MicroRNA-155与结核分枝杆菌感染的相关研究进展
Research Progress on MicroRNA-155 Associated with Mycobacterium tuberculosis Infection
DOI: 10.12677/ACM.2022.126794, PDF, HTML, XML, 下载: 227  浏览: 422 
作者: 何定海:青海大学研究生院,青海 西宁;崔金霞*:青海大学附属医院呼吸与危重症医学科,青海 西宁
关键词: MicroRNA-155结核分枝杆菌诊断 MicroRNA-155 Mycobacterium tuberculosis Diagnosis
摘要: 结核病是人类面对的主要慢性传染病之一,在诊断和治疗方面仍充满挑战。微小RNA (microRNA, miRNA)是一类在转录后水平调节基因表达的非编码RNA分子。大量研究表明,miR-155作为一个多功能miRNA,和结核病发生发展密切相关,在结核感染后的凋亡、自噬、细胞极化等活动中发挥免疫调节作用。有可能成为新的诊断标记物和治疗靶点。
Abstract: Tuberculosis remains one of the major chronic infectious diseases faced by humankind, and it is still full of challenges in diagnosis and treatment. MicroRNAs (miRNAs) are a class of noncoding RNA molecules that regulate gene expression at the post transcriptional level. A large number of studies have demonstrated that miR-155, as a multifunctional miRNA, is closely related to the occurrence and development of tuberculosis, and plays an immunomodulatory role in apoptosis, autophagy, cell polarization and other activities after infection. It may become a new diagnostic marker and therapeutic target.
文章引用:何定海, 崔金霞. MicroRNA-155与结核分枝杆菌感染的相关研究进展[J]. 临床医学进展, 2022, 12(6): 5491-5499. https://doi.org/10.12677/ACM.2022.126794

1. 介绍

结核病由结核分枝杆菌复合群(Mycobacterium tuberculosis complex)引起,是目前全球尤其是发展中国家危害最严重的慢性传染病之一。据报道 [1],2020年估计有990万人新感染结核,结核病可能是仅次于COVID-19的第二大单一感染性疾病致死原因。结核分枝杆菌(Mycobacterium tuberculosis, MTB)通过在胞内定居和顽强增殖,逃避固有免疫的清除,延缓抗感染细胞免疫应答的建立,引起炎症反应,诱导机体产生迟发型超敏反应导致免疫病理损伤等。在疫苗策略方面,卡介苗(Bacille Calmette Guérin, BCG)的作用和价值迄今仍有争议 [2],尚缺乏对成人结核病有充分免疫保护疫苗。更多的工作需要去理解MTB感染与机体免疫应答的相互作用,进一步阐明结核病的发生发展机制,探索新的诊断、治疗途径。

微小RNA (microRNA, miRNA)是一类在转录后水平调控基因表达的小分子非编码单链RNA (non-coding RNA, ncRNA)。miRNA可能调节了60%的人类蛋白质编码基因的表达 [3],广泛参与胚胎发育、组织分化、信号转导等生命活动以及诸多疾病。miRNA可以介导基因表达抑制,这一作用被称为RNA干扰 [4] (RNA interference, RNAi),miRNA-mRNA复合体导致靶mRNA结构不稳定、降解、翻译抑制 [5]。miRNA水平的基因表达调控网络非常复杂,每个miRNA可能控制数百个靶基因的表达,一个mRNA可能有多个结合位点接受靶向调控,不同的miRNAs调控靶基因可能具有协同作用 [6]。另外,因为许多调控靶点是转录因子,miRNA又被称为调控因子的调控因子 [7]。miR-155 (microRNA-155)是一个多功能miRNA,已被证明和炎症 [8]、自身免疫疾病 [9]、癌症 [10] 等密切相关。近年来,miRNA对抗结核病免疫应答的调节引起了众多研究者的兴趣,miRNA-155是最受关注的miRNA之一,我们将就miRNA-155与分枝杆菌感染相关研究进展情况展开综述。

2. miRNA-155

miR-155与大多数miRNAs的经典生物发生过程类似 [11],在细胞核中,编码miRNA的基因由RNA聚合酶II转录生成长度约几千个碱基的初级转录本pri-miRNA,在细胞核内,pri-miRNA在由Drosha、RNaseIII蛋白和双链RNA结合蛋白组成的蛋白质复合体的作用下经过了第一次的加工。Pri-miRNA在Drosha的作用下被加工成含有60~70 nt具有发夹结构的miRNA前体(pre-miRNA)。经过Drosha处理后,pre-miRNA通过exportin-5 (XPO5)输出到细胞质。在细胞质中,pre-miRNA被RNaseIII,Dicer加工,释放出21~24 nt的成熟的miRNA duplex。来自成熟miRNA duplex的两条链都能装载到Argonaute (AGO)蛋白家族形成RNA诱导的沉默复合体(RNA-induced silencing complex, RISC) [12],成熟miRNA形式的名称是由miRNA链的方向性决定,5p链起源于pre-miRNA发夹的5'端,而3p链起源于3'端。由于具有更好的热力学稳定性 [13],一般认为miR-155的5p链为引导链,通过与其靶mRNA分子的3'非翻译区域(3' UTR)互补匹配,促使该mRNA分子的降解或抑制其翻译。然而也有miR-155-3p发挥生物学功能,在相关样本中检出的报道 [14]。

3. miR-155介导对MTB感染的免疫调节

高感染率但发病率较低是人类MTB感染的一个特点,表明先天免疫和适应性免疫在抗感染中发挥关键作用,二者是一个连续且互相影响的过程。miR-155不仅参与调节各种防御性固有免疫,如自噬、凋亡和炎症小体的激活,也在适应性免疫中扮演重要角色。

3.1. 凋亡和自噬

凋亡启动感染细胞的程序性死亡,在宿主抵抗MTB的防御中具有关键作用。另外,凋亡参与一种非经典抗原提呈途径,即交叉致敏,MTB诱导感染的巨噬细胞凋亡后形成的凋亡小体携带大量抗原可供树突状细胞摄取、提呈 [15]。miR-155参与介导分枝杆菌感染的巨噬细胞凋亡,Ghorpade等 [16] 报道,M. bovis BCG触发TLR2-PI3K-PKC-MAPK信号通路调控miR-155的表达,miR-155通过调节PKA信号通路激活caspase-3,巨噬细胞中凋亡效应分子上调表达。De Santis等 [17] 发现LPS-TLR4激活的RAW 264.7巨噬细胞表达miR-155,证实CASP-3 mRNA的3' UTR是其调控巨噬细胞凋亡的结合位点。Rothchild等 [18] 发现MTB感染早期,相比野生型(WT)巨噬细胞,miR-155基因敲除巨噬细胞中观察到caspase-3介导的凋亡得到强化,细菌感染得到控制。另一项研究 [19],早期分泌抗原6 (early secretory antigen-6, EAST-6)处理的RAW 264.7巨噬细胞中,miR-155靶向抑制细胞因子信号抑制因子-1 (Suppressor of cytokine signaling-1, SOSC1)促进细胞凋亡,在抑制miR-155后,它们在EAST-6、MTB、BCG处理后的巨噬细胞中均观察到caspase-3活性的减低。最近的研究 [20] 显示MTB毒力因子EsxA处理的人单核细胞来源巨噬细胞(hMDM)中的miR-155表达呈时间依赖性上调,而巨噬细胞活性随着刺激时间的延长而逐渐降低,可能与EsxA诱导细胞凋亡有关。此外,BCG感染的THP-1细胞模型中,miR-155与FOXO3的3' UTR相互作用抑制其表达抑制单核细胞的凋亡 [21],这可能有利于保证单核巨噬细胞的连续分化。

体内和体外研究表明诱导自噬可以有效地增加MTB的细胞内杀伤 [22],自噬还可以增强分枝杆菌抗原(如Ag85B)的提呈 [23],以诱导保护性CD4+ T淋巴细胞应答,自噬可通过促进吞噬溶酶体的成熟控制胞内MTB,但毒力因子ESX-1可以阻断这一过程 [24]。Wang等人 [25] 利用MTB和BCG诱导小鼠骨髓来源巨噬细胞(BMDM)和RAW264.7巨噬细胞中表达miR-155,miR-155与自噬负性调节因子脑内富集同源物(Rheb)的3' UTR结合,通过抑制Rheb的表达,促进分枝杆菌自噬体形成,自噬标记物LC3-II表达上调。在树突状细胞中,Etna [26] 报道了miRNA-155抑制早期自噬进程中的关键酶ATG3表达破坏细胞自噬,沉默miRNA-155基因促进自噬溶酶体融合,自噬体数量增加。上述可见miR-155扮演促进、抑制自噬过程的双重角色可能与不同的细胞类型有关。

3.2. 细菌存活

miR-155的调控作用影响分枝杆菌的存活和感染结局。Kumar [27] 等发现感染早期,miR-155通过靶向抑制Bach1和SHIP1的表达促进了MTB在巨噬细胞中的生存。抑制SHIP1可促进AKT的激活而利于细菌存活,有报道 [28] 称Akt可能是抗耐多药结核的治疗靶点,其抑制剂可阻止包括耐多药结核在内的多种胞内菌生长。Rothchild等人的研究 [18] 证实miR-155通过调节ship1/akt信号转导轴在感染早期维持了MTB感染巨噬细胞的生存,细菌负载增加。而在感染后期,miR-155促进了MTB抗原特异性CD4+ T、CD8+ T细胞的存活以发挥效应功能。Rv2346c也是6-kDa早期分泌抗原靶蛋白家族的成员,Yao等 [29] 用Rv2346c处理BCG感染的巨噬细胞后发现细菌负荷和肺损伤增加。BCG感染巨噬细胞后,NF-κB诱导巨噬细胞产生TNF-α和IL-6,介导对BCG的杀伤。Rv2346c可增强p38的磷酸化及miR-155的表达,降低NF-κB激活,促进了BCG在巨噬细胞中的存活。

氧依赖性杀菌系统是巨噬细胞杀伤摄取的病原体的途径之一,包括反应性氧中间物和反应性氮中间物介导的杀伤作用。Wang等人的研究 [30] 发现miRNA-155抑制SHIP1,显著增加了活性氧(ROS)产量而促进杀伤,而对一氧化氮合酶的表达以及NO产量没有影响。另一项研究 [31] 显示,在海洋分枝杆菌(Mycobacterium marinum)感染后的巨噬细胞中,miR-155直接作用于C/EBPB,减少了巨噬细胞中的NO产量进而损害清除细菌的能力,C/EBPβ被认为可增加一氧化氮合成酶的产生。然后在IFN-γ激活的巨噬细胞中,转染miR-155拮抗剂可增强一氧化氮(NO)的合成,降低分枝杆菌载量。

4. 免疫系统稳态

miR-155调节先天性和适应性免疫细胞群的发育和功能,包括单核巨噬细胞、树突状细胞和各种淋巴细胞亚群 [32],这对于抗MTB的免疫应答十分重要。报道 [33] 称,miR-155与另外3个miRNA联合调控促进单核细胞分化。树突状细胞机体适应性免疫应答的始动者,miR-155通过C-FOS、SHIP1、KPC1、SOCS1、PU-1、TAB2等靶点影响DC成熟和功能 [34]。因为MTB为兼性胞内寄生菌,抗感染免疫主要依靠细胞免疫,显然,miR-155调节DC成熟直接影响到抗原特异性T细胞的激活和适应性免疫应答。此外,miR-155下调SOCS1、SHIP1促进促进Th1细胞极化 [34]。Th1细胞分泌IFN-γ,它能进一步促进Th1增殖,以加强Th1细胞免疫 [35]。CD4+ T细胞通过miR-155-SHIP1/Akt路径在MTB感染晚期存活以维持效应功能 [18]。Iwai等 [36] 用静脉注射M.tb Erdman株感染C57BL16小鼠后在肺部、肝脏观察到上调表达的miRNA-155。感染后野生型小鼠、miRNA-155缺陷的C57BL16小鼠的细胞因子和趋化因子表达谱显著不同,缺陷型小鼠肺组织细菌负载量更多,CD4+ T细胞数量更少和IFN-γ浓度更低提示对MTB的清除能力受损,更易发生感染而出现更早死亡。miR-155在促进Th1分化同时还能抑制Th2增殖,离体实验中观察到,miR-155缺陷小鼠T细胞向Th2表型极化,B细胞发育和体液免疫受损 [37]。另外,也有许多证据表明miR-155同时调节Th1和Th17反应,在自身免疫病 [38] 的发生、发展中起重要作用。调节性T细胞(Tregs)具有下调免疫应答等作用,miR-155可靶向SOCS1调节Tregs分化,体外实验拮抗miR-155后能够增加SOCS1表达水平和体外抑制功能 [39]。

5. 巨噬细胞极化

MTB感染后的巨噬细胞表型具有可塑性的特点,可以极化为经典激活/促炎症型(M1)或选择性激活/抗炎型(M2),两种表型作用相反,在体内可动态转换。M1/M2极化是基于巨噬细胞中基因的差异,不同的转录因子、细胞因子似乎可以区分两种表型 [40]。miRNAs可以通过调节转录因子影响其表型,因为转录因子表达及其修饰调节导致相应的基因产物数量的变化。miR-155对于M1十分重要,参与巨噬细胞极化相关信号通路如JAK、STAT、JNK、PI3K、AKT等的功能活动,miR-155表达和固有免疫、炎症密切相关,被认为是潜在的标志物。广泛的刺激因素如损伤相关分子模式(DAMP)、病原相关分子模式(PAMP)、TNF-α、IFN-γ、IL1A、IL1B导致miR-155在感染的巨噬细胞中迅速上调,导致M1极化特异性转录因子的沉积 [13]。AP1和NF-κB是促进M1型巨噬细胞反应的重要调节因子,受到病原体刺激后,TLR信号和促炎症细胞因子激活转录因子AP1和NF-κB使miR-155、miR-146a转录增加,miR-155靶向作用于SOCS1、SHIP1和miR-146a共同调控NF-κB活性,在巨噬细胞炎症反应中构建足以清除病原体,同时避免过度损伤的反馈调节环路 [41]。结核细胞壁成分脂阿拉伯甘露糖(LAM)、脂阿拉伯甘露糖(ManLAM)、磷脂酰肌醇甘露糖苷(PIM)能结合巨噬细胞甘露糖受体,激活MAPK/P38/Akt途径导致促炎症介质的产生 [42]。特异性抗原ESAT-6也具有促进M1极化的作用 [40]。ESAT-6在MTB感染的C57BL/6小鼠中通过TLR-4/MyD88信号通路促进miR-155的表达,TLR4/MyD88信号通路的激活导致炎症反应增加,诱导肾损伤 [43]。另外,miR-155还可以通过抑制C/EBP可阻止M2极化 [13]。

MTB感染进展并最终形成结核肉芽肿,在缺氧环境和巨噬细胞细胞毒作用下,促使巨噬细胞泡沫化,形成干酪样坏死。肉芽肿具有分层结构,不同区域具有不同的转录因子特征 [44]。肉芽肿和巨噬细胞极化相关,在感染初期,M1型巨噬细胞占主导地位,M2型巨噬细胞随着感染的进展获得优势 [45]。泡沫巨噬细胞富含脂质和胆固醇,倾向于促进细菌存活,MTB处于静止休眠状态 [46]。miR-155调节脂质代谢,参与M2细胞向泡沫巨噬细胞的过渡。感染后期MTB利用miR-155结合ABCA1来阻止胆固醇外流 [47],保证细菌在泡沫细胞内的胆固醇需求。转录因子过氧化物酶体增殖物激活受体(PPAR)-γ是M2细胞重要标志物,参与ABCA1介导的巨噬细胞胆固醇外流 [48]。此外,miR-155还可以通过直接抑制HBP1的表达,进而促进脂质摄取 [49]。巨噬细胞极化在动脉粥样硬化病理过程与炎症反应、脂质积聚、泡沫细胞形成、斑块进展密切相关,有研究 [50] 发现促炎症巨噬细胞中miR-155的表达增加直接抑制了转录因子BCL6的表达,进而升高CCL2水平,在动脉粥样硬化巨噬细胞炎症激活中充当重要角色,而miR-155缺陷巨噬细胞减少CCL2表达而限制斑块的形成。也有报道在小鼠模型中抑制miR-155表达可减小斑块,延缓斑块进展,可能在未来具有治疗意义 [13] [51]。

6. miR-155是潜在的诊断标记物和治疗靶点

大量研究评估了miR-155在作为诊断标记物方面的价值。Malardo等人 [52] 的研究分析了MTB H37Rv株感染组小鼠和对照组小鼠肺组织miRNA表达谱,发现miR-155表达在感染的早期和晚期均增加。Golby等人 [53] 发现牛MTB (M. bovis)在感染未接种BCG的牛后,miR-155在PBMC中明显表达,且患有牛结核、具有明显结核病灶的牛的miR-155表达高于感染但无进展病灶的实验组,诱导程度和病理情况显著相关。提示miR-155可以从感染动物中识别出接种过疫苗的群体,可以作为诊断和预后的标记物。证据表明大部分感染者体内的MTB可以处于静止状态持续存活,处于结核潜伏感染状态。有文献报道 [54],活动性肺结核组外周血miR-155-5p表达水平明显高于健康对照组和潜伏性肺结核组,潜伏组miR-155-5p明显高于健康对照组。诊断活动性肺结核的ROC曲线下面积为0.914。陈雪芳等 [55] 发现活动性肺结核组的血清miR-155-5p显著高于健康对照组且在抗结核治疗后表达下调,提示可用于诊断和疗效评价。一项调查miR-155对结核病的诊断准确性的荟萃分析 [56] 显示miRNA-155具有较高的诊断准确性和疗效,AUC大于0.93,特异性为0.85,敏感性为0.87,使用miR-155对活动性肺结核的整体诊断具有中等水平的检测性能。另外Kathirvel等人 [57] 的研究显示miR-155可以作为有效诊断儿童活动性肺结核的标记物,ROC曲线下面积高于0.95。我们也调查了一些其他体液标本的情况,袁秀丽等 [58] 发现结核性脑膜炎观察组患者的血浆和脑脊液中的miR-155含量明显高于对照组。Ying等 [59] 的研究中,痰miR-155检测诊断活动性PTB的敏感性和特异性分别为94.1%和87.7%,痰液miR-155阳性率为94.1%,高于痰涂片阳性率(22.1%)和抗结核抗体阳性率(83.8%),并且痰齐–尼染色涂片的分级与痰中miR-155的表达水平呈正相关,痰miR-155具有作为无创诊断标记物的潜力。

鉴于miR-155在MTB感染中的失调表达以及与结核发病机制的相关性,将其视为有希望的治疗靶点是合理的,可利用miR-155模拟/替代物和阻断剂纠正其在结核病中的异常表达。在实验中,Li等 [60] 报道了MTB相关长链非编码RNA (lncRNA) PCED1B-AS1可作为内源性海绵发挥作用,通过直接结合miR-155阻断巨噬细胞中miR-155/FOXO3/Rheb介导的凋亡和自噬。Yang [19] 等人用慢病毒载体编码的miR-155海绵充分沉默miR-155解除其对靶蛋白SOCS1表达的抑制,从而阻止EAST-6介导的巨噬细胞凋亡,而同样用慢病毒载体介导的miR-155过表达能够模拟内源性miR-155诱导凋亡。miRNA、干扰小RNA (small interfering RNA, siRNA)、长链非编码RNA (lncRNA)、环状RNA (circular RNA)均属于调控性非编码RNA的成员,都具有降解靶mRNA,阻断翻译过程,还有抑制转录的功能。近年来,众多研究者 [61] [62] [63] 注意到了miRNA在结核病宿主导向治疗(HDT)中的潜在临床价值,但是尚处于起步阶段,miRNA靶点具有多样性、非特异性,miRNA的递送载体技术、体内代谢过程,对其它调控环节的影响,以及可能的效应“脱靶”(off-target) [61] 均是需要面对的挑战。随着这些问题的解决,未来可能看到基于miRNA的HDT治疗与miR-155失调表达的相关疾病,包括MTB感染。

7. 结语

大量研究数据表明,miR-155是有希望的诊断标记物和治疗靶点,MTB感染诱导miR-155的表达变化证明了其在结核病发病机制中重要作用。但是miRNA乃至整个非编码调控RNA是一个庞大的家族,仍有许多结核病相关miRNA的功能等待揭示,我们没有分析miR-155与其他miRNA调控抗结核免疫应答的协同作用及相互影响,需要设计合理的实验深入研究调控网络的全貌。另外,miR-155和其他miRNA、诊断标记物的联合诊断效果也有待探讨。

NOTES

*通讯作者Email: cui97213576@163.com

参考文献

[1] (2021) Global Tuberculosis Report 2021. World Health Organization, Geneva.
[2] Nasser Eddine, A. and Kaufmann, S.H. (2005) Improved Protection by Recombinant BCG. Microbes and Infection, 7, 939-946.
https://doi.org/10.1016/j.micinf.2005.03.012
[3] Friedman, R.C., Farh, K.K., Burge, C.B. and Bartel, D.P. (2009) Most Mammalian mRNAs Are Conserved Targets of microRNAs. Genome Research, 19, 92-105.
https://doi.org/10.1101/gr.082701.108
[4] Han, H. (2018) RNA Interference to Knock Down Gene Expression. Methods in Molecular Biology, 1706, 293-302.
https://doi.org/10.1007/978-1-4939-7471-9_16
[5] Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/S0092-8674(04)00045-5
[6] Dombkowski, A.A., Sultana, Z., Craig, D.B. and Jamil, H. (2011) In Silico Analysis of Combinatorial microRNA Activity Reveals Target Genes and Pathways Associated with Breast Cancer Metastasis. Cancer Informatics, 10, 13-29.
https://doi.org/10.4137/CIN.S6631
[7] Fabian, M.R., Sonenberg, N. and Filipowicz, W. (2010) Regulation of mRNA Translation and Stability by microRNAs. Annual Review of Biochemistry, 79, 351-379.
https://doi.org/10.1146/annurev-biochem-060308-103103
[8] Mahesh, G. and Biswas, R. (2019) MicroRNA-155: A Master Regulator of Inflammation. Journal of Interferon & Cytokine Research, 39, 321-330.
https://doi.org/10.1089/jir.2018.0155
[9] Pashangzadeh, S., Motallebnezhad, M., Vafashoar, F., Khalvandi, A. and Mojtabavi, N. (2021) Implications the Role of miR-155 in the Pathogenesis of Autoimmune Diseases. Frontiers in Immunology, 12, Article ID: 669382.
https://doi.org/10.3389/fimmu.2021.669382
[10] Ali Syeda, Z., Langden, S.S.S., Munkhzul, C., Lee, M. and Song, S.J. (2020) Regulatory Mechanism of MicroRNA Expression in Cancer. International Journal of Molecular Sciences, 21, 1723.
https://doi.org/10.3390/ijms21051723
[11] O’Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018) Over-view of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology (Lausanne), 9, 402.
https://doi.org/10.3389/fendo.2018.00402
[12] Matsuyama, H. and Suzuki, H.I. (2019) Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. International Journal of Molecular Sciences, 21, 132.
https://doi.org/10.3390/ijms21010132
[13] Pasca, S., Jurj, A., Petrushev, B., Tomuleasa, C. and Matei, D. (2020) MicroRNA-155 Implication in M1 Polarization and the Impact in Inflammatory Diseases. Frontiers in Immunology, 11, Article No. 625.
https://doi.org/10.3389/fimmu.2020.00625
[14] Wu, J., Lu, C., Diao, N., Zhang, S., Wang, S., Wang, F., Gao, Y., Chen, J., Shao, L., Lu, J., Zhang, X., Weng, X., Wang, H., Zhang, W. and Huang, Y. (2012) Analysis of microRNA Expression Profiling Identifies miR-155 and miR-155* as Potential Diagnostic Markers for Active Tuberculosis: A Pre-liminary Study. Human Immunology, 73, 31-37.
https://doi.org/10.1016/j.humimm.2011.10.003
[15] Albert, M.L., Sauter, B. and Bhardwaj, N. (1998) Dendritic Cells Acquire Antigen from Apoptotic Cells and Induce Class I-Restricted CTLs. Nature, 392, 86-89.
https://doi.org/10.1038/32183
[16] Ghorpade, D.S., Leyland, R., Kurowska-Stolarska, M., Patil, S.A. and Balaji, K.N. (2012) MicroRNA-155 Is Required for Mycobacterium bovis BCG-Mediated Apoptosis of Macrophages. Molecular and Cellular Biology, 32, 2239-2253.
https://doi.org/10.1128/MCB.06597-11
[17] De Santis, R., Liepelt, A., Mossanen, J.C., et al. (2016) miR-155 Targets Caspase-3 mRNA in Activated Macrophages. RNA Biology, 13, 43-58.
https://doi.org/10.1080/15476286.2015.1109768
[18] Rothchild, A.C., Sissons, J.R., Shafiani, S., Plaisier, C., Min, D., Mai, D., Gilchrist, M., Peschon, J., Larson, R.P., Bergthaler, A., Baliga, N.S., Urdahl, K.B. and Aderem, A. (2016) MiR-155-Regulated Molecular Network Orchestrates Cell Fate in the Innate and Adaptive Immune Response to Myco-bacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 113, E6172-E6181.
https://doi.org/10.1073/pnas.1608255113
[19] Yang, S., Li, F., Jia, S., Zhang, K., Jiang, W., Shang, Y., Chang, K., Deng, S. and Chen, M. (2015) Early Secreted Antigen ESAT-6 of Mycobacterium tuberculosis Promotes Apoptosis of Macrophages via Targeting the microRNA155-SOCS1 Interaction. Cellular Physiology & Biochemistry, 35, 1276-1288.
https://doi.org/10.1159/000373950
[20] GBonilla-Muro, M.G., Hernández de la Cruz, O.N., Gonzalez-Barrios, J.A., Alcaráz-Estrada, S.L. and Castañón-Arreola, M. (2021) EsxA Mainly Contributes to the miR-155 Overexpression in Human Monocyte-Derived Macrophages and Potentially Affect the Immune Mechanism of Macrophages through miRNA Dysregulation. Journal of Microbiology, Immunology and Infection, 54, 185-192.
https://doi.org/10.1016/j.jmii.2019.07.007
[21] Huang, J., Jiao, J., Xu, W., Zhao, H., Zhang, C., Shi, Y. and Xiao, Z. (2015) MiR-155 Is Upregulated in Patients with Active Tuberculosis and Inhibits Apoptosis of Monocytes by Target-ing FOXO3. Molecular Medicine Reports, 12, 7102-7108.
https://doi.org/10.3892/mmr.2015.4250
[22] Kim, J.J., Lee, H.M., Shin, D.M., Kim, W., Yuk, J.M., Jin, H.S., Lee, S.H., Cha, G.H., Kim, J.M., Lee, Z.W., Shin, S.J., Yoo, H., Park, Y.K., Park, J.B., Chung, J., Yoshimori, T. and Jo, E.K. (2012) Host Cell Autophagy Activated by Antibiotics Is Required for Their Effective Antimycobacterial Drug Action. Cell Host & Microbe, 11, 457-468.
https://doi.org/10.1016/j.chom.2012.03.008
[23] Jagannath, C., Lindsey, D.R., Dhandayuthapani, S., Xu, Y., Hunter, R.L. and Eissa, N.T. (2009) Autophagy Enhances the Efficacy of BCG Vaccine by Increasing Peptide Presenta-tion in Mouse Dendritic Cells. Nature Medicine, 15, 267-276.
https://doi.org/10.1038/nm.1928
[24] Romagnoli, A., Etna, M.P., Giacomini, E., Pardini, M., Remoli, M.E., Corazzari, M., Falasca, L., Goletti, D., Gafa, V., Simeone, R., Delogu, G., Piacentini, M., Brosch, R., Fimia, G.M. and Coccia, E.M. (2012) ESX-1 Dependent Impairment of Au-tophagic Flux by Mycobacterium tuberculosis in Human Dendritic Cells. Autophagy, 8, 1357-1370.
https://doi.org/10.4161/auto.20881
[25] Wang, J., Yang, K., Zhou, L., Minhaowu, Wu, Y., Zhu, M., Lai, X., Chen, T., Feng, L., Li, M., Huang, C., Zhong, Q. and Huang, X. (2013) MicroRNA-155 Promotes Autophagy to Eliminate In-tracellular Mycobacteria by Targeting Rheb. PLOS Pathogens, 9, e1003697.
https://doi.org/10.1371/journal.ppat.1003697
[26] Etna, M.P., Sinigaglia, A., Grassi, A., Giacomini, E., Romagnoli, A., Pardini, M., Severa, M., Cruciani, M., Rizzo, F., Anastasiadou, E., Di Camillo, B., Barzon, L., Fimia, G.M., Man-ganelli, R. and Coccia, E.M. (2018) Mycobacterium tuberculosis-Induced miR-155 Subverts Autophagy by Targeting ATG3 in Human Dendritic Cells. PLOS Pathogens, 14, e1006790.
https://doi.org/10.1371/journal.ppat.1006790
[27] Kumar, R., Halder, P., Sahu, S.K., Kumar, M., Kumari, M., Jana, K., Ghosh, Z., Sharma, P., Kundu, M. and Basu, J. (2012) Identification of a Novel Role of ESAT-6-Dependent miR-155 Induction during Infection of Macrophages with Mycobacterium tuberculosis. Cellular Microbiology, 14, 1620-1631.
https://doi.org/10.1111/j.1462-5822.2012.01827.x
[28] Kuijl, C., Savage, N.D., Marsman, M., Tuin, A.W., Janssen, L., Egan, D.A., Ketema, M., van den Nieuwendijk, R., van den Eeden, S.J., Geluk, A., Poot, A., van der Marel, G., Beijersbergen, R.L., Overkleeft, H., Ottenhoff, T.H. and Neefjes, J. (2007) Intracellular Bacterial Growth Is Controlled by a Kinase Network around PKB/AKT1. Nature, 450, 725-730.
https://doi.org/10.1038/nature06345
[29] Yao, J., Du, X., Chen, S., Shao, Y., Deng, K., Jiang, M., Liu, J., Shen, Z., Chen, X. and Feng, G. (2018) Rv2346c Enhances Mycobacterial Survival within Macrophages by Inhibiting TNF-α and IL-6 Production via the p38/miRNA/NF-κB Pathway. Emerging Microbes & Infections, 7, 158.
https://doi.org/10.1038/s41426-018-0162-6
[30] Wang, J., Wu, M., Wen, J., Yang, K., Li, M., Zhan, X., Feng, L., Li, M. and Huang, X. (2014) MicroRNA-155 Induction by Mycobacterium bovis BCG Enhances ROS Production through Targeting SHIP1. Molecular Immunology, 62, 29-36.
https://doi.org/10.1016/j.molimm.2014.05.012
[31] Qin, Y., Wang, Q., Zhou, Y., Duan, Y. and Gao, Q. (2016) In-hibition of IFN-γ-Induced Nitric Oxide Dependent Antimycobacterial Activity by miR-155 and C/EBPβ. International Journal of Molecular Sciences, 17, 535.
https://doi.org/10.3390/ijms17040535
[32] O’Connell, R.M., Rao, D.S., Chaudhuri, A.A. and Baltimore, D. (2010) Physiological and Pathological Roles for microRNAs in the Immune System. Nature Reviews Immunology, 10, 111-122.
https://doi.org/10.1038/nri2708
[33] Forrest, A.R.R., Kanamori-Katayama, M., Tomaru, Y., Lassmann, T., Nino-miya, N., et al. (2010) Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, Promotes Monocytic Differen-tiation through Combinatorial Regulation. Leukemia, 24, 460-466.
https://doi.org/10.1038/leu.2009.246
[34] Chen, L., Gao, D., Shao, Z., Zheng, Q. and Yu, Q. (2020) miR-155 Indicates the Fate of CD4+ T Cells. Immunology Letters, 224, 40-49.
https://doi.org/10.1016/j.imlet.2020.05.003
[35] Gein, S.V. and Sharavieva, I.L. (2014) Effect of Rota-tion and Immobilization Stress on IL-1β, IL-2, IL-4, and IFN-γ Production by Splenocytes under Opiate Receptor Blockade in Vivo. Doklady Biological Sciences, 454, 69-71.
https://doi.org/10.1134/S0012496614010141
[36] Iwai, H., Funatogawa, K., Matsumura, K., Kato-Miyazawa, M., Kirikae, F., Kiga, K., Sasakawa, C., Miyoshi-Akiyama, T. and Kirikae, T. (2015) MicroRNA-155 Knockout Mice Are Susceptible to Mycobacterium tuberculosis Infection. Tuberculosis (Edinb), 95, 246-250.
https://doi.org/10.1016/j.tube.2015.03.006
[37] Rodriguez, A., Vigorito, E., Clare, S., Warren, M.V., Couttet, P., Soond, D.R., van Dongen, S., Grocock, R.J., Das, P.P., Miska, E.A., Vetrie, D., Okkenhaug, K., Enright, A.J., Dougan, G., Turner, M. and Bradley, A. (2007) Requirement of bic/microRNA-155 for Normal Immune Function. Science, 316, 608-611.
https://doi.org/10.1126/science.1139253
[38] Basak, J. and Majsterek, I. (2021) miRNA-Dependent CD4+ T Cell Differentiation in the Pathogenesis of Multiple Sclerosis. Multiple Sclerosis International, 2021, Article ID: 8825588.
https://doi.org/10.1155/2021/8825588
[39] 范烨, 陆云杰, 鲁皓, 等. miRNA-155对调节性T细胞表型和功能的影响[J]. 器官移植, 2014, 5(5): 277-282.
[40] 于佳佳, 唐神结. 巨噬细胞极化在结核病中的作用研究进展[J]. 中华临床感染病杂志, 2019, 12(3): 229-235.
[41] Mann, M., Mehta, A., Zhao, J.L., Lee, K., Marinov, G.K., Garcia-Flores, Y., et al. (2017) An NF-kB-microRNA Regulatory Network Tunes Macrophage Inflammatory Responses. Nature Communications, 8, Article No. 851.
https://doi.org/10.1038/s41467-017-00972-z
[42] Basler, T., Holtmann, H., Abel, J., Eckstein, T., Baumer, W., Valentin-Weigand, P. and Goethe, R. (2010) Reduced Transcript Stabilization Restricts TNF-alpha Expression in RAW264.7 Macrophages Infected with Pathogenic Mycobacteria: Evidence for an Involvement of Lipomannan. Journal of Leukocyte Biology, 87, 173-183.
https://doi.org/10.1189/jlb.0309207
[43] (2020) Retraction: Role of EAST-6 in Renal Injury by Regulating mi-croRNA-155 Expression via TLR4/MyD88 Signaling Pathway in Mice with Mycobacterium tuberculosis Infection. Bi-oscience Reports, 40, BSR-20170021_RET.
[44] Kim, M.J., Wainwright, H.C., Locketz, M., Bekker, L.G., Walther, G.B., Dittrich, C., Visser, A., Wang, W., Hsu, F.F., Wiehart, U., Tsenova, L., Kaplan, G. and Russell, D.G. (2010) Ca-seation of Human Tuberculosis Granulomas Correlates with Elevated Host Lipid Metabolism. EMBO Molecular Medi-cine, 2, 258-274.
https://doi.org/10.1002/emmm.201000079
[45] Huang, Z., Luo, Q., Guo, Y., Chen, J., Xiong, G., Peng, Y., Ye, J. and Li, J. (2015) Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas in Vitro. PLOS ONE, 10, e0129744.
https://doi.org/10.1371/journal.pone.0129744
[46] Huang, L., Nazarova, E.V. and Russell, D.G. (2019) Mycobac-terium tuberculosis: Bacterial Fitness within the Host Macrophage. Microbiology Spectrum, 7.
https://doi.org/10.1128/9781683670261.ch9
[47] Ahluwalia, P.K., Pandey, R.K., Sehajpal, P.K. and Prajapati, V.K. (2017) Perturbed microRNA Expression by Mycobacterium tuberculosis Promotes Macrophage Polarization Leading to Pro-Survival Foam Cell. Frontiers in Immunology, 8, Article No. 107.
https://doi.org/10.3389/fimmu.2017.00107
[48] Chinetti, G., Lestavel, S., Bocher, V., Remaley, A.T., Neve, B., Torra, I.P., Teissier, E., Minnich, A., Jaye, M., Duverger, N., Brewer, H.B., Fruchart, J.C., Clavey, V. and Staels, B. (2001) PPAR-Alpha and PPAR-Gamma Activators Induce Cholesterol Removal from Human Macrophage Foam Cells through Stimulation of the ABCA1 Pathway. Nature Medicine, 7, 53-58.
https://doi.org/10.1038/83348
[49] Tian, F.J., An, L.N., Wang, G.K., Zhu, J.Q., Li, Q., Zhang, Y.Y., et al. (2014) Elevated microRNA-155 Promotes Foam Cell Formation by Targeting HBP1 in Atherogenesis. Cardiovascular Research, 103, 100-110.
https://doi.org/10.1093/cvr/cvu070
[50] Nazari-Jahantigh, M., Wei, Y., Noels, H., Akhtar, S., Zhou, Z., Koenen, R.R., Heyll, K., Gremse, F., Kiessling, F., Grommes, J., Weber, C. and Schober, A. (2012) MicroRNA-155 Promotes Atherosclerosis by Repressing Bcl6 in Macrophages. Journal of Clinical Investigation, 122, 4190-4202.
https://doi.org/10.1172/JCI61716
[51] Du, F., Yu, F., Wang, Y., Hui, Y., Carnevale, K., Fu, M., Lu, H. and Fan, D. (2014) MicroRNA-155 Deficiency Results in Decreased Macrophage Inflammation and Attenuated Atherogenesis in Apolipoprotein E-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 759-767.
https://doi.org/10.1161/ATVBAHA.113.302701
[52] Malardo, T., Gardinassi, L.G., Moreira, B., Padilha, É., Lo-renzi, J.C., Soares, L.S., Gembre, A.F., Fontoura, I.C., de Almeida, L.P., de Miranda Santos, I.K., Silva, C.L. and Coe-lho-Castelo, A.A. (2016) MicroRNA Expression Signatures in Lungs of Mice Infected with Mycobacterium tuberculosis. Tuberculosis (Edinb), 101, 151-159.
https://doi.org/10.1016/j.tube.2016.09.003
[53] Golby, P., Villarreal-Ramos, B., Dean, G., Jones, G.J. and Vordermeier, M. (2014) MicroRNA Expression Profiling of PPD-B Stimulated PBMC from M. bovis-Challenged Un-vaccinated and BCG Vaccinated Cattle. Vaccine, 32, 5839-5844.
https://doi.org/10.1016/j.vaccine.2014.07.034
[54] 蔡青山, 陈园园, 夏强, 等. 肺结核患者外周血miRNA分子表达及临床意义研究[J]. 中华全科医学, 2016, 14(4): 546-548, 588.
[55] 陈雪芳, 许文芳, 王建华. 循环miRNA在活动性肺结核中的表达及其在疾病治疗中的诊疗价值[J]. 中华全科医学, 2017, 15(11): 1941-1943, 1996.
[56] Li, X., He, J., Wang, G. and Sun, J. (2021) Diagnostic Value of microRNA-155 in Active Tuberculosis: A Systematic Review and Meta-Analysis. Medicine (Baltimore), 100, e27869.
https://doi.org/10.1097/MD.0000000000027869
[57] Kathirvel, M., et al. (2020) Expression Levels of Candidate Circulating microRNAs in Pediatric Tuberculosis. Pathogens and Global Health, 114, 262-270.
https://doi.org/10.1080/20477724.2020.1761140
[58] 袁秀丽. 结核性脑膜炎患者血浆和脑脊液中miRNAs含量检测及其临床价值评估[J]. 中国现代医学杂志, 2015, 25(31): 22-25.
[59] Hua, Y., et al. (2020) MicroRNA-155 from Sputum as Noninvasive Biomarker for Diagnosis of Active Pulmonary Tuberculosis. Iranian Journal of Basic Medical Sciences, 23, 1419-1425.
[60] Li, M., Cui, J., Niu, W., Huang, J., Feng, T., Sun, B. and Yao, H. (2019) Long Non-Coding PCED1B-AS1 Regulates Macrophage Apoptosis and Autophagy by Sponging miR-155 in Active Tuber-culosis. Biochemical and Biophysical Research Communications, 509, 803-809.
https://doi.org/10.1016/j.bbrc.2019.01.005
[61] Singh, A.K., Ghosh, M., Kumar, V., Aggarwal, S. and Patil, S.A. (2021) Interplay between miRNAs and Mycobacterium tuberculosis: Diagnostic and Therapeutic Implications. Drug Discovery Today, 26, 1245-1255.
https://doi.org/10.1016/j.drudis.2021.01.021
[62] 强锐, 徐俊驰, 宋华峰, 等. 宿主导向疗法治疗结核病的应用机制[J]. 国际流行病学传染病学杂志, 2021, 48(6): 475-478.
[63] Sampath, P., Periyasamy, K.M., Ranganathan, U.D. and Bethunaickan, R. (2021) Monocyte and Macrophage miRNA: Potent Biomarker and Target for Host-Directed Therapy for Tuberculosis. Frontiers in Immunology, 12, Article ID: 667206.
https://doi.org/10.3389/fimmu.2021.667206