dyeing industry, a large number of dye wastewater is discharged into the water environment, resulting in water pollution, ecological environment damage and other problems. Dye wastewater has strong antioxidant and biochemical resistance, which makes it difficult to treat through traditional methods. It is found that piezoelectric catalytic technology can make full use of ultrasonic vibration energy to remove dye pollutants with low energy consumption and high efficiency. In this paper, lanthanum ferrite (LaFeO3) nanomaterial is prepared via coprecipitation method and used as the catalyst to decompose methyl orange dye solution through the coupling of piezoelectric effect and electrochemistry. The piezoelectric catalytic decomposition ratio of methyl orange dye can reach 98.15% after 180 min of ultrasonic vibration. By adding free radical scavengers, it is found that the piezoelectric catalytic performance of LaFeO3 is mainly affected by •O2- and •OH. LaFeO3 nanomaterial shows the potential application in piezocatalytically decomposing dye wastewater.
文章引用:管景斐, 沈盈辰, 贾艳敏. 铁酸镧纳米材料的制备及其压电催化性能研究[J]. 应用物理, 2022, 12(5): 278-286. https://doi.org/10.12677/APP.2022.125031

1. 引言

印染纺织企业在为社会经济发展做出贡献的同时,它们所排放的大量染料废水对生态环境造成了严重破坏 [1]。如何有效地去除废水中的有机染料成为亟需解决的重要问题。染料废水由于具有很强的抗氧化性、抗生化性,导致采用传统生物法、膜分离法、吸附法的去除效果不佳。随着研究的深入,高级氧化工艺因其降解性能优越、无污染等特点而受到关注,其中光催化是研究最为广泛的一种 [2]。在典型的光催化中,光致电子–空穴对可以在溶液中诱导出一些具有强氧化能力的自由基从而实现有机染料分子的分解 [3] [4]。然而,催化剂在深色废水中的弱响应、较快的载流子复合速率以及光电转换效率不高等因素阻碍了光催化降解染料的实际应用 [5]。因此,探寻新的催化技术具有重要意义。

从理论上来说,河流冲击以及超声振动等产生的机械能可以像光能一样被收集起来并用于催化设计。一些介电材料可以通过压电效应将机械能转化为电能,在催化剂表面产生电荷,这些电荷进一步与染料分子反应从而达到降解的目的,这就是压电催化 [6] [7] [8] [9]。压电催化作为一种高级氧化技术,其过程的物理机理主要是压–电–化学耦合 [10]。近年来,已经有了许多关于压电催化染料降解的报道。Xu等人研究发现ZnO纳米棒经过50分钟的超声振动可以降解约80%的酸性橙7染料 [11]。Liu等人利用BaTiO3纳米线在经过80分钟的超声振动激励后降解了76.96%的甲基橙染料 [12]。基于上述的研究报道,通过压电效应与电化学之间的耦合,有望实现一种温和、高效的压电催化。

铁酸镧(LaFeO3)是具有正交结构的斜方晶系变体,具有结构稳定、价格低廉、粒子尺寸小等特点,在我国是一种储量丰富的稀土资源 [13]。钙钛矿结构LaFeO3作为一种典型的铁电材料,也是单相多铁材料之一,同时具有反铁磁性和铁电性的性质,具有非中心对称的特点 [14]。作为一种特殊的铁电材料, LaFeO3多铁材料可以表现出优良的压电效应,有望被开发成为理想压电催化剂用来实现压电催化,具有较高的研究价值 [15]。

在本项工作中,我们通过共沉淀法制备出了LaFeO3压电纳米材料,并利用甲基橙染料的降解情况探究了其在超声振动下的压电催化性能。研究发现,LaFeO3压电纳米材料在180分钟的超声振动下可实现98.15%的甲基橙染料降解率。自由基捕获实验证明羟基自由基和超氧自由基对甲基橙染料的压电催化降解做出了主要贡献。

2. 实验部分

2.1. LaFeO3压电纳米材料的制备

本文采用共沉淀法制备LaFeO3催化剂材料 [16]。首先配置好浓度为3 M的NaOH溶液。然后用电子天平称取2.165 g的La(NO3)3·6H2O放入烧杯中,加入25 mL去离子水,持续搅拌至La(NO3)3·6H2O完全溶于水。再称取2.02 g的Fe(NO3)3·6H2O并将其溶于25 mL去离子水中,将两种溶液混合均匀。将配置好的浓度为3 M的NaOH溶液缓慢滴加到混合溶液中生成大量红棕色的絮状沉淀,直到溶液的pH值 > 9时停止滴加NaOH溶液。将反应液在室温条件下持续搅拌5 h,等待沉淀析出。结束搅拌后,通过离心收集反应液中的沉淀物,用去离子水和无水乙醇洗涤四至五次。最后,将LaFeO3样品放在在60℃的烘箱中干燥12 h。在玛瑙研钵中对干燥后的LaFeO3样品研磨约30分钟后,将得到的粉体放入石英坩埚中,置于马弗炉中并在700℃的条件下煅烧5 h (升温速率为4℃/min)。待冷却至室温后取出粉体,重新研磨后得到最终的成品LaFeO3催化剂。

2.2. 样品结构表征

本研究通过荷兰生产的Phenom ProX桌面扫描电子显微镜(SEM)进行LaFeO3材料的微观形貌分析,采用菲利普公司生产的PW3040/60型X-射线衍射仪(XRD)进行LaFeO3结构分析。

2.3. 压电催化性能表征

选择甲基橙染料作为降解目标来评估LaFeO3纳米材料的压电催化性能。将50 mg的LaFeO3纳米颗粒和50 mL的甲基橙染料放入同一玻璃烧杯之中。催化实验开始前,将悬浮液在黑暗环境下以恒定速度持续搅拌1 h,使悬浮液达到吸附–解吸平衡。在室温下放入超声波清洁仪(40 kHz, 180 W)中进行超声振动(在黑暗下进行),每隔30分钟从悬浮液中抽取3 mL的甲基橙样品,共取6组。通过离心去除LaFeO3纳米颗粒后得到上清液,通过紫外–可见分光光度计(U-3900)测量上清液的紫外–可见吸收光谱。

2.4. 活性物质检测

通过自由基捕获实验确定参与LaFeO3压电催化反应过程的主要活性物质。分别选用1 mM的乙二胺四乙酸(EDTA)、对苯醌(BQ)和叔丁醇(TBA)作为正电荷(q+)、超氧自由基( O 2 )和羟基自由基( OH )的捕获剂 [17] [18] [19] [20]。将上述三种自由基捕获剂分批加入到含有LaFeO3催化剂的甲基橙染料溶液中,重复压电催化实验即可。

3. 结果与讨论

图1是LaFeO3纳米颗粒的微观结构表征组图。根据图1(a)的SEM图像可以看出,LaFeO3催化剂形貌呈现出纳米颗粒团聚体的状态。图1(b)是LaFeO3催化剂的XRD图谱。对数据进行处理后发现,实验过程中制备的LaFeO3材料的所有衍射峰都与标准LaFeO3材料(JCPDS卡号37-1493)相一致 [21]。并且在XRD中并没有检测到其他相的峰,说明制备的LaFeO3材料中不含有其他杂质。图中尖锐的衍射峰强度说明制备的LaFeO3材料具有高的结晶度。

Figure 1. Characterization of LaFeO3 nanomaterials: (a) SEM, (b) XRD

图1. LaFeO3纳米材料表征:(a) SEM,(b) XRD图谱

Figure 2. UV-Vis absorbance spectra of methyl orange under different conditions: (a) LaFeO3 + ultrasonic vibration, (b) Only LaFeO3 and (c) Only ultrasonic vibration; (d) Decomposition ratio

图2. 甲基橙在不同条件:(a) LaFeO3+超声振动,(b) 只有LaFeO3和(c) 只有超声振动下的紫外–可见吸收光谱;(d) 降解率

图2(a)~(c)给出了LaFeO3材料在不同条件下压电催化甲基橙染料降解的吸光度图谱。根据图2(a)的紫外–可见吸收谱可以看到,在LaFeO3催化剂和超声振动两者都存在时,甲基橙染料的吸收峰由陡峭变得平缓,经过180分钟的超声振动后基本探测不到吸收峰,表明大部分甲基橙染料分子被降解 [22]。当对只含有LaFeO3催化剂的甲基橙染料进行搅拌或对不含LaFeO3催化剂的甲基橙染料溶液施加超声振动时,吸收峰的强度基本保持在同一位置,表明染料分子基本未被降解,紫外–可见吸收谱如图2(b)和图2(c)所示。图2(d)给出了不同条件下处理得到的甲基橙染料的降解率,可以直观地看出在只有催化剂或只有超声振动时染料的降解率基本保持不变,只有当两者共存时染料才逐步降解。由此可见,无论是催化剂材料还是超声振动,对于染料的降解都是必要条件,缺一不可。此外,我们利用测量压电催化后甲基橙溶液的吸收光谱,通过公式(1)计算得到某时段染料溶液的降解率D,从而来更加清楚直观地评价LaFeO3催化剂的压电催化性能 [23]:

D = ( 1 A / A 0 ) × 100 % (1)

其中A0为原溶液吸收光谱的吸收峰的强度,A为催化反应一段时间t后染料溶液的吸收光谱特征峰的强度。如图2(d)所示,经过180分钟超声振动后,LaFeO3催化剂对甲基橙染料的压电催化降解率达到了98.15%。这说明LaFeO3纳米颗粒可以在超声振动条件下作为有效的催化剂被激发来降解有机染料。

Figure 3. First-order kinetic curves of LaFeO3 piezoelectric catalytic decomposition of methyl orange dye under different conditions

图3. 不同条件下LaFeO3压电催化甲基橙染料降解反应的一阶动力学曲线

图3给出了不同条件下的LaFeO3材料压电催化甲基橙染料降解的一阶动力学曲线。得到的实验结果通过线性拟合函数得到了很好的拟合,染料的压电催化降解过程遵循一阶动力学模型式,如公式(2)所示 [20]:

ln ( A / A 0 ) = k t (2)

其中k是反应速率常数,t是超声振动时间。当LaFeO3催化剂和超声振动共同作用于甲基橙染料时,能够得到最高的反应速率常数k = 0.022 min−1,远远大于只含有催化剂时的反应速率常数k = 0.0016 min−1或只进行超声振动时的反应速率常数k = 5.0 × 10−5 min−1,表明LaFeO3催化剂和超声振动两者共存时具有较高的压电催化反应速率。

为了探究正电荷(q+)、羟基( OH )和超氧自由基( O 2 )是否在LaFeO3压电催化甲基橙染料降解的过程中发挥的作用,分别添加乙二胺四乙酸(EDTA)、叔丁醇(TBA)以及对苯醌(BQ)并重复压电催化实验,实验结果如图4所示。在添加了自由基抑制剂EDTA后,发现LaFeO3催化剂对甲基橙染料的降解率达到了91.07%,染料的降解过程基本未受影响,这说明q+并不是LaFeO3材料压电催化染料降解过程中的主要活性物质,如图4(a)所示。在添加抑制剂TBA后,发现催化剂对染料溶液的降解率为26.15%,该环境会对催化剂产生部分抑制作用,这说明 OH 参与了LaFeO3催化剂的催化过程,如图4(b)所示。在添加抑制剂BQ后,LaFeO3催化剂对染料的降解性能为20.37%,表明染料分子的分解受到了阻碍,进而证明 O 2 参与了LaFeO3催化剂的催化过程,如图4(c)所示。图4(d)给出了甲基橙在不同条件下的降解率,可以直观明了地看到加入TBA和BQ之后染料的压电催化过程得到了显著抑制,表明LaFeO3的压电催化性能主要受 O 2 OH 的影响。

Figure 4. Effects of different radical scavengers (a) EDTA, (b) TBA and (c) BQ on LaFeO3 piezoelectric catalytic decomposition performance of methyl orange dye; (d) Decomposition ratio

图4. 不同自由基捕获剂 (a) EDTA,(b) TBA和(c) BQ的存在对LaFeO3压电催化甲基橙染料降解性能的影响,(d) 降解率

基于上述的实验结果,LaFeO3材料在超声振动激励下的压电催化降解甲基橙染料的机理被给出。甲基橙溶液被大幅度降解,这是由于LaFeO3纳米材料具有优异的压电催化性能。当LaFeO3纳米材料表面因超声振动作用受到压力后,材料内部极化强度会发生改变,表面相对的两个位置则会诱导出正负电荷。这些电荷与溶液中的氢氧根(OH)或溶解氧(O2)结合生成具有强氧化作用的活性物质 OH O 2 [24] [25]。而 OH O 2 能够将染料大分子转化为无污染的小分子无机物,从而实现染料分子的降解。其化学反应过程可用公式(3)~(6)表示 [26] [27]:

LaFeO 3 Vibration LaFeO 3 + q + + q (3)

OH + q + OH (4)

O 2 + q O 2 (5)

OH / O 2 + Dye Decomposition (6)

本研究通过共沉淀法合成了LaFeO3催化剂,并通过甲基橙染料废水的降解性对LaFeO3催化剂压电催化性能进行了探究。在超声振动180分钟后,发现LaFeO3催化剂对甲基橙溶液的降解率为98.15%。由此可见,LaFeO3催化剂在利用环境中的振动能来处理染料废水方面具有潜在应用前景。事实上,压电催化的应用不局限于染料废水处理,它在二氧化碳还原、氮气固定以及杀菌消毒等方面都有相关的研究报道 [28] [29] [30]。未来,LaFeO3纳米材料也有望应用于这些具有光明发展前景的领域。

4. 总结与展望

本文选用共沉淀法制备了LaFeO3样品并探究了其在超声振动下的催化性能。最终得到结论,LaFeO3纳米颗粒可以在压电催化中作为有效的压电催化剂被激发,对甲基橙有机染料溶液的压电催化降解率高达98.15%。同时通过添加不同自由基抑制剂证明了羟基和超氧自由基在LaFeO3压电纳米材料的压电催化过程中发挥了至关重要的作用。LaFeO3纳米材料优异的压电催化性能为其利用自然界中广泛存在的振动能进行有机染料废水处理和能源转换等提供了一种无毒、高效、环保的技术。

NOTES

*通讯作者。

参考文献

[1] Li, W., Mu, B. and Yang, Y. (2019) Feasibility of Industrial-Scale Treatment of Dye Wastewater via Bio-Adsorption Technology. Bioresource Technology, 277, 157-170.
https://doi.org/10.1016/j.biortech.2019.01.002
[2] Koe, W.S., Lee, J.W., Chong, W.C., Pang, Y.L. and Sim, L.C. (2020) An Overview of Photocatalytic Degradation: Photocatalysts, Mechanisms, and Development of Photocatalytic Membrane. Environmental Science and Pollution Research, 27, 2522-2565.
https://doi.org/10.1007/s11356-019-07193-5
[3] Xu, X., Xiao, L., Jia, Y., Hong, Y., Ma, J. and Wu, Z. (2018) Strong Visible Light Photocatalytic Activity of Magnetically Recyclable Sol–Gel-Synthesized ZnFe2O4 for Rhodamine B Degradation. Journal of Electronic Materials, 47, 536-541.
https://doi.org/10.1007/s11664-017-5810-4
[4] Luo, W., Ying, J., Yu, S., Yang, X., Jia, Y., Chen, M. and Wu, Z. (2020) ZnS: Cu Powders with Strong Visible-Light Photocatalysis and Pyro-Catalysis for Room-Temperature Dye De-composition. Ceramics International, 46, 12096- 12101.
https://doi.org/10.1016/j.ceramint.2020.01.253
[5] Sakthivel, T., Huang, X., Wu, Y. and Rtimi, S. (2020) Recent Progress in Black Phosphorus Nanostructures as Environmental Photocatalysts. Chemical Engineering Journal, 379, Ar-ticle ID: 122297.
https://doi.org/10.1016/j.cej.2019.122297
[6] Guan, J., Jia, Y., Cao, J., Yuan, G., Huang, S., Cui, X. and Wu, Z. (2022) Enhancement of Piezoelectric Catalysis of Na0.5Bi0.5TiO3 with Electric Poling for Dye Decomposition. Ceramics International, 48, 3695-3701.
https://doi.org/10.1016/j.ceramint.2021.10.151
[7] Wang, P., Li, X., Fan, S., Chen, X., Qin, M., Long, D. and Liu, S. (2020) Impact of Oxygen Vacancy Occupancy on Piezo-Catalytic Activity of BaTiO3 Nanobelt. Applied Catalysis B: Environmental, 279, Article ID: 119340.
https://doi.org/10.1016/j.apcatb.2020.119340
[8] Tu, S., Guo, Y., Zhang, Y., Hu, C., Zhang, T., Ma, T. and Huang, H. (2020) Piezocatalysis and Piezo-Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Advanced Functional Materials, 30, Article ID: 2005158.
https://doi.org/10.1002/adfm.202005158
[9] Guan, J., Jia, Y., Chang, T., Ruan, L., Xu, T., Zhang, Z. and Zhu, G. (2022) Highly Efficient Piezo-Catalysis of the Heat-Treated Cellulose Nanocrystal for Dye Decomposition Driven by Ul-trasonic Vibration. Separation and Purification Technology, 286, Article ID: 120450.
https://doi.org/10.1016/j.seppur.2022.120450
[10] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏. AgNbO3压电纳米材料压-电-化学耦合研究[J]. 物理学报, 2016, 65(10): 219-226.
[11] Xu, X., Jia, Y., Xiao, L. and Wu, Z. (2018) Strong Vibration-Catalysis of ZnO Nanorods for Dye Wastewater Decolorization via Piezo-Electro-Chemical Coupling. Chemosphere, 193, 1143-1148.
https://doi.org/10.1016/j.chemosphere.2017.11.116
[12] Liu, X., Xiao, L., Zhang, Y. and Sun, H. (2020) Signifi-cantly Enhanced Piezo-Photocatalytic Capability in BaTiO3 Nanowires for Degrading Organic Dye. Journal of Materi-omics, 6, 256-262.
https://doi.org/10.1016/j.jmat.2020.03.004
[13] Tijare, S.N., Joshi, M.V., Padole, P.S., Mangrulkar, P.A., Rayalu, S.S. and Labhsetwar, N.K. (2012) Photocatalytic Hydrogen Generation through Water Split-ting on Nano-Crystalline LaFeO3 Perovskite. International Journal of Hydrogen Energy, 37, 10451-10456.
https://doi.org/10.1016/j.ijhydene.2012.01.120
[14] Rao, M.P., Musthafa, S., Wu, J.J. and Anandan, S. (2019) Facile Synthesis of Perovskite LaFeO3 Ferroelectric Nanostructures for Heavy Metal Ion Removal Applications. Materi-als Chemistry and Physics, 232, 200-204.
https://doi.org/10.1016/j.matchemphys.2019.04.086
[15] Cristobal, A.A., Botta, P.M., Bercoff, P.G. and López, J.P. (2009) Mechanosynthesis and Magnetic Properties of Nanocrystalline LaFeO3 Using Different iron Oxides. Materi-als Research Bulletin, 44, 1036-1040.
https://doi.org/10.1016/j.materresbull.2008.11.015
[16] 张文璐. 钙钛矿结构铁酸镧纳米材料的二氧化氮气敏性能[D]: [硕士学位论文]. 武汉: 华中科技大学, 2017.
[17] Ruan, L., Jia, Y., Guan, J., Xue, B., Huang, S., Wang, Z. and Wu, Z. (2022) Tribo-Electro-Catalytic Dye Degradation Driven by Mechanical Friction Using MOF-Derived Ni-Co2O4 Double-Shelled Nanocages. Journal of Cleaner Production, 345, Article ID: 131060.
https://doi.org/10.1016/j.jclepro.2022.131060
[18] Ma, J., Ren, J., Jia, Y., Wu, Z., Chen, L., Haugen, N.O. and Liu, Y. (2019) High Efficiency Bi-Harvesting Light/Vibration Energy Using Piezoelectric Zinc Oxide Nanorods for Dye De-composition. Nano Energy, 62, 376-383.
https://doi.org/10.1016/j.nanoen.2019.05.058
[19] Ismail, M., Wu, Z., Zhang, L., Ma, J., Jia, Y., Hu, Y. and Wang, Y. (2019) High-Efficient Synergy of Piezocatalysis and Photocatalysis in Bismuth Oxychloride Nanomaterial for Dye Decomposition. Chemosphere, 228, 212-218.
https://doi.org/10.1016/j.chemosphere.2019.04.121
[20] Wang, L., Haugen, N.O., Wu, Z., Shu, X., Jia, Y., Ma, J. and Chai, Q. (2019) Ferroelectric BaTiO3@ ZnO Heterostructure Nanofibers with Enhanced Pyroelectrical-ly-Driven-Catalysis. Ceramics International, 45, 90-95.
https://doi.org/10.1016/j.ceramint.2018.09.137
[21] Leng, J., Li, S., Wang, Z., Xue, Y. and Xu, D. (2010) Synthe-sis of Ultrafine Lanthanum Ferrite (LaFeO3) Fibers via Electrospinning. Materials Letters, 64, 1912-1914.
https://doi.org/10.1016/j.matlet.2010.06.005
[22] Chen, M., Jia, Y., Li, H., Wu, Z., Huang, T. and Zhang, H. (2021) Enhanced Pyrocatalysis of the Pyroelectric BiFeO3/g-C3N4 Heterostructure for Dye Decomposition Driven by Cold-Hot Temperature Alternation. Journal of Advanced Ceramics, 10, 338-346.
https://doi.org/10.1007/s40145-020-0446-x
[23] Zhao, J., Chen, L., Luo, W., Li, H., Wu, Z., Xu, Z. and Jia, Y. (2020) Strong Tribo-Catalysis of Zinc Oxide Nanorods via Triboelectrically-Harvesting Friction Energy. Ceramics In-ternational, 46, 25293-25298.
https://doi.org/10.1016/j.ceramint.2020.06.322
[24] Lei, H., Wu, M., Mo, F., Ji, S., Dong, X., Jia, Y. and Wu, Z. (2021) Efficiently Harvesting the Ultrasonic Vibration Energy of Two-Dimensional Graphitic Carbon Nitride for Piezo-catalytic Degradation of Dichlorophenols. Environmental Science: Nano, 8, 1398-1407.
https://doi.org/10.1039/D0EN01028F
[25] Zhang, A., Liu, Z., Geng, X., Song, W., Lu, J., Xie, B. and Shu, L. (2019) Ultrasonic Vibration Driven Piezocatalytic Activity of Lead-Free K0.5Na0.5NbO3 Materials. Ceramics Internation-al, 45, 22486-22492.
https://doi.org/10.1016/j.ceramint.2019.07.271
[26] Chen, J., Luo, W., Yu, S., Yang, X., Wu, Z., Zhang, H. and Jia, Y. (2020) Synergistic Effect of Photocatalysis and Pyrocatalysis of Pyroelectric ZnSnO3 Nanoparticles for Dye Degrada-tion. Ceramics International, 46, 9786-9793.
https://doi.org/10.1016/j.ceramint.2019.12.251
[27] Ma, J., Jia, Y., Chen, L., Zheng, Y., Wu, Z., Luo, W. and Li, Y. (2020) Dye Wastewater Treatment Driven by Cyclically Heating/Cooling the Poled (K0.5Na0.5)NbO3 Pyroelectric Crystal Catalyst. Journal of Cleaner Production, 276, Article ID: 124218.
https://doi.org/10.1016/j.jclepro.2020.124218
[28] Zhang, Y., Phuong, P.T.T., Duy, N.P.H., Roake, E., Khanbareh, H., Hopkins, M. and Bowen, C. (2021) Polarisationtuneable Piezo-Catalytic Activity of Nb-Doped PZT with Low Curie Temperature for Efficient CO2 Reduction and H2 Generation. Nanoscale Advances, 3, 1362-1374.
https://doi.org/10.1039/D1NA00013F
[29] Dai, X., Chen, L., Li, Z., Li, X., Wang, J., Hu, X. and He, Y. (2021) CuS/KTa0.75Nb0.25O3 Nanocomposite Utilizing Solar and Mechanical Energy for Catalytic N2 Fixation. Journal of Colloid and Interface Science, 603, 220-232.
https://doi.org/10.1016/j.jcis.2021.06.107
[30] Feng, J., Fu, Y., Liu, X., Tian, S., Lan, S. and Xiong, Y. (2018) Significant Improvement and Mechanism of Ultrasonic Inactivation to Escherichia coli with Piezoelectric Effect of Hy-drothermally Synthesized T-BaTiO3. ACS Sustainable Chemistry & Engineering, 6, 6032-6041.
https://doi.org/10.1021/acssuschemeng.7b04666