期刊菜单

Passive Ranging Method Based on Target Radiation
DOI: 10.12677/OE.2022.122010, PDF, 下载: 69  浏览: 94

Abstract: In order to meet the needs of modern war, it is very important to accurately measure the incoming target. Radar detection is the main detection method currently used. As radar is active detection, it will expose itself in the detection process, and it is easy to be targeted by enemy anti-radiation weapons. Moreover, weapon stealth technology has become the mainstream at present, and the limitations of radar are increasingly obvious. The infrared passive measurement method is different. Any object with temperature will radiate energy. With this feature, it will not expose itself, and also can obtain the distance and temperature information of the incoming target very accurately. Based on the above background, this paper generated transmittance data under different temperatures and distances from target at different wavelengths by Modtran, and used Matlab to calculate the target’s irradiance under different temperatures and distances. Through the analysis of the irradiance data and simulation, this paper puts forward the concept of lines to the target temperature and the distance. A new infrared passive ranging method is developed by using target temperature line and range line. Secondly, the correlation analysis of the irradiance of the target in the spectrum is carried out, and it is found that the irradiance ratio of 9.0~9.2 and 9.2~9.4 bands is independent of temperature and strongly correlated with distance. Based on this finding, a new passive ranging method is proposed in this paper. The combination of the above two methods can improve the accuracy, fault tolerance and robustness of ranging.

1. 研究内容

2. 研究方法

2.1. 测距方法1

1) 通过接收目标双波段辐照度的多组数据点，对数据点线性拟得出温度线斜率从而确定目标的温度范围。

2) 根据目标的温度范围选取此温度范围对应的距离线。

3) 通过数据点与距离线的相对关系从而确定目标与观测点间的距离。具体判别方法为：将数据点横坐标带入距离线的回归方程，从而判断数据点与距离线的关系，通过数据点到相邻两距离线距离值的大小对两线间的距离进行填充，由此确定更加精确的距离。

1a) 截取不同的波带

1b) 计算辐照度

1c) 估计目标温度

1d) 建立目标距离线模型

1e) 解算距离

2.2. 测距方法2

1) 通过接收目标双波段辐照度的多组数进行据点，对数据点线性拟得出温度线斜率从而确定目标的温度范围 [4]。

2) 根据目标的温度范围选取此温度范围对应不同距离的辐照度比值范围。

3) 获取目标9.2~9.4 μm与9.4~9.6 μm的辐照度比值，与(2.2)中不同距离对应的比值范围进行匹配，进而确定目标与观测点的距离。

2a) 截取特定的波带

2b) 计算辐照度

2c) 估计目标温度

2d) 建立目标距离线模型

2e) 解算距离

3. 实验结果

3.1. 仿真实验条件

3.2. 实验方案及结果

3.2.1. 测距方法1

Figure 1. 600~800 K isotherm

Table 1. 2:1:15 Km isotherm coefficient

Figure 2. Isometric line of 800~900 K target

Table 2. 800:10:900 K isometric coefficient

Figure 3. 900:10:1000 K isometric line

Table 3. 900:10:1000 K isometric coefficient

3.2.2. 测距方法2

Table 4. 450~550 K dual-band ratio data

Table 5. 550~650 K dual-band ratio data

Table 6. 650~750 K dual-band ratio data

Table 7. 750~850 K dual-band ratio data

Table 8. 850~950 K dual-band ratio data

Table 9. 950~1050 K dual-band ratio data

Table 10. 1050~1150 K dual-band ratio data

4. 结果验证

Table 11. 10 Km verification data

1) 首先通过3.2~3.4 μm、8.2~8.4 μm两个窄波段的两组数据进行拟合，斜率为9.908，与温度系数表1进行匹配，目标温度范围为950~1050 K。

2) 将10 Km的模拟辐照度数据与950~1050 K的距离线在同一坐标轴下进行比较，根据上述距离线拟合系数，9 Km的距离线表达式为：y = 4.962x − 661.933，10 Km距离线表达式为：y = 4.943x − 658.55，11 Km的距离线表达式为：y = 4.928x − 655.902，将数据点(271.1297, 681.3614)带入各表达式中，求取数据点到距离线的距离，经计算数据点介于10 Km与11 Km距离线之间，且距10 Km距离线0.2827，距11 Km距离线26.5957，所以目标距离近似为10 Km。

3) 根据探测方法二，计算得9.2~9.4 μm与9.4~9.6 μm波段的辐照度比值为1.248，由1)可知，目标的温度范围为950~1050，将1.248与950~1050 K对应的辐照度比值表进行匹配 [5]，如下表12

Table 12. 950~1050 K dual-band ratio data

1.248介于1.247与1.250之间，所以可知目标距离为10 Km。

4) 综合探测方法一与探测方法二的结果，可得两种结果的交集为10 Km，所以最终确定目标距离观测点的距离为10 Km，验证完毕。

5. 结论

 [1] 付小宁, 陈立强, 董悫. 基于改进Elman神经网络的红外被动测距算法研究[J]. 红外技术, 2019, 41(6): 540-544. [2] 潘明波, 李帝水. 现代海战光电协同探测关键技术研究[J]. 光学与光电技术, 2020, 18(2): 69-77. [3] 付小宁, 陈立强, 景钊, 雷新忠. 多种天气条件下地面目标的被动红外测距方法[P]. 中国专利, CN201710685445.1. 2017-08-11. [4] 付小宁, 雷新忠, 古丽军, 李保明. 自适应红外双波段被动测距方法[P]. 中国专利, CN201710157705.. 2017-03-16. [5] 景钊. 多模型结合的目标被动测距精度的调优[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2019.