内质网应激反应对肿瘤发生和发展的影响
Effects of Endoplasmic Reticulum Stress Response on Tumorigenesis and Progression
DOI: 10.12677/ACM.2022.126775, PDF, HTML, XML, 下载: 475  浏览: 695 
作者: 张冉浠:贵州医科大学,贵州 贵阳;秦 娟:贵州医科大学,贵州 贵阳;贵阳市妇幼保健院,贵州 贵阳
关键词: 内质网应激反应GRP78恶性肿瘤宫颈癌顺铂化疗敏感性钙离子Endoplasmic Reticulum Stress Response GRP78 Malignant Tumors Cervical Cancer Cisplatin Chemotherapy Sensitivity Calcium Ions
摘要: 内质网作为一个重要的细胞器,与蛋白折叠、钙离子稳态等多种细胞功能有关,缺氧、营养缺乏、化疗药物等多种细胞内、外刺激均可引起内质网应激反应,研究指出内质网应激反应与多种恶性肿瘤发生、发展、预后及化疗敏感性等密切相关,故本文拟关于内质网应激反应对肿瘤发生、发展,尤其是对宫颈癌化疗敏感性影响进行探讨。
Abstract: As an important organelle, endoplasmic reticulum is related to protein folding, calcium ion homeo-stasis and other cellular functions, and various intra- and extra-cellular stimuli such as hypoxia, nutritional deficiency and chemotherapeutic drugs can cause endoplasmic reticulum stress re-sponse. The research reported that ER stress is closely related to the occurrence, development, prognosis and chemosensitivity of many kinds of malignant tumors. Therefore, this paper aims to investigate the effect of endoplasmic reticulum stress on tumorigenesis, development, and chemo-therapeutic sensitivity of cervical cancer in particular.
文章引用:张冉浠, 秦娟. 内质网应激反应对肿瘤发生和发展的影响[J]. 临床医学进展, 2022, 12(6): 5350-5355. https://doi.org/10.12677/ACM.2022.126775

1. 内质网应激反应

内质网是一个重要的维持细胞稳态的调节器,与蛋白合成、转录、细胞成熟和分泌、膜蛋白折叠、脂类合成、Ca2+稳态等多种细胞功能相关 [1] [2],缺氧、营养缺乏、化疗药物等多种内源性或外源性刺激均可引起内质网应激反应(Endoplasmic reticulum stress, ERS)。在无应激情况下,肌醇需要酶1α (Inositol-requiring enzyme 1α, IRE1α)、RNA 样内质网激酶(Protein kinase R-like endoplamic reticulum kinase, PERK)及激活转录因子6 (Recombinant activating transcription factor 6, ATF6)与葡萄糖相关蛋白78 (Glucose-regulated protein 78, GRP78)相连,当ERS等引起未折叠或错误蛋白累积时,GRP78将从IRE1,PERK和ATF6上释放,优先连接未折叠多肽链,激活未折叠蛋白反应(Unfold protein response, UPR),以去除内质网中错误折叠或未折叠蛋白,进而维持内质网稳态,但当内质网受到较强压力或应激持续时间过长,将致细胞反应不足进而诱发细胞凋亡 [3]。

ERS主要由蛋白激酶、PERK、ATF6和IRE1α三种定位于内质网的传感器蛋白转导,这三个传感器下游的整合信号可以通过激活C/EBP同源蛋白(CCAAT enhancer binding protein, CHOP)来诱导促凋亡信号,CHOP可以下调抗凋亡因子B细胞淋巴瘤-2蛋白(B-cell lymphoma-2, Bcl-2)、上调促凋亡因子Bcl-2相关X蛋白(Bax),引起细胞凋亡。同时内质网和线粒体接触部位的三磷酸肌醇受体(inositol-1,4,5-triporate receptor, IP3R)和兰尼定受体(ryanodine receptor, RyR)释放Ca2+,促进线粒体细胞色素c的释放,线粒体细胞色素c与凋亡蛋白酶激活因子-1 (APAF-1)、三磷酸腺苷(ATP)和前天冬氨酸蛋白酶-9 (Proaspase-9)相互作用形成凋亡复合体,进而激活 caspase 通路,引起细胞凋亡 [4] [5]。

2. 内质网应激相关蛋白——GRP78

葡萄糖调节蛋白78 (glucose regulated protein 78, GRP78),也叫免疫球蛋白重链结合蛋白(immunoglobulin heavy chain binding protein, Bip),在蛋白正确折叠、加工、蛋白酶体介导的细胞裂解、攻击并靶向错误折叠蛋白等细胞活动中发挥重要作用。Hass和Wabl在1983年首次定义该蛋白,由于该蛋白定位于内质网,且与非分泌Ig蛋白重链相连,故命名为连接免疫球蛋白。1987年,Lee等在高增殖转化细胞中发现p78表达,由于其消耗葡萄糖酶体,故称该蛋白为GRP78,也称为热休克蛋白50 [6];进一步研究发现Bip和GRP78为同种蛋白,且与未折叠或不完全Ig中间体相连,并将GRP78作为第一个ER伴侣蛋白,GRP78从此成为内质网应激反应的标志物、UPR的基本调节器 [7]。

3. 内质网应激反应与恶性肿瘤

研究指出ERS、GRP78与多种恶性肿瘤密切相关。研究指出实体瘤分泌GRP78与激活肿瘤细胞增殖、血管生成、骨髓中胚层干细胞的分化和肿瘤相关巨噬细胞的极化等各种细胞过程相关 [8]。Thakur等 [9] 指出与正常健康组织相比,胰腺导管腺癌组织中GRP78的表达水平较胰腺炎、健康的胰腺组织明显升高;Xu等 [10] 通过基因富集集分析(Gesa)发现,与正常肺、胸膜组织相比,内质网应激相关基因在晚期恶性胸膜间皮瘤患者的肿瘤组织中显著富集;Lee等 [11] 发现乳腺癌标本中GRP78的高表达预示患者无复发生存期较短;GRP78通过影响蛋白激酶B和p38有丝分裂原活化蛋白激酶(p38 Mitogen-Activated Protein Kinase, MAPK)通路导致人直肠癌发生和癌变 [12]。Luo [13] 等通过检测105位宫颈癌患者肿瘤组织中GRP78水平,发现GRP78高表达与低生存率相关,且发现动物实验中GRP78表达水平增高具有较高的细胞增值率和低凋亡率。不难看出ERS与多种肿瘤发生、发展及预后相关。

4. 内质网应激反应与细胞内游离钙离子间关系

细胞内Ca2+包括内质网Ca2+、线粒体Ca2+、内质网Ca2+等。内质网是Ca2+的主要储存部位,任何干扰钙离子蓄积的因素均可导致内质网应激的发生。细胞内Ca2+浓度受三个跨膜通道调节:负责胞浆Ca2+-ATP酶转运的肌浆钙泵、在骨骼肌细胞中起重要作用的兰尼定受体和三磷酸肌醇受体,以上三个通道均负责Ca2+流出 [14]。细胞内Ca2+是重要的第二信使,在调控基因表达、蛋白质合成和凋亡等多种细胞过程的信号转导通路中起关键作用。细胞内Ca2+稳态对于正常细胞和癌细胞的正常功能至关重要,细胞内Ca2+水平升高诱导或调节凋亡反应。线粒体Ca2+摄取对调节有氧代谢、ATP合成和细胞存活至关重要,线粒体Ca2+超载可导致线粒体肿胀和Δψ_m降低,进而诱导线粒体凋亡因子(如细胞色素c)释放到胞浆中,从而激活线粒体凋亡途径 [15]。

内质网应激与细胞Ca2+稳态:任何干扰Ca2+稳态的因素均可通过引起内质网应激反应,进而诱导UPR反应,GRP78/Bip mRNA和蛋白水平受Ca2+浓度的调节,内质网应激诱导的自噬依赖于细胞内Ca2+稳态 [16],同时GRP78作为一个内质网Ca2+连接蛋白,可以抑制内质网钙离子外流,进而促进线粒体凋亡途径 [17] [18],胞浆或细胞器中Ca2+的耗竭或超载可能导致应激和Ca2+细胞毒性,导致细胞死亡 [19]。

5. 内质网应激反应与顺铂耐药

顺铂作为一种细胞周期非特异性药物,已在临床中运用30多年,可通过与DNA构成嘌呤间产生交联作用,影响DNA修复机制,引起DNA损伤,从而引起肿瘤细胞凋亡 [20]。顺铂在临床中广泛用于不同类型的肿瘤,包括:软组织、骨、肌肉等肉瘤,氧化应激是顺铂细胞毒性的主要机制之一;顺铂影响Ca2+稳态起始阶段(例如脂质过氧化、酶抑制),这些活动相关分子机制将进一步引起线粒体损伤,抑制线粒体功能,消耗ATP及其辅因子 [21]。

目前,化疗耐药机制主要包括药物摄取的减少、药物靶点的改变、药物解毒机制的诱导、药物所致损伤的修复以及对药物所致细胞死亡的不敏感等。已知的顺铂耐药的分子机制包括DNA修复增加、药物细胞积聚改变、药物胞质失活增加等 [22]。其内在分子机制复杂,通常与以下特征有关:1) 铂化合物在细胞内的积累减少;2) DNA损伤修复增加;3) 凋亡失活;4) 上皮–间充质转化激活;5) DNA甲基化改变、microrna图谱、癌症干细胞特征和应激反应伴侣蛋白的表达 [23]。研究指出内质网应激反应与顺铂耐药也密切相关。GRP78对化疗耐受的影响与肿瘤具体类型相关。内质网应激反应相关蛋白GRP78通过调节PI3K/Akt/mTOR、蛋白激酶通路(c-Jun N-terminal kinase, JNK)以及核因子激活的B细胞的k-轻链增强通路、PERK-eIF2α通路、ATF4通路等信号通路诱导细胞自噬和细胞凋亡,进而改变卵巢癌、视网膜母细胞瘤、人肾母细胞瘤、肝细胞癌等肿瘤细胞对抗肿瘤药物的反应 [24] [25] [26] [27] [28];锌指蛋白263 (ZNF263)作为是ERS特异性转录因子之一,与ERS相关自噬相关,导致肝癌顺铂耐药 [29];研究认为GRP78表达水平上调可以增加SPCA1肺癌细胞、EC9706食管癌细胞对顺铂化疗的敏感性 [30] [31]。Belfi 等 [32] 也认为上调GRP78表达水平可以增加直肠癌细胞株(HCT116、SW480、VACO-8)对包括顺铂在内等通过损伤细胞DNA发挥作用的肿瘤化疗药物的敏感性。故内质网应激反应与顺铂耐药明显相关。

6. 内质网应激与宫颈癌

宫颈癌是女性生殖系统常见的恶性肿瘤,为女性第四大常见肿瘤,2018年新发病例约为570,000例,占所有女性肿瘤的6.6%,且约90%宫颈癌死亡发生在中低收入国家 [33]。宫颈癌的发生、进展与高危型 HPV持续感染有关,中国大陆女性中常见HPV感染类型包括HPV16、18、52、33等,不同地区型别分布和感染率不同 [34]。研究发现宫颈癌组织中,GRP78在高危型人乳头状瘤病毒(Human papillomavirus, HPV)感染阳性组织中表达率显著高于低危型HPV及HPV阴性组织 [35]。也有研究指出HPV16、18宫颈癌患者ERS相关蛋白表达水平(GRP78等)明显高于HPV-6和HPV阴性宫颈癌患者 [36]。徐冶等 [37] 发现内质网应激诱导剂能增加内质网应激水平,可以显著增加顺铂对HeLa细胞的杀伤,且与顺铂诱导HeLa细胞自噬途径有关。Luo等 [38] 认为GRP78或是可代表宫颈癌的关键因子,且GRP78沉默或可增加顺铂耐药,GRP78或可成为宫颈癌治疗的靶点,且推测GRP78高水平表达与宫颈癌预后较差、预后类型较差相关。

但目前关于内质网应激与宫颈癌化疗敏感性的研究尚且不足,关于内质网应激与不同亚型宫颈癌细胞化疗敏感性的相关性研究更为缺乏,关于内在机制的研究基本处于空白状态;但随着宫颈癌发病率增高,且呈年轻化趋势,我们需不断探索宫颈癌化疗耐药的机制,寻找新的治疗方向和治疗靶点,有效改善宫颈癌患者预后,为全球消灭宫颈癌计划作出贡献。

参考文献

[1] Braakman, I. and Bulleid, N.J. (2011) Protein Folding and Modification in the Mammalian Endoplasmic Reticulum. An-nual Review of Biochemistry, 80, 71-99.
https://doi.org/10.1146/annurev-biochem-062209-093836
[2] Arbabian, A., Brouland, J.P. and Gelebart, P. (2011) Endoplasmic Reticulum Calcium Pumps and Cancer. BioFactors, 37, 139-149.
https://doi.org/10.1002/biof.142
[3] Ramirez, M.U., Hernandez, S.R., Soto-Pantoja, D.R. and Cook, K.L. (2020) Endoplasmic Reticulum Stress Pathway, the Unfolded Protein Response, Modulates Immune Function in the Tumor Mi-croenvironment to Impact Tumor Progression and Therapeutic Response. International Journal of Molecular Sciences, 21, 169.
https://doi.org/10.3390/ijms21010169
[4] Fernandez, A., Ord-onez, R. and Reiter, R.J. (2015) Melatnin and En-doplasmic Reticulum Stress: Relation to Autophagy and Apoptosis. Journal of Pineal Research, 59, 292-307.
https://doi.org/10.1111/jpi.12264
[5] Zhang, Y.D., Bai, C.M. and Lu, D. (2015) Endoplasmic Reticulum Stress and Autophagy Participate in Apoptosis Induced by Bortezomib in Cervical Cancer Cells. Biotechnology Letters, 38, 357-365.
https://doi.org/10.1007/s10529-015-1968-0
[6] Goldman, E.H., Chen, L. and Fu, H. (2004) Activation of Apop-tosis Signal-Regulating Kinase 1 by Reactive Oxygen Species through Dephosphorylation at Serine 967 and 14-3-3 Dis-sociation. Journal of Biological Chemistry, 279, 10442-10449.
https://doi.org/10.1074/jbc.M311129200
[7] Tahereh, K.K., Shahrokh, S., Blanca, A. and Laura, S. (2021) En-hancement of Cisplatin Sensitivity in Human Breast Cancer MCF-7 Cell Line through BiP and 14-3-3ζ Co-Knockdown. Oncology Reports, 45, 665-679.
https://doi.org/10.3892/or.2020.7898
[8] Xu, D., Yang, H.T. and Zhang, Y. (2018) Endoplasmic Reticulum Stress Signaling as a Therapeutic Target in Malignant Pleural Mesothelioma. British Journal of Cancer, 119, 65-75.
https://doi.org/10.1038/s41416-018-0145-3
[9] Lee, E., Nichols, P. and Groshen, S. (2011) GRP78 as Potential Predictor for Breast Cancer Response to Adjuvant Taxane Therapy. International Journal of Cancer, 128, 726-731.
https://doi.org/10.1002/ijc.25370
[10] Wang, Y., Wang, J., Zhang, X., Wang, X. and Yang, L. (2018) Endoplasmic Reticulum Chaperone Glucose-Regulated Protein 78 in Gastric Cancer: An Emerging Biomarker. Oncology Letters, 15, 6087-6093.
https://doi.org/10.3892/ol.2018.8114
[11] Dasari, S. and Tchounwou, P.B. (2014) Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. European Journal of Pharmacology, 740, 364-378.
https://doi.org/10.1016/j.ejphar.2014.07.025
[12] Li, W., Wang, W. and Dong, H. (2014) Cisplatin-Induced Se-nescence in Ovarian Cancer Cells Is Mediated by GRP78. Oncology Reports, 31, 2525-2534.
https://doi.org/10.3892/or.2014.3147
[13] Luo, C. and Qiu, J. (2017) miR-181a Inhibits Cervical Cancer Develop-ment via Downregulating GRP78. Oncology Research, 25, 1341-1348.
https://doi.org/10.3727/096504017X14867268787969
[14] Archana, J., Woo, Y.C., Laura, V., Jozsef, M., Sarah, L., Zhang, G., Malini, A. and Shmuel, M. (2019) Anoctamin 8 Tethers Endoplasmic Reticulum and Plasma Membrane for Assembly of Ca2+ Signaling Complexes at the ER/PM Compartment. EMBO Journal, 38, e101452.
https://doi.org/10.15252/embj.2018101452
[15] Kania, E., Pająk, B. and Orzechowski, A. (2015) Calcium Homeo-stasis and ER Stress in Control of Autophagy in Cancer Cells. BioMed Research International, 2015, Article ID: 352794.
https://doi.org/10.1155/2015/352794
[16] Ranganathan, A.C., Zhang, L. and Adam, A.P. (2006) Functional Cou-pling of p38-Induced Up-Regulation of BiP and Activation of RNA-Dependent Protein Kinase-Like Endoplasmic Retic-ulum Kinase to Drug Resistance of Dormant Carcinoma Cells. Cancer Research, 66, 1702-1711.
https://doi.org/10.1158/0008-5472.CAN-05-3092
[17] Fu, Y., Li, J. and Lee, A.S. (2007) GRP78/BiP Inhibits Endoplasmic Reticulum BIK and Protects Human Breast Cancer Cells against Estrogen-Starvation Induced Apoptosis. Cancer Research, 67, 3734-3740.
https://doi.org/10.1158/0008-5472.CAN-06-4594
[18] Chiu, W., Chang, H., Lin, Y., Chang, H., Lin, H., Huang, S., Tang, M. and Shen, M. (2018) Bcl-2 Regulates Store-Operated Ca2+ Entry to Modulate ER Stress-Induced Apoptosis. Cell Death Discovery, 4, 37.
https://doi.org/10.1038/s41420-018-0039-4
[19] Bahar, E., Kim, J.Y. and Yoon, H. (2019) Chemotherapy Re-sistance Explained through Endoplasmic Reticulum Stress-Dependent Signaling. Cancers, 11, 338.
https://doi.org/10.3390/cancers11030338
[20] Amable, L. (2016) Cisplatin Resistance and Opportunities for Preci-sion Medicine. Pharmacological Research, 106, 27-36.
https://doi.org/10.1016/j.phrs.2016.01.001
[21] Zhu, H., Luo, H., Zhang, W., Shen, Z., Hu, X. and Zhu, X. (2016) Molecular Mechanisms of Cisplatin Resistance in Cervical Cancer. Drug Design, Development and Therapy, 10, 1885-1895.
https://doi.org/10.2147/DDDT.S106412
[22] Cultrara, C., Kozuch, S., Ramasundaram, P., Heller, C., Shah, S., Beck, A., Sabatino, D. and Zilberberg, J. (2018) GRP78 Modulates Cell Adhesion Markers in Prostate Cancer and Mul-tiple Myeloma Cell Lines. BMC Cancer, 18, Article No. 1263.
https://doi.org/10.1186/s12885-018-5178-8
[23] Zhou, F., Li, Y. and Wang, J. (2017) Endoplasmic Reticulum Stress Could Induce Autophagy and Apoptosis and Enhance Chemotherapy Sensitivity in Human Esophageal Cancer EC9706 Cells by Mediating PI3K/Akt/mTOR Signaling Pathway. Tumor Biology, 39, 1-13.
https://doi.org/10.1177/1010428317705748
[24] Ahmad, M., Hahn, I. and Chatterjee, S. (2014) GRP78 Up-Regulation Leads to Hypersensitization to Cisplatin in A549 Lung Cancer Cells. Anti-Cancer Research, 34, 3493-3500.
[25] Liang, F., Ren, C.X., Wang, J.S., Wang, S., Yang, L., Han, X., Chen, Y., Tong, G. and Yang, G. (2019) The Crosstalk between STAT3 and p53/RAS Signaling Controls Cancer Cell Metastasis and Cisplatin Resistance via the Slug/MAPK/PI3K/AKT-Mediated Regulation of EMT and Autophagy. Oncogenesis, 8, 59.
https://doi.org/10.1038/s41389-019-0165-8
[26] Tian, J., Liu, R. and Qu, Q.X. (2017) Role of Endoplasmic Retic-ulum Stress on Cisplatin Resistance in Ovarian Carcinoma. Oncology Letters, 13, 1437-1443.
https://doi.org/10.3892/ol.2017.5580
[27] Kong, M., Han, Y., Zhao, Y. and Zhang, H. (2020) miR-512-3p Over-comes Resistance to Cisplatin in Retinoblastoma by Promoting Apoptosis Induced by Endoplasmic Reticulum Stress. Medical Science Monitor, 26, e923817.
https://doi.org/10.12659/MSM.923817
[28] Wang, J., Zhang, N., Qu, H., You, G., Yuan, J., Chen, C., Li, W. and Pan, F. (2016) Inhibitory Effect of STAT3 Gene Combined with CDDP on Growth of Human Wilms Tumour SK-NEP-1 Cells. Bioscience Reports, 36, e00342.
https://doi.org/10.1042/BSR20160072
[29] Cui, J., Liu, J., Fan, L., Zhu, Y., Zhou, B., Wang, Y., Hua, W., Wei, W. and Sun, G. (2020) A Zinc Finger Family Protein, ZNF263, Promotes Hepatocellular Carcinoma Resistance to Apoptosis via Activation of ER Stress-Dependent Autophagy. Translational Oncology, 13, Article ID: 100851.
https://doi.org/10.1016/j.tranon.2020.100851
[30] Zhang, L.C., Wang, J.R. and Zhao, L. (2011) GRP78 Upregula-tion-Induced Increase in Cisplatin Sensitivity of SPCA1 Lung Cancer Cells. Chinese Medical Journal, 124, 3341-3346.
[31] Zhou, F., Li, Y.H. and Wang, J.J. (2017) Endoplasmic Reticulum Stress Could Induce Autophagy and Apoptosis and Enhance Chemotherapy Sensitivity in Human Esophageal Cancer EC9706 Cells by Mediating PI3K/Akt/mTOR Signaling Pathway. Tumor Biology, 39.
https://doi.org/10.1177/1010428317705748
[32] Belfi, C., Chatterjee, S. and Gosky, D. (1999) Increased Sensitivity of Human Colon Cancer Cells to DNA cross-Linking Agents after GRP78 Up-Regulation. Biochemical and Biophysical Research Communications, 257, 361-368.
https://doi.org/10.1006/bbrc.1999.0472
[33] 中华人民共和国国家卫生健康委员会. 宫颈癌诊疗规范(2018年版) [J]. 肿瘤综合治疗电子杂志, 2020, 6(3): 33-43.
[34] 余艳琴, 富诗岚, 徐慧芳, 韦梦娜, 陈琦, 胡尚英, 赵方辉, 乔友林. 中国大陆女性体检人群中人乳头瘤病毒型别感染率及九价疫苗中HPV各型别分布的系统评价[J]. 肿瘤预防与治疗, 2019, 32(2): 103-113.
[35] 刘卿, 汪俊涛. 秦娟, 郭兵. 内质网应激蛋白GRP78在宫颈癌组织中的表达及意义[J]. 贵州医科大学学报, 2017, 42(7): 763-766, 771.
[36] 邵世清, 王社莲, 陈瑞萍, 孙世亚. 内质网应激相关蛋白与宫颈癌细胞系中人乳头瘤病毒感染的研究[J]. 中华医院感染学杂志, 2020, 30(2): 224-228.
[37] 徐冶. 顺铂诱导人宫颈癌细胞死亡中内质网——自噬途径调控作用及机制研究[D]: [博士学位论文]. 长春: 吉林大学, 2012.
[38] Luo, C., Fan, W. and Jiang, Y. (2018) Glucose-Related Protein 78 Expression and Its Effects on Cisplatin-Resistance in Cervical Cancer. Medical Science Monitor, 24, 2197-2220.
https://doi.org/10.12659/MSM.906413