细胞因子诱导及贴壁法提取淋巴内皮祖细胞
Extraction of Lymphatic Endothelial Progenitor Cells by Cytokine Induction and Adhesion
DOI: 10.12677/ACM.2022.126769, PDF, HTML, XML, 下载: 245  浏览: 375  科研立项经费支持
作者: 贺 强:石河子大学医学院,新疆 石河子;黄桂林*, 侯吉学:石河子大学医学院第一附属医院,新疆 石河子
关键词: 淋巴内皮祖细胞Lymphatic Endothelial Progenitor Cells
摘要: 目的:使用细胞因子诱导及贴壁法从C57BL/6小鼠骨髓细胞中分离淋巴内皮祖细胞(LEPCs),并对其进行鉴定。方法:通过贴壁技术获取小鼠骨髓24小时后贴壁细胞,待其增殖融合至80%~90%后,使用Tryple Express酶对贴壁细胞消化1分钟,去除消化掉的细胞,剩余细胞继续培养,待其再次融合至80%~90%时,进行1:2传代,将获得的第三代细胞进行流式细胞术检测其表面特异性标记物,并对其进行淋巴管成管分化实验,鉴定细胞。结果:我们所获取的LEPCs,在体外诱导后,可形成典型的微管样结构,并且经过多次传代后可形成“鹅卵石”样的典型细胞形态;其表面特异性标记物为:CD34、CD113双阳性率为:87.17% ± 1.77%;CD113、VEGFR-3双阳性率为:85.17% ± 1.65%;CD34、VEGFR-3双阳性率为:83.77% ± 0.42%,符合相关文献关于LEPCs的报道。结论:利用细胞因子诱导及贴壁法可获取较高纯度的LEPCs。
Abstract: Objective: To isolate and identify lymphatic endothelial progenitor cells (LEPCs) from bone marrow cells of C57BL/6 mice by cytokine induction and adhesion. Methods: The adherent cells of mouse bone marrow were obtained by adherent technique for 24 hours. After they proliferated and fused to 80%~90%, the adherent cells were digested with Tryple Express enzyme for 1 minute, the di-gested cells were removed, and the remaining cells continued to be cultured. When they were fused to 80%~90% again, they were passaged at 1:2, and the surface specific markers of the third gener-ation cells were detected by flow cytometry. The experiment of lymphatic differentiation was car-ried out and the cells were identified. Results: The LEPCs we obtained can form a typical microtu-bule-like structure after induction in vitro, and can form a typical “pebble”-like cell morphology af-ter many passages, and its surface specific markers were: CD34, CD113 double positive rate: 87.17% ± 1.77%, CD113, VEGFR-3 double positive rate: 85.17% ± 1.65%. The double positive rate of CD34 and VEGFR-3 was 83.77% ± 0.42%, which was consistent with the reports about LEPCs in related literature. Conclusion: High purity LEPCs can be obtained by cytokine induction and adhesion.
文章引用:贺强, 黄桂林, 侯吉学. 细胞因子诱导及贴壁法提取淋巴内皮祖细胞[J]. 临床医学进展, 2022, 12(6): 5304-5311. https://doi.org/10.12677/ACM.2022.126769

1. 引言

长期以来,发生于乳腺癌术后的上肢淋巴水肿怎样进行治疗,一直是个医学热点研究问题,也是一个世界性难题,在乳腺癌腋窝淋巴结清扫后,上肢淋巴水肿发生率高达30% [1]。乳腺癌术后淋巴水肿的不良后果早已众所周知,手臂淋巴水肿及其相关症状,如疼痛、沉重、紧绷和活动范围缩小,会妨碍日常功能,并对粗大和精细运动技能产生不利影响,对工作、家庭和个人护理功能以及娱乐和社交关系产生负面影响 [2]。肿胀且有时毁容的肢体的出现会不断提醒人们注意乳腺癌,这可能会导致受影响女性的焦虑、抑郁和情绪困扰 [3]。目前为止乳腺癌术后淋巴水肿治疗主要包括:保守治疗和手术治疗 [4]。随着对淋巴水肿的病因、发病机制和淋巴管新生机制的深入研究,对淋巴水肿类疾病的治疗不再局限于以往的保守治疗及手术治疗。促进治疗性淋巴管生成的一个很有希望的策略是使用基于细胞的疗法 [5]。

体内已有多种不同类型的细胞被用来促进血管及淋巴管网络系统重建,包括间充质干细胞、内皮细胞(ECs)和内皮祖细胞(EPC) [6] - [12]。研究发现内皮祖细胞包含两个亚群,一个涉及血管系统,另一个具有淋巴表型 [13] [14]。这些淋巴管内皮祖细胞表达淋巴管特异性标志物,并能分化为成熟的淋巴管内皮细胞 [13] - [19]。

目前提取LEPCs常用的方法包括:密度梯度离心法、免疫磁珠分离法、流式细胞术分选法等 [18] [19] [20] [21],但上述的分选方法,因其存在操作繁琐、技术难度高、花费大等缺点,并且长时间的抗体孵育、长时间高速离心以及低温操作等易造成细胞损伤,影响细胞活性,从而限制了其应用。所以寻找一种经济、可操作性强的提取LEPCs的方法变得极为重要,我们实验组前期已使用差时贴壁法获取纯度较高的MSCs和EPCs [22],同理推断使用贴壁法及细胞因子刺激有可能获取较高纯度LEPCs。

2. 材料与方法

2.1. 材料

健康清洁型4~6周龄C57BL/6小鼠,雌雄不限,购买于斯贝福(北京)生物技术有限公司,动物合格证号:SCXK (京) 2019-0010。饲养环境要求:光照良好、温度22℃,通风和湿度适宜的清洁级动物房,可自由摄食饮水。荧光倒置相差显微镜及图像采集系统(Leica,德国),流式细胞仪(BD,美国)。胎牛血清FBS (Gilbco,美国),LG-DMEM培养基(Gilbco,美国),PBS (Hy-Clone,美国),EGM-2MV培养基(Lonza,瑞士),rh-VEGF-C (PeproTech,美国),青霉素、链霉素(Solarbio,中国),胰蛋白酶消化液(0.25%)不含EDTA和酚红(Solarbio,中国),Tryple Express (Gilbco,美国),明胶溶液(BD,美国),抗小鼠FITC-VEGFR-3、PE-CD133、PE-cy7-CD34 (eBioscience,美国),细胞培养皿、培养板、培养瓶(Coning,美国),15 ml、50 ml离心管(Coning,美国)。

2.2. 方法

2.2.1. LEPCs的提取方法

1) 将1只适龄体重适中的C57BL/6小鼠脱颈处死,75%酒精溶液浸泡消毒5分钟;

2) 将小鼠置于超净台内,无菌剪刀剪下小鼠后肢,充分游离清除小鼠股骨、胫骨表面的软组织,并将股骨、胫骨浸泡于PBS溶液中;

3) 将游离下的股骨、胫骨转移至另一超净台内,使用含1%青、链霉素的PBS溶液反复冲洗骨骼表面,去除骨骼两端,以含10% FBS的LG-DMEM培养基(称为MSCs完全培养基)将骨髓组织完全冲出;

4) 反复吹打,制备成单细胞悬液,并转移至底面积为25 cm2的培养瓶(T25培养瓶)内,放入温度为37℃、CO2饱和度5%的培养箱内培养;

5) 培养24 h后,提取未贴壁细胞,以离心半径140 mm、1500 r/min,离心5分钟,使用新鲜LEPCs培养基(即将EGM-2MV中的Rh-VEGF更换为Rh-VEGF-C,浓度为50 ng/ml)将沉降细胞于振荡器上混匀为单细胞悬液,加入预先明胶包被的T25培养瓶内,摇匀使其充分平铺,放入培养箱内培养;

6) 72小时后换液一次,待其增殖至覆盖培养面积80%~90%时,使用Tryple Express酶消化1分钟,使用LEPCs培养基按胰酶:培养基 = 1:3的比例进行终止消化,轻柔晃动培养瓶,完全培养基终止,吸除上清液,加入新鲜LEPCs培养基,继续培养;

7) 待原代LEPCs增殖至覆盖培养面积80%~90%时,PBS缓冲液冲洗细胞2次,使用胰酶消化4分钟,LEPCs培养基按胰酶:培养基 = 1:3的浓度进行终止消化,终止后使用移液器冲洗培养瓶底面,再使用细胞刮轻柔地刮下残留细胞,离心、重悬后,按1:2传代于包被有明胶的T25培养瓶内,继续培养,待第三代细胞增殖至80%~90%融合时进行下一步检验和实验。

2.2.2. LEPCs的表面标记物检测

1) 取对数生长期的第三代LEPCs,待其增殖至覆盖培养面积80%~90%时,胰蛋白酶消化液(0.25%) 不含EDTA和酚红消化细胞4分钟,按胰酶:培养基 = 1:3的比例进行终止消化,轻柔震荡培养瓶,终止后使用移液器冲洗培养瓶底面,再使用细胞刮轻柔地刮下残留细胞,抽取消化的细胞以离心半径140 mm、1500 r/min,离心5分钟;

2) 去除上清液,PBS重复上述离心过程,清洗细胞2遍,使用PBS溶液制备单细胞溶液,细胞计数,调整细胞密度为1 × 106个/ mL;

3) 分装至1 ml EP管内,每管100 μL;

4) 将LEPCs相关荧光抗体:抗小鼠FITC-VEGFR-3、PE-CD133、PE-cy7-CD34,按使用说明书剂量分别加入一个装有细胞的EP管内,制成单荧光染色管;

5) 再将上述三个荧光抗体同时加入一个装有细胞的EP管内,制成三荧光染色染管;

6) 未染色管为对照管;

7) 充分混匀后,4℃冰箱内避光摇床低速摇晃过夜,PBS洗除未标记上的抗体,使用500 μL PB重悬各组EP管内细胞;

8) 上机检测表面标记物表达情况。

2.2.3. LEPCs 的功能鉴定

1) 在96孔板内铺50 μL基质胶,待其热凝固后,取对数生长期的第三代LEPCs,待其增殖至覆盖培养面积80%~90%时,去除培养基,PBS液冲洗,胰蛋白酶消化液(0.25%)不含EDTA和酚红消化细胞4分钟,按胰酶:培养基 = 1:3的比例进行终止消化,轻柔震荡培养瓶,终止后使用移液器冲洗培养瓶底面,再使用细胞刮轻柔地刮下残留细胞,抽取消化的细胞以离心半径140 mm、1500 r/min,离心5分钟;

2) 去除上清液,使用PBS液清洗细胞2次;

3) EGM-2MV培养基内加入100 ng/ml Rh-VEGF-C (简称为成管诱导培养基),使用成管诱导培养基将LEPCs制成单细胞悬液;

4) 按1 × 104个/孔细胞密度接种于基质胶上,轻柔拍击培养板,使细胞均匀接种;

5) 显微镜下观察成管情况,并拍照。

2.3. 统计学分析

使用SPSS 26.0统计学软件进行数据分析,LEPCs表面标记物所占百分比为计量资料,计量资料以均数 ± 标准差( x ¯ ± s )表示,实验结果重复3次。

3. 结果

3.1. LEPCs细胞形态结果

原代LEPCs细胞形态多样,可表现为长梭形及多边形,形态不均一,出现中央为圆形细胞群,周边有长梭形细胞,6~7 d细胞可覆盖80%~90%培养皿底面积,多次传代后细胞逐渐分化为淋巴内皮细胞,典型表现为“铺路石状”。见图1

(a) (b)

Figure 1. Morphological changes of LEPCs observed under microscope: (a) On the 9th day of primary culture, LEPCs was fusiform and polygonal, with uneven morphology and cell colonies; (b) The fourth generation LEPCs differentiated into “paving stone”-like changes

图1. 显微镜下观察LEPCs的形态变化:(a) 原代第9天LEPCs形态为长梭形及多边形,形态不均一,可见细胞集落;(b) 第4代LEPCs分化为“铺路石”样改变

3.2. 流式细胞术检测LEPCs细胞的表面标记物

LEPCs均高表达CD34、CD133和VEGFR-3,VEGFR-3,CD133双阳率(85.17% ± 1.65%);VEGFR-3,CD34双阳率(83.77% ± 0.42%);CD133,CD34双阳率(87.17% ± 1.77%),符合LEPCs特性。见图2

Figure 2. Logistics identification of LEPCs surface markers

图2. LEPCs表面标记物流式鉴定

3.3. LEPCs的功能鉴定结果

第三代LEPCs在特定培养基诱导下于基质胶表面可形成典型管腔样结构:2~4小时后细胞逐渐变扁并拉长,6~8小时细胞开始聚集,互相相接,形成典型管腔样结构,10~12小时左右管腔最为典型,24小时左右管腔结构消失,细胞聚成团状。见图3

Figure 3. Differentiation of LEPCs into tubes

图3. LEPCs的成管分化鉴定

4. 讨论

2003年Salven P等人第一次分离出LEPCs [23],Igarashi Y等发现LEPCs经过VEGF-C诱导后可表达淋巴管标志物Prox-1和LYVE-1 [24]。生理情况下,外周血中的EPCs数量非常少,仅占0.01% [25] [26] [27],试验证实骨髓中的MSCs和EPCs含量更加充足且增殖力更强 [28],我们前期实验证明,MSCs与LEPCs、VEPCs共存于“干细胞巢”。因此我们提出猜想:LEPCs与EPCs的生物特性有相似之处,故本研究采用小鼠骨髓细胞进行淋巴内皮祖细胞提取。

多项研究表明VEGF-C与VEGFR-3结合后发生磷酸化 [23] [28] [29] [30]。结合王海杰教授相关文献报道 [18] [19] [20] [21],我们了解到VEGF-C可刺激LEPCs的增殖及分化,故本实验调整EGM-2MV培养基内rh-VEGF为rh-VEGF-C以刺激24小时后贴壁细胞,促进LEPCs增殖。另据实验观察,MSCs对Tryple Express酶敏感,而LEPCs对Tryple Express酶敏感性较差,故对骨髓贴壁细胞使用Tryple Express酶消化,去除部分混杂的MSCs,以进一步提纯所得LEPCs。

目前提取LEPCs常用的方法包括:密度梯度离心法、免疫磁珠分离法、流式细胞术分选法等 [18] [19] [20] [21],但上述的分选方法,因其存在操作繁琐、技术难度高、花费大等缺点,并且长时间的抗体孵育、长时间高速离心以及低温操作等易造成细胞损伤,影响细胞活性,从而限制了其应用。所以寻找一种经济、可操作性强的提取LEPCs的方法变得极为重要,我们实验组前期已使用差时贴壁法获取纯度较高的MSCs和EPCs [22],同理推断使用贴壁法及细胞因子刺激有可能获取较高纯度LEPCs。

王海杰课题组研究表明VEPCs与CD34+、CD133+、VEGFR-3+的EPCs细胞在表面标志物、分化趋向和生物功能反面不同,将CD34+、CD133+、VEGFR-3+细胞命名为淋巴内皮祖细胞(lymphatic endothelial progenitor cells, LEPCs),并证明VEGF-C/VEGFR-3通路诱导LEPCs向淋巴管内皮细胞分化和淋巴管生成 [18] [24]。因此本实验采用检测细胞表面标记物CD34、CD133、VEGFR-3,另于基质胶表面行成管分化实验,双重检验,以验证所得细胞是否是LEPCs。

本实验所提原代LEPCs细胞形态多样,可表现为长梭形及多边形,形态不均一,出现中央为圆形细胞群,周边有长梭形细胞,6~7 d细胞可覆盖80%~90%培养皿底面积,多次传代后细胞逐渐分化为淋巴内皮细胞,典型表现为“铺路石状”。根据相关文献描述,从细胞形态及增殖分化特点验证所得细胞为LEPCs。

本实验使用贴壁法及VEGF-C刺激获取LPECs,LEPCs使用流式细胞术检测其表面标记物VEGFR-3,CD133双阳率(85.17% ± 1.65%);VEGFR-3,CD34双阳率(83.77% ± 0.42%);CD133,CD34双阳率(87.17% ± 1.77%);经LPECs成管诱导培养基诱导培养,2~4小时后细胞逐渐变扁并拉长,6~8小时细胞开始聚集,互相连接,形成典型微管管腔样结构,10~12小时时管腔最为典型,24小时左右管腔结构消失,细胞聚集成团块状,以上流式细胞术检测结果及分化实验,明确可得到纯度较高的LEPCs。

本实验采用贴壁法及细胞因子诱导获取LEPCs,相较于较为多见的流式细胞仪分选等方法,本研究获取细胞的方式及提取过程相对简单,可操作性强,经费消耗较低,对细胞增殖能力影响较小,但所得细胞纯度无法与分选法相媲美,存在一定的局限性,仍有改进空间。

5. 结论

利用细胞因子诱导及贴壁法可获取较高纯度的LEPCs,且可于体外形成微管样结构,结合我们实验组后续小鼠淋巴水肿模型体内实验,以期为基于细胞水平的淋巴水肿治疗提供部分理论依据。

基金项目

骨髓间充质干细胞与淋巴内皮祖细胞相互作用的实验研究(No. ZZZC201830A)。

NOTES

*通讯作者。

参考文献

[1] Coriddi, M., Kim, L., Mcgrath, L., Encarnacion, E., Brereton, N., Shen, Y., et al. (2022) Accuracy, Sensitivity, and Specificity of the LLIS and ULL27 in Detecting Breast Cancer-Related Lymphedema. Annals of Surgical Oncology, 29, 438-445.
https://doi.org/10.1245/s10434-021-10469-1
[2] Hayes, S., Johansson, K., Stout, N., Prosnitz, R., Armer, J.M., Gabram, S., et al. (2012) Upper-Body Morbidity after Breast Cancer: Incidence and Evidence for Evalua-tion, Prevention, and Management within a Prospective Surveillance Model of Care. Cancer, 118, 2237-2249.
https://doi.org/10.1002/cncr.27467
[3] Maunsell, E., Brisson, J. and Deschênes, L. (1993) Arm Problems and Psychological Distress after Surgery for Breast Cancer. Canadian Journal of Surgery, 36, 315-320.
[4] Gillespie, T., Sayegh, H., Brunelle, C., Daniell, K.M. and Taghian, A.G. (2018) Breast Cancer-Related Lymphedema: Risk Factors, Precautionary Measures, and Treatments. Gland Surgery, 7, 379-403.
https://doi.org/10.21037/gs.2017.11.04
[5] Campbell, K., Curtis, M., Massey, J., Wysoczynski, K., Hadley, D.J., George, S.C., et al. (2021) Isolating and Characterizing Lymphatic Endothelial Progenitor Cells for Potential Therapeutic Lymphangiogenic Applications. Acta Biomaterialia, 135, 191-202.
https://doi.org/10.1016/j.actbio.2021.08.005
[6] Levenberg, S., Huang, N., Lavik, E., Rogers, A.B., Itskovitz-Eldor, J. and Langer, R. (2003) Differentiation of Human Embryonic Stem Cells on Three-Dimensional Poly-mer Scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 100, 12741-12746.
https://doi.org/10.1073/pnas.1735463100
[7] Dvir, T., Kedem, A., Ruvinov, E., Levy, O., Freeman, I., Landa, N., et al. (2009) Prevascularization of Cardiac Patch on the Omentum Improves Its Therapeutic Outcome. Proceedings of the National Academy of Sciences of the United States of America, 106, 14990-14995.
https://doi.org/10.1073/pnas.0812242106
[8] Nör, J., Peters, M., Christensen, J., Sutorik, M.M., Linn, S., Khan, M.K., et al. (2001) Engineering and Characterization of Functional Human Microvessels in Immunodeficient Mice. La-boratory Investigation: A Journal of Technical Methods and Pathology, 81, 453-463.
https://doi.org/10.1038/labinvest.3780253
[9] Peters, M., Polverini, P. and Mooney, D. (2002) Engineering Vas-cular Networks in Porous Polymer Matrices. Journal of Biomedical Materials Research, 60, 668-678.
https://doi.org/10.1002/jbm.10134
[10] Silva, E., Eseonu, C. and Mooney, D. (2014) Endothelial Cells Expressing Low Levels of CD143 (ACE) Exhibit Enhanced Sprouting and Potency in Relieving Tissue Ischemia. Angiogenesis, 17, 617-630.
https://doi.org/10.1007/s10456-014-9414-9
[11] Silva, E., Kim, E., Kong, H. and Mooney, D.J. (2008) Materi-al-Based Deployment Enhances Efficacy of Endothelial Progenitor Cells. Proceedings of the National Academy of Sci-ences of the United States of America, 105, 14347-14352.
https://doi.org/10.1073/pnas.0803873105
[12] Torres, A., Bidarra, S., Pinto, M., Aguiar, P.C., Silva, E.A. and Barrias, C.C. (2018) Guiding Morphogenesis in Cell-instructive Microgels for Therapeutic Angiogenesis. Biomaterials, 154, 34-47.
https://doi.org/10.1016/j.biomaterials.2017.10.051
[13] Dimaio, T., Wentz, B. and Lagunoff, M. (2016) Isolation and Characterization of Circulating Lymphatic Endothelial Colony Forming Cells. Experimental Cell Research, 340, 159-169.
https://doi.org/10.1016/j.yexcr.2015.11.015
[14] Kwon, H., Kwon, J., Song, J. and Maeng, Y.-S. (2021) Decreased Lymphangiogenic Activities and Genes Expression of Cord Blood Lymphatic Endothelial Progenitor Cells (VEGFR3/Pod/CD11b Cells) in Patient With Preeclampsia. International Journal of Molecular Sciences, 22, Article No. 4237.
https://doi.org/10.3390/ijms22084237
[15] Lee, J., Park, C., Cho, Y., Lee, E., Kim, H., Kim, P., et al. (2010) Podoplanin-Expressing Cells Derived from Bone Marrow Play a Crucial Role in Postnatal Lymphatic Neovascularization. Circulation, 122, 1413-1425.
https://doi.org/10.1161/CIRCULATIONAHA.110.941468
[16] Nguyen, V., Fürhapter, C., Obexer, P., Stössel, H., Romani, N. and Sepp, N. (2009) Endothelial Cells from Cord Blood CD133+CD34+ Progenitors Share Phenotypic, Functional and Gene Expression Profile Similarities With Lymphatics. Journal of Cellular and Molecular Medicine, 13, 522-534.
https://doi.org/10.1111/j.1582-4934.2008.00340.x
[17] Salven, P., Mustjoki, S., Alitalo, R., Alitalo, K. and Rafii, S. (2003) VEGFR-3 and CD133 Identify a Population of CD34+ Lymphatic/vascular Endothelial Precursor Cells. Blood, 101, 168-172.
https://doi.org/10.1182/blood-2002-03-0755
[18] Tan, Y., Wang, H., Zhang, M., Quan, Z., Li, T. and He, Q.Z. (2014) CD34+ VEGFR-3+ Progenitor Cells Have a Potential to Differentiate Towards Lymphatic Endothelial Cells. Journal of Cellular and Molecular Medicine, 18, 422-433.
https://doi.org/10.1111/jcmm.12233
[19] Zhang, H., Wang, Y., Tan, Y., Wang, H.J., Tao, P. and Zhou, P. (2019) Enhancement of Cardiac Lymphangiogenesis by Transplantation of CD34VEGFR-3 Endothelial Progenitor Cells and Sustained Release of VEGF-C. Basic Research in Cardiology, 114, Article No. 43.
https://doi.org/10.1007/s00395-019-0752-z
[20] 刘锐, 谭玉珍, 王海杰, 张美华. 犬外周血淋巴管内皮祖细胞的分选及其向内皮细胞的诱导分化研究[J]. 中华血液学杂志, 2007, 28(3): 169-173.
[21] 张美华, 王海杰, 谭玉珍, 刘锐. 人脐带血淋巴管内皮祖细胞的分化及其生物学特征[J]. 解剖学报, 2006, 37(4): 473-478.
[22] 冯文磊, 张猛, 印双红, 徐芳洁, 王艳杰, 陈雪玲, 等. 改良差时贴壁法分离培养鉴定小鼠骨髓间充质干细胞和内皮前体细胞[J]. 解剖学报, 2015, 46(2): 282-288.
[23] Baldwin, M., Catimel, B., Nice, E., Hall, N.E., Stenvers, K.L., Kark-kainen, M.J., et al. (2001) The Specificity of Receptor Binding by Vascular Endothelial Growth Factor-d Is Different in Mouse and Man. The Journal of Biological Chemistry, 276, 19166-19171.
https://doi.org/10.1074/jbc.M100097200
[24] Igarashi, Y., Chosa, N., Sawada, S., Kondo, H., Yaegashi, T. and Ishisaki, A. (2016) VEGF-C and TGF-β Reciprocally Regulate Mesenchymal Stem Cell Commitment to Differentiation into Lymphatic Endothelial or Osteoblastic Phenotypes. International Journal of Molecular Medicine, 37, 1005-1013.
https://doi.org/10.3892/ijmm.2016.2502
[25] Rafii, S. and Lyden, D. (2003) Therapeutic Stem and Progenitor Cell Transplantation for Organ Vascularization and Regeneration. Nature Medicine, 9, 702-712.
https://doi.org/10.1038/nm0603-702
[26] Peng, H., Wright, V., Usas, A., Gearhart, B., Shen, H.C., Cummins, J., et al. (2002) Synergistic Enhancement of Bone Formation and Healing by Stem Cell-Expressed VEGF and Bone Mor-phogenetic Protein-4. The Journal of Clinical Investigation, 110, 751-759.
https://doi.org/10.1172/JCI15153
[27] Zhang, Z., Zhang, L., Jiang, Q. and Chopp, M. (2002) Bone Mar-row-Derived Endothelial Progenitor Cells Participate in Cerebral Neovascularization after Focal Cerebral Ischemia in the Adult Mouse. Circulation Research, 90, 284-288.
https://doi.org/10.1161/hh0302.104460.
[28] Skobe, M., Hawighorst, T., Jackson, D., Prevo, R., Janes, L., Velas-co, P., et al. (2001) Induction of Tumor Lymphangiogenesis by VEGF-C Promotes Breast Cancer Metastasis. Nature Medicine, 7, 192-198.
https://doi.org/10.1038/84643
[29] Fournier, E., Dubreuil, P., Birnbaum, D. and Borg, J.P. (1995) Mutation at Ty-rosine Residue 1337 Abrogates Ligand-dependent Transforming Capacity of the FLT4 Receptor. Oncogene, 11, 921-931.
[30] Mäkinen, T., Adams, R., Bailey, J., Lu, Q., Ziemiecki, A., Alitalo, K., et al. (2005) PDZ Interaction Site in EphrinB2 Is Required for the Remodeling of Lymphatic Vasculature. Genes & Development, 19, 397-410.
https://doi.org/10.1101/gad.330105