芜菁黄化花叶病毒RT-LAMP检测方法的建立
Establishment of the Detection Method for Turnip yellow mosaic virus by RT-LAMP
DOI: 10.12677/BP.2022.122013, PDF, HTML, XML, 下载: 281  浏览: 520 
作者: 杨馥韩, 雷云廷, 杨再福, 冯文卓, 王 勇, 陈相儒*:贵州大学农学院,贵州 贵阳;姜 宁:云南烟草科学研究院,云南 昆明
关键词: 芜菁黄化花叶病毒RT-LAMP病毒检测 Turnip yellow mosaic virus (TYMV) RT-LAMP Virus Detection
摘要: 芜菁黄化花叶病毒(Turnip yellow mosaic virus, TYMV)是芜菁黄花叶病毒科(Tymoviridae)芜菁黄花叶病毒属(Tymovirus)的代表种,该病毒侵染白菜能够引起黄化、花叶和皱缩等症状,给白菜产业造成巨大的影响。在此,我们建立了反转录环介导等温扩增(RT-LAMP)技术来检测白菜中的TYMV。针对TYMV分离株中保守的RNA依赖性RNA聚合酶(RdRp)基因的区域设计的RT-LAMP检测引物。优化后的RT-LAMP方法对TYMV的检测具有特异性和灵敏度,灵敏度比RT-PCR高10,000倍。这种简单、高效、快速和灵敏的方法能够应用于白菜中TYMV的检测。
Abstract: Turnip yellow mosaic virus (TYMV) is the type species of the genus Tymovirus in Tymoviridae. TYMV induce symptoms such as yellowing, mosaic and leaf rugosity in Chinese cabbage, damaging the Chinese cabbage industry. Therefore, developing an easy, efficient strategy for detecting TYMV is crucial. Here, we established a two-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) technique for detecting TYMV in Chinese cabbage. RT-LAMP primers were designed against regions of the RNA-dependent RNA polymerase (RdRp) gene conserved among TYMV isolates. The optimized RT-LAMP method showed high specificity and sensitivity to TYMV, displaying 10,000 times greater sensitivity than conventional RT-PCR. This easy, efficient, sensitive, and inexpensive method for detecting TYMV in Chinese cabbage is the first application of RT-LAMP, to our knowledge, for detecting TYMV.
文章引用:杨馥韩, 雷云廷, 姜宁, 杨再福, 冯文卓, 王勇, 陈相儒. 芜菁黄化花叶病毒RT-LAMP检测方法的建立[J]. 生物过程, 2022, 12(2): 116-123. https://doi.org/10.12677/BP.2022.122013

1. 引言

白菜(Brassica pekinensis)属十字花科(Brassicaceae)芸薹属(Brassica)。在中国,白菜是种植面积最大的蔬菜之一,具有重要的经济价值。在白菜的生产过程中,白菜易受到多种病原物的危害。许多病毒能够侵染白菜,包括南芥菜花叶病毒(Arabis mosaic virus, ArMV)、蚕豆萎蔫病毒2 (Broad bean wilt virus 2, BBWV2)、花椰菜花叶病毒(Cauliflower mosaic virus, CaMV)、黄瓜花叶病毒(Cucumber mosaic virus, CMV)、长叶车前花叶病毒(Ribgrass mosaic virus, RMV)、烟草花叶病毒(Tobacco mosaic virus, TMV)、芜菁花叶病毒(Turnip mosaic virus, TuMV)、芜菁环斑病毒(Turnip ringspot virus, TuRSV)和芜菁黄化病毒(Brassica yellows virus, BrYV) [1] - [9]。

芜菁黄化花叶病毒(Turnip yellow mosaic virus, TYMV)是芜菁黄花叶病毒科(Tymoviridae)芜菁黄花叶病毒属(Tymovirus)的代表种 [10]。该病毒的基因组为一条长6319 nt的正义单链RNA组成,共编码3个开放阅读框(Open reading frame, ORF),分别包括重叠蛋白(Overlapping protein)、复制相关蛋白(Replicase polyprotein)和外壳蛋白(Coat protein)。TYMV通过甲虫和机械进行传播并侵染十字花科的其它植物 [8] [11]。TYMV引起的典型症状是叶片黄化、花叶和皱缩。到目前为止,澳大利亚、加拿大、美国、菲律宾、韩国和日本等多个国家都发现并报道了该病毒 [8] [11] [12] [13]。

2000年,Notomi等人开发了环介导等温扩增(LAMP)技术,目前被广泛用于检测病原物和病毒的检测 [14] [15]。目前,许多植物病毒也可以利用LAMP或逆转录环介导等温扩增(RT-LAMP)检测,例如日本山药花叶病毒、梅子痘病毒和柑橘叶斑驳病毒 [16] [17] [18] [19]。与RT-PCR、ELISA等方法相比,RT-LAMP法具有简单、高效、灵敏、成本低等优点。本研究确定了TYMV在中国发生,并根据TYMV的基因序列设计LAMP检测引物,建立并优化了RT-LAMP检测方法,建立的RT-LAMP检测方法可用于田间白菜样品的TYMV检测。

2. 材料与方法

2.1. 材料

感染TYMV的白菜样品采自贵州省威宁县,感染了BBWV2,CMV,TuMV,马铃薯病毒S (Potato virus S, PVS)和马铃薯病毒Y (Potato virus Y, PVY)的植物样品均由本实验室保存。快速通用植物RNA提取试剂盒购自华越洋(北京)公司,Bst 2.0 DNA聚合酶购自美国NEB公司,M-MLV反转录酶购自美国Promega公司,甜菜碱购自美国Sigma公司,SYBR Green I染料购自索莱宝(北京)公司,10 mmol/L dNTPs和Taq DNA 聚合酶均购自生工生物(上海)公司,pUC19-T载体购自擎科(重庆)生物公司。

根据GenBank中的TYMV (KF561253)核酸序列合成引物,使用软件primer explorer 4.0 (http://primerexplorer.jp/elamp4.0.0/index.html)设计LAMP检测引物,使用软件Primer Premier 5.0设计RT-PCR检测引物,引物由擎科(重庆)生物公司合成。引物序列见表1

Table 1. Primers sequences for the RT-LAMP and RT-PCR detection of TYMV

表1. 芜菁黄化花叶病毒RT-LAMP和RT-PCR检测引物序列

2.2. RNA的提取及RT-PCR

白菜叶片样品经液氮研磨后,参照快速通用植物RNA提取试剂盒说明书提取白菜样品的总RNA,使用超微量分光光度计(Nano Drop 2000)测定RNA浓度和质量。使用M-MLV反转录酶进行反转录合成cDNA,以cDNA为模板进行PCR扩增,PCR产物经1.2%琼脂糖凝胶电泳检测。反转录体系为:5×反应缓冲液6 μL,2.5 mmol/L dNTPs 2 μL,10 μmol/L3’引物1.0 μL,总RNA 3000 ng,20 U RRI (重组RNA酶抑制剂),200 U M-MLV反转录酶,ddH2O补足至30 μL。将反转录反应体系置于PCR仪中反应,37℃ 60 min,96℃ 5 min,反应结束后立即置于冰上。PCR扩增体系为25 μL:1.0 μL反转录产物,10 μmol/L5’引物和3’引物各1.0 μL,2× Taq PCR Master Mix 12.5 μL,用ddH2O补足体系至25 μL。PCR反应程序设置为:94℃预变性5 min;94℃变性30 s,55℃退火30 s,72℃延伸1 min,35个循环;72℃延伸l0 min。

2.3. TYMV-LAMP方法建立及优化

LAMP反应体系 [19] 为:cDNA 2μL,10× Bst缓冲液2.5 μL,25 mmol/LMgCl2 3 μL,4 mmol/L甜菜碱2 μL,10 mmol/LdNTPs 2 μL,8 U/μLBst聚合酶1 μL,20 μmol/L FIP和BIP引物各2 μL,10 μmol/L F3和B3引物各0.5 μL,ddH2O补足至25 μL。置于不同温度(60℃、62.5℃、65℃、67.5℃和70℃)下反应60 min,80℃ 5 min。取3 μL产物进行1.5%琼脂糖凝胶电泳检测;在剩下的LAMP产物中加入1.5 μL 100倍稀释的SYBR Green I染料,振荡混匀,观察结果并拍照。

2.4. TYMV-LAMP方法特异性检测

分别提取感染了BBWV2,CMV,TuMV,PVS,PVY和TYMV样品的总RNA经反转录后,用建立的RT-LAMP和RT-PCR的方法进行检测,以确定RT-LAMP检测方法的特异性。

2.5. TYMV-LAMP方法灵敏度检测

取感染TYMV样品的总RNA 3000 ng用于反转录,用ddH2O将反转录产物10倍梯度稀释(10-1, 10-2, 10-3, 10-4, 10-5, 10-6)后作为模板,分别检测RT-LAMP和RT-PCR方法的灵敏度。

2.6. TYMV-LAMP方法田间应用

从贵州省、云南省、江苏省、吉林省、河北省和山东省采集了白菜样品共80份,提取80样品的总RNA,使用RT-LAMP方法检测这些样品被TYMV感染情况,并使用RT-PCR验证RT-LAMP检测结果。

3. 结果

3.1. TYMV的RT-PCR检测

使用TYMV (1316)F/(1832)R and TYMV CP F/R引物扩增TYMV基因组片段,PCR产物经1.2%琼脂糖凝胶电泳检测,长度分别为为 500 bp和900 bp (图1)。PCR产物经纯化回收后连接载体pUC19-T,转化大肠杆菌后,提取阳性克隆质粒送往擎科(重庆)生物公司测序,测序结果经Blast比对确定为芜菁黄化花叶病毒。

Figure 1. Amplified TYMV target fragments by PCR. M: DL2000 DNA marker; 1: products of primer set TYMV (1316)F/(1832)R; 2: products of primer set TYMV CP F/R

图1. PCR扩增TYMV目的片段。M:DL2000 DNA分子量标准;1:TYMV (1316)F/(1832)R扩增产物;2:TYMV CP F/R扩增产物

3.2. TYMV-LAMP检测体系的建立及优化

使用从TYMV感染植物样品中提取的总RNA在不同的温度(60℃至70℃)下进行RT-LAMP检测。对反应温度的优化结果表明:扩增温度为60℃~70℃时,电泳后均出现梯形条带,加入SYBR Green I染料后反应产物颜色为绿色(图2(b),图2(c))。结合实时扩增曲线和琼脂糖凝胶电泳结果,65℃下的反应具有最快的扩增速度和最佳的特异性(图2(a),图2(b))。因此,后续实验选择65℃作为反应温度。

3.3. TYMV-LAMP方法特异性检测

用分别感染了TuMV、BBWV2、CMV、PVS和PVY的样品检测RT-LAMP方法的特异性。结果表明被TYMV侵染样品的RT-LAMP产物经SYBR Green I染料染色后,呈现绿色,经2%琼脂糖凝胶电泳检测出现阶梯状条带,而被TuMV、BBWV2、CMV、PVS和PVY侵染样品的RT-LAMP产物经SYBR Green I染料染色后,呈现橙色,经1.5%琼脂糖凝胶电泳检测没有出现特异性条带(图3(a),图3(b),图3(c)),说明本研究建立的RT-LAMP方法对TYMV具有良好的特异性。

Figure 2. Optimize the best temperature for Turnip yellow mosaic virus (TYMV) detection by RT-LAMP assay. (a) Real-time amplification plots; (b) Amplified products resolved by 2% agarose gel electrophoresis. M, DL2000 marker; 1 to 5, reaction temperature of 60˚C, 62.5˚C, 65˚C, 67.5˚C, or 70˚C, respectively; NC, negative control; (c) Visual detection of amplified products using SYBR Green I dye

图2. RT-LAMP法检测芜菁黄化花叶病毒(TYMV)的最佳温度。(a) 实时扩增曲线;(b) RT-LAMP反应产物2%琼脂糖凝胶电泳检测结果。M,DL2000DNA分子量标准;1至5,反应温度分别为60℃、62.5℃、65℃、67.5℃或70℃;NC,阴性对照;(c) 加入SYBR Green I染料的检测结果

Figure 3. Specificity of Turnip yellow mosaic virus (TYMV) by RT-LAMP assay. (a) Real-time amplification plots; (b) Amplified products of RT-LAMP resolved by 2% agarose gel electrophoresis. M: DL2000 DNA marker; 1, TYMV; 2 to 6: TuMV, CMV, PVY, BBWV2, and PVS, respectively; NC: negative control; (c) Visual detection of amplified products using SYBR Green I dye

图3. RT-LAMP法检测芜菁黄化花叶病毒(TYMV)的特异性试验。(a) 实时扩增曲线;(b) RT-LAMP反应产物2%琼脂糖凝胶电泳检测结果。M:DL2000 DNA分子量标准;1:TYMV;2~6:分别为TuMV、CMV、PVY、BBWV2和PVS;NC,阴性对照;(c) 加入SYBR Green I染料的检测结果

3.4. TYMV-LAMP方法灵敏度检测

为了检测RT-LAMP方法的灵敏度,将TYMV cDNA的10倍梯度稀释(10−1, 10−2, 10−3, 10−4, 10−5, 10−6)后作为模板。稀释后的cDNA进行RT-PCR和RT-LAMP检测。结果表明,RT-LAMP检测灵敏度为10−6 (图4(a),图4(c),图4(d)),而RT-PCR的灵敏度为10−1 (图4(b)),说明RT-LAMP方法的灵敏度是RT-PCR法的10 000倍。因此,RT-LAMP方法在田间检测时具有良好的应用的潜力。

Figure 4. Sensitivity of Turnip yellow mosaic virus (TYMV) by RT-LAMP assay. (a) Real-time amplification plots; (b) Amplified products from RT-PCR resolved by 1.2% agarose gel electrophoresis. M: DL2000 DNA marker; 1 to 7: standard concentrations of cDNA in the RT-LAMP reaction representing 10-fold serial dilutions from 100 (lane 1) to 10−6 (lane 7), respectively; NC: negative control; (c) Amplified products from RT-LAMP resolved by 2% agarose gel electrophoresis; (d) Visual detection of RT-LAMP assay of amplified products using SYBR Green I dye

图4. RT-LAMP法检测芜菁黄化花叶病毒(TYMV)的灵敏度试验。(a) 实时扩增曲线;(b) RT-PCR的扩增产物经1.2%琼脂糖凝胶电泳检测结果。M:DL2000 DNA分子量标准;1~7:分别代表稀释cDNA浓度100 (泳道1)到10−6 (泳道7);NC:阴性对照。(c) RT-LAMP的扩增产物通过2%琼脂糖凝胶电泳检测结果;(d) 加入SYBR Green I染料的检测结果

3.5. TYMV-LAMP方法的田间应用

从六个省收集了白菜样品80份。提取这些样品的总RNA,并分别通过RT-LAMP和RT-PCR检测TYMV。RT-LAMP结果表明,这些收集的样品中有8个被TYMV感染(图5(b))。此外,RT-LAMP结果与RT-PCR检测结果完全一致(图5(a),图5(b))。因此本研究建立的RT-LAMP能够很好地应用于田间样品的TYMV检测。

Figure 5. Applications of RT-LAMP assay in detecting field samples. (a) RT-PCR products resolved by 1.2% agarose gel electrophoresis. M: DL2000 DNA marker; 1 to 12: leaf samples collected from the field; NC: negative control; (b) Visual detection based on SYBR Green I

图5. RT-LAMP方法的田间应用。(a) PCR产物经1.2%琼脂糖凝胶电泳检测结果。M:DL2000DNA分子量标准;1~12:田间白菜叶片样品;NC:阴性对照;(b) 加入SYBR Green I染料的检测结果

4. 讨论

白菜是世界上种植最广泛的蔬菜之一,具有重要的经济价值。中国是白菜的最大消费国,也是白菜种植面积最大的国家 [20]。白菜的产量和质量受到许多因素的影响,如病原体、害虫、非生物胁迫,特别是病毒 [21]。到目前为止,全世界至少有9种病毒能够侵染白菜。病毒的检测和监控对于病毒的防控至关重要,因此需要建立快速、准确、可靠的病毒检测方法。

本研究首次报道了TYMV在中国的出现。同时,建立了TYMV的RT-LAMP检测方法。实验结果表明RT-LAMP方法十分灵敏,灵敏度比RT-PCR高出10,000倍。RT-PCR和RT-LAMP方法都能够检测出被TYMV侵染的白菜样品,但RT-LAMP方法具有速度快,操作简单的优点。RT-LAMP技术是在恒温条件下进行的,不需要特定的设备。RT-LAMP的反应产物加入SYBR Green I染料后 [22],通过直接观察颜色变化,确定检测结果,十分便捷。在中国的6个省中收集了80份田间样品,有8份样品RT-LAMP和RT-PCR检测结果呈阳性。所有的阳性样品都来自贵州省,这表明TYMV现在可能只发生在贵州省,还没有传播到中国的其他省份。TYMV在贵州省一些县的田间发生率较高,有很大的可能传播到我国的其他省份,并对其他省份的大白菜造成严重损害,引起巨大的损失。病毒引起的植物病害往往具有难以治愈的特点,最实用的防控方法是种植脱毒植物或及时处理被病毒侵染的植物,这些措施需要准确可靠的病毒检测方法来支持。本研究建立的RT-LAMP检测技术能够准确、快速地检测出被TYMV侵染的白菜样品,在TYMV的防治中发挥重要作用。

综上所述,本研究建立了一种实用的检测TYMV的RT-LAMP方法,该方法在检测TYMV方面有很大的应用潜力。本研究设计的RT-LAMP检测引物是基于TYMV RdRp基因中的保守区域设计的,这说明该方法也能够检测TYMV的其它分离物,在白菜产业的TYMV检测上具有良好的应用潜力。本研究建立的RT-LAMP方法具有良好的特异性及灵敏度,检测结果可通过颜色变化直接进行观察,方便快捷,适用于田间样品TYMV的检测,对该病毒病害的发生、流行监控具有积极意义。

NOTES

*通讯作者。

参考文献

[1] Mossop, D.W., Fry, P.R. and Young, B.R. (1983) New Plant Disease Records in New Zealand: Arabis Mosaic Virus in Celery, Lettuce and Chinese Cabbage, Tomato Spotted Wilt Virus in Celery. New Zealand Journal of Agricultural Re-search, 26, 257-259.
https://doi.org/10.1080/00288233.1983.10427070
[2] Cai, L., Zhang, Y.C., Chen, Y.S., Hong, N. and Xu, W.X. (2017) First Report of Broad Bean Wilt Virus 2 Infecting Non-Heading Chinese Cabbage in China. Plant Disease, 101, 1559-1560.
https://doi.org/10.1094/PDIS-03-17-0310-PDN
[3] Farzadfar, S.H., Ahoomanesh, A., Mosahebi, G.H., Pour-rahim, A.R. and Golnaraghi, A.R. (2007) Occurrence and Distribution of Cauliflower Mosaic Virus on Cruciferous Plants in Iran. Plant Pathology Journal, 6, 22-29.
https://doi.org/10.3923/ppj.2007.22.29
[4] Liu, S., Cao, X. and Yuan, X. (2017) First Report of Cucumber Mo-saic Virus and Its Associated Satellite RNA in Celery Cabbage in Shandong Province of China. Plant Disease, 101, 1829-1830.
https://doi.org/10.1094/PDIS-04-17-0538-PDN
[5] Kim, J.S., Cho, J.D., Choi, H.S., Lee, S.H., Choi, G.S., Lee, S.Y., Kim, H.J. and Yoon, M.K. (2010) Ribgrass Mosaic Tobamovirus Occurred on Chinese Cabbage in Korea. The Plant Pathology Journal, 26, 328-339.
https://doi.org/10.5423/PPJ.2010.26.4.328
[6] Green, S.K. and Deng, T.C. (1985) Turnip Mosaic Virus Strains in Cruciferous Hosts in Taiwan. Plant Disease, 69, 28-31.
https://doi.org/10.1094/PD-69-28
[7] Chen, Y.K. and Chang, Y.S. (2011) First Report of Turnip Ringspot Virus in Field Mustard (Brassica chinensis) in Taiwan. Plant Dis-ease, 95, 1036.
https://doi.org/10.1094/PDIS-03-11-0224
[8] Kirino, N., Inoue, K., Tanina, K., Yamazaki, Y. and Ohki, S.T. (2008) Turnip yellow mosaic virus Isolated from Chinese Cabbage in Japan. Journal of General Plant Pa-thology, 74, Article No. 331.
https://doi.org/10.1007/s10327-008-0108-2
[9] Xiang, H.Y., Dong, S.W., Shang, Q.X., Zhou, C.J., Li, D.W., Yu, J.L. and Han, C.G. (2011) Molecular Characterization of Two Genotypes of a New Polerovirus Infecting Brassicas in China. Archives of Virology, 156, 2251-2255.
https://doi.org/10.1007/s00705-011-1091-z
[10] Morch, M.D., Boyer, J.C. and Haenni, A.L. (1988) Overlapping Open Reading Frames Revealed by Complete Nucleotide Sequencing of Turnip yellow mosaic virus Genomic RNA. Nu-cleic Acids Research, 16, 6157-6173.
https://doi.org/10.1093/nar/16.13.6157
[11] Alfaro-Fernandez, A., Serrano, A., Tornos, T., Cebrian, M.C., Cordo-ba-Selles, M.C., Jorda, C. and Font, M.I. (2016) Turnip yellow mosaic virus in Chinese Cabbage in Spain: Commercial Seed Transmission and Molecular Characterization. European Journal of Plant Pathology, 146, 433-442.
https://doi.org/10.1007/s10658-016-0929-3
[12] Spak, J., Kubelkova, D.A. and Hnilicka, E. (1993) Seed Trans-mission of Turnip yellow mosaic virus in Winter Turnip and Winter Oil Seed Rapes. Annals of Applied Biology, 123, 33-35.
https://doi.org/10.1111/j.1744-7348.1993.tb04069.x
[13] de Assis Filho, F.M. and Sherwood, J.L. (2000) Evalua-tion of Seed Transmission of Turnip yellow mosaic virus and Tobacco Mosaic virus in Arabidopsis thaliana. Phyto-pathology, 90, 1233-1238.
https://doi.org/10.1094/PHYTO.2000.90.11.1233
[14] Fukuta, S., Ohishi, K., Yoshida, K., Mizukami, Y., Ishida, A. and Kanbe, M. (2004) Development of Immunocapture Reverse Transcription Loop-Mediated Isothermal Amplifica-tion for the Detection of Tomato Spotted Wilt Virus from Chrysanthemum. Journal of Virological Methods, 121, 49-55.
https://doi.org/10.1016/j.jviromet.2004.05.016
[15] Buates, S., Bantuchai, S., Sattabongkot, J., Han, E.T., Tsuboi, T., Udomsangpetch, R., Sirichaisinthop, J. and TanAriya, P. (2010) Development of a Reverse Transcrip-tion-Loop-Mediated Isothermal Amplification (RT-LAMP) for Clinical Detection of Plasmodium Falciparum gameto-cytes. Parasitology International, 59, 414-420.
https://doi.org/10.1016/j.parint.2010.05.008
[16] Fukuta, S., Iida, T., Mizukami, Y., Ishida, A., Ueda, J., Kanbe, M. and Ishimoto, Y. (2003) Detection of Japanese Yam Mosaic Virus by RT-LAMP. Archives of Virology, 148, 1713-1720.
https://doi.org/10.1007/s00705-003-0134-5
[17] Varga, A. and James, D. (2006) Use of Reverse Transcription Loop-mediated Isothermal Amplification for the Detection of Plum Pox Virus. Journal of Virological Methods, 138, 184-190.
https://doi.org/10.1016/j.jviromet.2006.08.014
[18] Peng, Q., Ning, J., Xu, Q., Yang, T., Wang, Y., Zheng, T., Zhuang, Q. and Xi, D. (2021) Development and Application of a Reverse Transcription Loop-Mediated Iso-thermal Amplification Combined with Lateral Flow Dipstick for Rapid and Visual Detection of Citrus Leaf Blotch Virus in Kiwifruit. Crop Protection, 143, Article ID: 105555.
https://doi.org/10.1016/j.cropro.2021.105555
[19] Feng W Z, Hieno, A., Kusunoki, M., Suga, H. and Kageyama, K. (2018) LAMP Detection of Four Plant-Pathogenic Oomycetes and Its Application in Lettuce Fields. Plant Disease, 103, 298-307.
https://doi.org/10.1094/PDIS-05-18-0858-RE
[20] Wang, J., Hou, X., Yang, X. and Gustafson, P. (2011) Identi-fication of Conserved MicroRNAs and Their Targets in Chinese Cabbage (Brassica rapa Subsp. Pekinensis). Genome, 54, 1029-1040.
https://doi.org/10.1139/g11-069
[21] Liu, Y., Li, F., Li, Y.Y., Zhang, S.B., Gao, X.W., Xie, Y., Yan, F., Zhang, A.S., Dai, L.Y., Cheng, Z.B., Ding, M., Niu, Y.B., Wang, S.B., Che, H.Y., Jiang, T., Shi, X.B., He, Z.F., Wu, Y.F., Zhang, D.Y., Qing, L., Yan, W.R., Yang, X.H., Tang, Y.F., Zheng, H.Y., Tang, Q.J., Zhang, S.B., Zhang, D.F., Cai, L. and Tao, X.R. (2019) Species, Distribution and Occurrence Trends of Viruses Infesting Major Veg-etable Crops in China. Chinese Agricultural Science, 52, 239-261.
[22] Kokane, A.D., Kokane, S.B., Warghane, A.J., Gubyad, M.G., Sharma, A.K., Reddy, M.K. and Ghosh, D.K. (2021) A Rapid and Sensitive Reverse Transcrip-tion-Loop-Mediated Isothermal Amplification (RT-LAMP) Assay for the Detection of Indian Citrus Ringspot Virus. Plant Disease, 105, 1346-1355.
https://doi.org/10.1094/PDIS-06-20-1349-RE