自噬介导的新生儿缺氧缺血性脑损伤治疗进展
Progress in the Treatment of Autophagy Me-diated Neonatal Hypoxic Ischemic Brain Damage
DOI: 10.12677/ACM.2022.126834, PDF, 下载: 216  浏览: 7,267 
作者: 赖春池, 卫红利, 姜 红*:青岛大学,山东 青岛
关键词: 缺氧缺血性脑损伤自噬治疗新生儿Hypoxic Ischemic Brain Damage Autophagy Treatment Newborn
摘要: 自噬是真核生物细胞内部分受损的蛋白质或细胞器在被双层膜结构的囊泡包裹后,送入溶酶体中加以降解并进行循环利用的过程。新生儿发生缺氧缺血性脑损伤(hypoxic ischemic brain damage, HIBD)能通过不同信号途径激活自噬,从而充分发挥其损伤或保护作用,但具体机理目前仍不明确。本文对自噬介导的新生儿HIBD研究进展进行综述,为新生儿HIBD治疗提供新思路。
Abstract: Autophagy is the process of partially damaged proteins or organelles in eukaryote cells after being wrapped in vesicles with a bilayer membrane structure, and then sent to lysosomes for degradation and recycling. Hypoxic ischemic brain damage (HIBD) in newborns can activate autophagy through different signaling pathways to give full play to its injury or protective effect, but the specific mech-anism is still unclear. This paper reviews the research progress of autophagy mediated neonatal HIBD and provides new ideas for the treatment of HIBD of neonates.
文章引用:赖春池, 卫红利, 姜红. 自噬介导的新生儿缺氧缺血性脑损伤治疗进展[J]. 临床医学进展, 2022, 12(6): 5765-5772. https://doi.org/10.12677/ACM.2022.126834

1. 前言

在全球新生儿缺氧缺血性脑损伤(hypoxic ischemic brain damage, HIBD)仍然是新生儿最大的威胁之一,是围产儿发病和死亡的重要原因 [1]。缺氧缺血早期,机体代偿保护脑,随着缺氧进一步加重,机体代偿能力降低,导致新生儿神经系统损伤 [2]。严重的HIBD可导致智力障碍、脑瘫后遗症,表现为学习、记忆和注意力障碍及运动障碍,并可增加成年后患阿尔兹海默症的风险 [1] [3]。目前亚低温治疗是唯一公认的有效治疗HIBD的方法,但重度HIBD新生儿仍会发生一系列不良结局 [4],因此,寻找新的安全有效的神经保护神经疗法迫在眉睫。

不成熟的中枢神经系统在缺氧缺血(hypoxic ischemic, HI)后会发生一系列反应,引起神经细胞死亡,包括自噬、凋亡和坏死等 [5]。自噬是细胞适应环境变化,吞噬自身细胞质或细胞器,并将其包被进入囊泡催化分解的循环过程 [6]。自噬是一把双刃剑,根据环境的不同,它可能是保护性的,也可能是有害的。研究显示,在HI诱导大鼠前给予药物预处理,可能提前激活自噬并在HIBD后发挥神经保护作用 [7],但过度的自噬会起负性作用导致神经元严重受损 [8],因此,一些药物是通过抑制自噬对神经发挥保护作用。但自噬究竟在HIBD哪个阶段起保护还是损伤作用还存有争议,有待进一步研究证实。自噬介导的HIBD治疗是新的研究方向,有望成为全球HIBD治疗难题的突破口。

2. 自噬概述

自噬是一种进化上保守的、自我降解的正常细胞生理过程,包括诱导、自噬体的组装和形成、自噬体与溶酶体膜融合以及自噬体内物质降解和再循环过程 [9]。自噬受诸多自噬相关基因(autophagy-related genes, ATGs)和表达蛋白产物调控,其中微管相关蛋白1 (Beclin1)和轻链3 (LC3)对自噬调控起至关重要的作用,常作为自噬活性标记物 [10]。在正常生理情况下,自噬维持基础水平,但当机体处于不利条件,如HI发生时,机体出现能量耗竭和自由基生成堆积等一系列变化 [11] [12],细胞自噬信号转导通路开始发挥作用,用以消除受损的蛋白质和细胞器并维持细胞的代谢和存活。

3. 与HIBD相关的自噬通路

3.1. PI3K-AKT-mTOR信号通路

磷脂酰肌醇-3-激酶(phosphoinositide-3-kinase, PI3K)有两个催化亚基p110α和p110β,当氧化应激增加时,PI3Kα催化亚基激活蛋白激酶B (protein kinase B, AKT),使哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)活化,其下游Unc-51样激酶1 (Unc-51-like kinase, ULK)复合体去磷酸化从而抑制细胞自噬 [13]。此信号通路的负调节因子蛋白磷酸酶和张力蛋白同源物(Phosphatase and tensin homologue deleted on chromosome ten, Pten),与HIBD有关 [14]。Pten能够使脂酰肌醇-3,4,5-三磷酸(phosphatidylinositol 3-phosphate, PI3P)去磷酸化后直接拮抗PI3K,导致磷酸化AKT减少,从而促进细胞自噬 [15]。

3.2. PI3K通路

PI3K的调节亚基p85与RAS相关蛋白5 (Rab5)结合时处于非激活状态,当机体发生HI后ROS生成增多,PI3Kβ催化亚基优先与Rab5结合,激活细胞自噬;另一途径同时启动,PI3Kβ亚基激活叉头盒蛋白O (Forkhead box O, FoxO),促进细胞自噬 [11] [13] [16]。

3.3. mTOR通路

mTOR包括两种复合体mTORC1 (mTOR complex 1)和mTORC2 (mTOR complex 2)。当存在营养缺乏或mTOR抑制剂雷帕霉素刺激时,可直接抑制mTORC1活性,导致ULK复合体活性增强,启动细胞自噬 [17]。此外,有研究证实,mTOR还能刺激下游靶70 kDa核糖体蛋白S6激酶(p70S6K)和真核启动因子4E结合蛋白(4E-BPI),促进蛋白质合成、细胞增殖,加速细胞代谢从而抑制细胞自噬 [18] [19]。

3.4. AMPK通路

一磷酸腺苷蛋白激酶(AMP-activated protein kinase, AMPK)是线粒体功能的关键传感器。在机体饥饿时,ATP水平降低,AMP水平升高,激活AMPK途径 [20] [21],mTOR活性被AMPK抑制,从而启动自噬 [21]。有研究表明,海马组织中的应激诱导蛋白Sestrin2在HI诱导后过表达,可能通过AMPK-mTOR信号通路促进细胞自噬,从而导致神经损伤 [22]。此外,活化的AMPK可直接刺激ULK1复合体,使其发生自身磷酸化,从而触发自噬 [23]。

3.5. 内质网应激(Endoplasmic Reticulum Stress, ERS)通路

当细胞内质网稳态受到破坏,为消除内质网中积聚的蛋白而启动未折叠蛋白反应(unfolded protein response, URP) [24],URP由三种内质网应激传感器介导:双链RNA依赖的蛋白激酶样内质网激酶(RNA dependent protein kinase-like ER kinase, PERK)、肌醇需求酶-1 (inositol requiring enzyme 1, IRE1)和活化转录因子6 (activating transcription factor 6, ATF6)。内质网应激可通过UPR的三个分支以不同方式启动自噬。

1) PERK-eIF2α信号通路:当机体缺氧时,ERS负担过重,PERK磷酸化eIF2α,激活应激特异性转录因子4 (activating transcription factor 4, ATF4)和增强子结合蛋白同源蛋白(C/EBP-homologous protein, CHOP)的转录,并增加自噬相关蛋白Beclin-1、LC3和p62的表达 [25],从而促进细胞自噬。2) IRE1α-ASK-JNK信号通路:HI状态下ERS发生 [26],IRE1α自身磷酸化并募集细胞凋亡信号调节激酶(apoptosis signal-regulating kinase, ASK),进而激活c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK),增强ATG7和LC3II表达和自噬体形成,从而促进细胞自噬 [27]。3) ATF6通路:ERS过度时,ATF6使死亡相关蛋白激酶(death-associated protein kinase, DAPK)活化,DAPK释放Beclin1并激活自噬 [28];ATF6还可通过增加葡萄糖调节蛋白78 (glucose regulated protein78, GRP78)表达从而抑制AKT、mTOP,启动自噬 [29]。

3.6. ERK级联

此通路在应激条件下激活 [30],一方面,细胞外信号调节激酶(extracellular signal-regulated kinase, ERK)磷酸化后增加结节性硬化症因子2 (tuberous sclerosis complex2, TSC2)活性,mTOR活性受到抑制,从而刺激细胞自噬 [31];另一方面活化的ERK直接促进自噬标记物的表达起始自噬 [32]。

4. 自噬介导的HIBD治疗

4.1. 抑制自噬的治疗

4.1.1. 七氟醚(Sevoflurane)

七氟醚是临床上新生儿最常用的麻醉剂,无刺激性气味。实验证实,将HIBD新生大鼠模型置于2.5%七氟醚室中30分钟,HI导致的大鼠神经元丢失减少,其长期学习和记忆能力改善 [33]。Wang等 [31] 发现七氟醚可以通过增强ERK、mTOR、p70S6表达并降低TSC2表达,从而导致自噬通量(Beclin1和LC3)的表达水平降低来抑制自噬。Xue等 [34] 研究发现,HI损伤后自噬的关键调节因子zeste同源物2增强子(enhancer of zeste homolog 2, Ezh2) [35] [36]、Akt、mTOR水平降低且Pten水平升高,而七氟醚处理后可逆转上述的改变,从而提示七氟醚能通过改变Ezh2表达经Pten/Akt/mTOR信号通路抑制自噬来减轻脑损伤。另有研究表明,七氟醚还能通过IRE1-JNK-beclin1信号级联抑制内质网应激介导的自噬发挥作用 [37]。以上均证明七氟醚后处理能通过调节自噬对HIBD新生大鼠神经起保护作用。

4.1.2. 天然植物化学物质

研究表明,植物化学物质具有广泛的细胞分子效应,包括炎症反应、氧化应激、凋亡、自噬和细胞代谢等 [38] [39]。近年来,在新生儿HIBD的治疗中发现其能通过调节自噬发挥神经保护作用。大黄酚(Chrysophanol, CP)提取于大黄中,是其主要活性成分之一,属于蒽醌类化合物的一种,已被证实具有抗氧化应激、神经保护和抗癌等功能 [19]。Bing等 [40] 研究显示,向HIBD新生大鼠模型的腹腔中注射CP,可逆转HI引起的Beclin1、LC3II蛋白水平的升高和P62的降低,减轻大鼠脑组织含水量,改善了其神经损伤;同时进一步探索了CP是通过mTOR/p70S6K信号通路抑制自噬发挥作用。香兰素是豆荚和热带香草花荚中的成分,在符玉水等 [41] 的实验中发现其能通过抑制自噬来减少HIBD新生大鼠的脑梗死面积,改善其长期学习和记忆功能。蔡晨晨等 [42] 发现水果(蓝莓和石榴等)中提取出的鞣花酸也能抑制HI导致的神经元过度自噬而起到神经保护作用。因此,从天然植物化合物中寻找有效成分调节自噬可能成为治疗HIBD的一种可供选择的方法。

4.1.3. 甘氨酸

甘氨酸在细胞代谢中起重要作用,广泛存在于许多生物分子中。研究表明,甘氨酸可以在缺氧、活性氧增多和化学能耗竭时保护机体免受损伤 [43],并常用来保护线粒体 [44]。Cai等 [45] 研究发现,腹腔注射甘氨酸可显著减轻HIBD新生大鼠模型的脑损伤并降低了线粒体功能蛋白(Bnip3、parkin、PINK1)和自噬标记物LC3水平;在给予自噬的常规抑制剂环孢菌素A (CsA)后,显示出与甘氨酸同向的结果,而施用AMPK通路激动剂(AICAR),结果显示与上述相反,表明甘氨酸可通过下调AMPK途径来减弱线粒体介导的自噬从而减轻HI所致的神经损伤。

4.1.4. 干细胞

干细胞具有诱导组织修复和再生的潜在生物功能。研究表明,骨髓间充质基质细胞(mesenchymal stromal cells,MSC)移植对HIBD具有神经保护作用 [46] [47]。Yang等 [48] 发现MSC移植后HIBD新生大鼠的认知障碍得到改善,同时伴有海马中的Beclin1和LC3-II表达水平显著降低,表明自噬受到抑制;此外发现AMPK蛋白表达水平显著增加,mTOR蛋白表达水平显著降低,而使用白细胞介素(IL)-6抑制剂(siIL-6)后上述改变均被逆转。由此证实MSC分泌的IL-6可通过AMPK/mTOR信号通路抑制神经元自噬来保护神经 [48]。越来越多的证据表明,骨髓间充质干细胞对脑损伤后的功能恢复具有强大的治疗作用 [47]。

4.2. 促进自噬的治疗

4.2.1. 辛伐他汀(Simvastatin, Sim)

Sim属于他汀类药物,常用于降低高血脂症患者的胆固醇。研究表明,在脑损伤前给予他汀类药物预处理能起到神经保护作用 [49]。实验发现,在HI诱导新生大鼠前向大鼠右侧脑室注射Sim预处理后,可显著削弱HI导致的神经元损伤同时伴随自噬体数量、Beclin1和LC3表达显著增强 [50]。沉默信息调节因子1 (silent information regulator 1, SIRT1)在自噬中起关键作用 [51],其可以通过去乙酰化自噬相关蛋白ATG5、ATG7和LC3来影响自噬体形成,并间接通过激活AMPK和抑制mTOR调节自噬 [52]。Carloni等 [50] 证实了Sim预处理可以增强HI24小时后mTORC1活性并降低mTORC2活性,同时保留SIRT1表达,三者同时促进自噬,从而促进神经元存活。

4.2.2. 玛卡酰胺B (Macamide B)

玛卡酰胺B提取于南美洲安第斯山脉的一种十字花科植物——玛卡中,研究人员发现玛卡酰胺B能通过诱导自噬减少神经细胞的死亡 [23]。Yang等 [53] 研究显示,在HI诱导新生大鼠前给予玛卡酰胺B预处理后能通过PI3K-AKT信号通路促进自噬来显著减轻脑梗死和脑水肿。这一研究更加论证了天然植物化合物治疗HIBD的潜力。

4.3. 基因治疗

4.3.1. 微小核糖核酸(microRNAs, miRNAs)

miRNAs是一类内源性非编码小RNA分子,在中枢神经系统的病理生理调节中发挥重要作用 [54] [55]。有研究发现,经HI诱导的miR-127-3p基因敲除(KO-miR-127-3p)的SD大鼠,皮层神经元凋亡数量明显减少并且自噬相关蛋白(P62、ATG12、Beclin-1和LC3II)的表达水平显著降低,与基因正常的HIBD新生大鼠结果相反,而使用自噬关键分子CISD1 (CDGSH iron-sulfur domain-containing protein 1)抑制剂(si-CISD1)后,miR-127-3p基因敲除所产生的保护作用被消除 [56]。Zhao等 [57] 发现HIBD新生大鼠模型的miR-30d-5p表达降低,自噬标记物表达增强,在HI诱导前给予miR-30d-5p抑制剂(antagomir, AT),相关变化与上述相同,同时发现脑组织梗塞体积明显减少并且其空间学习能力有所改善,而在HI诱导前给予miR-30d-5p激动剂(agomir, AG)出现与之相反的变化。从而得出结论,miR-30d-5pAT可通过增强自噬减轻HI导致的神经损伤。实验证明,miR-127-3p和miR-30d-5p可能是治疗HIBD的潜在靶点。

4.3.2. 长非编码RNA (Long Non-Coding RNA, LncRNAs)

LncRNAs是一类长度在200-100000个核苷酸之间的RNA分子。研究证实,沉默LncRNAs生长停滞特异性5 (growth arrest-specific 5, GAS5)基因可对HIBD新生儿起神经保护作用 [58]。Fu等 [59] 的实验发现在HI诱导大鼠前施用表达结肠直肠肿瘤差异表达(colorectal neoplasia differentially expressed, CRNDE) shRNA的慢病毒(LV-sh-CRNDE)出现与单纯HIBD新生大鼠一样的结果(LncRNA-CRNDE表达水平和自噬标记物的蛋白水平显著升高),并且可以观察到脑组织梗死面积和凋亡细胞数量显著减少,由此CRNDE可能通过促进自噬来治疗HIBD。以上研究再次为治疗HIBD提供了潜在靶点。

5. 小结及展望

迄今为止,临床上最常用的治疗HIBD的疗法是亚低温治疗,但由于亚低温治疗开始在缺氧缺血后6 h内实施,此时脑组织已有坏死,中重度HIBD新生儿大多预后不良 [60]。因此,研究人员正寻找替代疗法,以求更安全有效地治疗HIBD。近年来,自噬介导的HIBD治疗已成为研究的热门方向。在缺氧缺血的条件下,自噬启动的自我保护过程是维持细胞稳态所必需的,对于蛋白功能调节意义重大。但自噬在HIBD中发挥作用的机制还未完全阐明,自噬对于神经元的双重作用,还有待进一步探究。一些治疗手段在实验中取得巨大成果,实验证实其能起到有效的神经保护作用,甚至改善后期学习行为能力,但这些治疗措施进入临床还需要大量的试验,评估其不良反应和风险。在此,期待着研究人员能从自噬中找到HIBD治疗的突破口,挽救无数家庭。

NOTES

*通讯作者Email: jianghongbs@163.com

参考文献

[1] Piešová, M. and Mach, M. (2020) Impact of Perinatal Hypoxia on the Developing Brain. Physiological Research, 69, 199-213.
https://doi.org/10.33549/physiolres.934198
[2] 廖正嫦, 岳少杰. 新生儿缺氧缺血综合征的研究进展[J]. 发育医学电子杂志, 2019, 7(1): 19-23.
[3] Piešová, M., Koprdová, M., Ujházy, E., et al. (2020) Impact of Pre-natal Hypoxia on the Development and Behavior of the Rat Offspring. Physiological Research, 69, S649-S659.
https://doi.org/10.33549/physiolres.934614
[4] Nair, J. and Kumar, V.H.S. (2018) Current and Emerging Thera-pies in the Management of Hypoxic Ischemic Encephalopathy in Neonates. Children, 5, Article No. 99.
https://doi.org/10.3390/children5070099
[5] Qu, Y., Shi, J., Tang, Y., et al. (2016) MLKL Inhibition Attenuates Hypoxia-Ischemia Induced Neuronal Damage in Developing Brain. Experimental Neurology, 279, 223-231.
https://doi.org/10.1016/j.expneurol.2016.03.011
[6] Levy, J.M.M., Towers, C.G. and Thorburn, A. (2017) Tar-geting Autophagy in Cancer. Nature Reviews Cancer, 17, 528-542.
https://doi.org/10.1038/nrc.2017.53
[7] 黄林, 鲁利群. 细胞自噬与缺氧缺血性脑损伤的研究进展[J]. 中国医药导报, 2019, 16(35): 40-43.
[8] Wu, B., Tan, M., Cai, W., et al. (2018) Arsenic Trioxide Induces Autophagic Cell Death in Osteosarcoma Cells via the ROS-TFEB Sig-naling Pathway. Biochemical and Biophysical Research Communications, 496, 167-175.
https://doi.org/10.1016/j.bbrc.2018.01.018
[9] Li, X., He, S. and Ma, B. (2020) Autophagy and Autopha-gy-Related Proteins in Cancer. Molecular Cancer, 19, Article No. 12.
https://doi.org/10.1186/s12943-020-1138-4
[10] Zhu, Q. and Lin, F. (2016) Molecular Markers of Autophagy. Acta Pharmaceutica Sinica, 51, 33-38.
[11] Shin, H.J., Kwon, H.K., Lee, J.H., et al. (2016) Etoposide Induced Cyto-toxicity Mediated by ROS and ERK in Human Kidney Proximal Tubule Cells. Scientific Reports, 6, Article No. 34064.
https://doi.org/10.1038/srep34064
[12] Guo, Q.Q., Wang, S.S., Zhang, S.S., et al. (2020) ATM-CHK2-Beclin 1 Axis Promotes Autophagy to Maintain ROS Homeostasis under Oxidative Stress. EMBO Journal, 39, e103111.
https://doi.org/10.15252/embj.2019103111
[13] 施诚龙, 陈冲, 高永军, 徐蔚. PI3K/AKT/mTOR信号通路在细胞自噬中作用及机制的研究进展[J]. 山东医药, 2021, 61(27): 102-105.
[14] Qu, L., Gao, Y., Sun, H., et al. (2016) Role of PTEN-Akt-CREB Signaling Pathway in Nervous System Impairment of Rats with Chronic Arsenite Exposure. Biological Trace Element Research, 170, 366-372.
https://doi.org/10.1007/s12011-015-0478-1
[15] Liu, W.W., Xu, L., Wang, X., et al. (2021) PRDX1 Activates Autophagy via the PTEN-AKT Signaling Pathway to Protect against Cisplatin-Induced Spiral Ganglion Neuron Damage. Autophagy, 17, 4159-4181.
https://doi.org/10.1080/15548627.2021.1905466
[16] Singh, P., Dar, M.S. and Dar, M.J. (2016) P110α and P110β Isoforms of PI3K Signaling: Are They Two Sides of the Same Coin? FEBS Letters, 590, 3071-3082.
https://doi.org/10.1002/1873-3468.12377
[17] Shi, B., Ma, M., Zheng Y, et al. (2019) mTOR and Beclin1: Two Key Autophagy-Related Molecules and Their Roles in Myocardial Ischemia/Reperfusion Injury. Journal of Cellular Physiology, 234, 12562-12568.
https://doi.org/10.1002/jcp.28125
[18] 丁亦含, 李玉峰. mTOR信号通路与自噬、凋亡之间的相互关系[J]. 现代医学, 2015, 43(6): 801-804.
[19] 李东辉, 王临艳, 吴红伟, 张淑娟, 张育贵, 李越峰. 大黄酚药理作用研究进展[J]. 中华中医药学刊, 2021, 39(12): 66-69.
[20] Kim, A.S., Miller, E.J., Wright, T.M., et al. (2011) A Small Mole-cule AMPK Activator Protects the Heart against Ischemia-Reperfusion Injury. Journal of Molecular and Cellular Cardi-ology, 51, 24-32.
https://doi.org/10.1016/j.yjmcc.2011.03.003
[21] Yang, Z. and Klionsky, D.J. (2010) Mammalian Autophagy: Core Molecular Machinery and Signaling Regulation. Current Opinion in Cell Biology, 22, 124-131.
https://doi.org/10.1016/j.ceb.2009.11.014
[22] 马慧顺, 陈洪菊, 唐军. Sestrin2参与调控新生鼠缺氧缺血性脑损伤后细胞自噬机制[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(1): 32-41.
[23] Thapa, K., Singh, T.G. and Kaur, A. (2021) Cyclic Nucleotide Phosphodiesterase Inhibition as a Potential Therapeutic Target in Renal Ischemia Reperfusion Injury. Life Sciences, 282, Article ID: 119843.
https://doi.org/10.1016/j.lfs.2021.119843
[24] Smith, M. and Wilkinson, S. (2017) ER Homeostasis and Autopha-gy. Essays in Biochemistry, 61, 625-635.
https://doi.org/10.1042/EBC20170092
[25] B’Chir, W., Maurin, A.C., Carraro, V., et al. (2013) The eIF2α/ATF4 Pathway Is Essential for Stress-Induced Autophagy Gene Expression. Nucleic Acids Research, 41, 7683-7699.
https://doi.org/10.1093/nar/gkt563
[26] Koike, M., Shibata, M., Tadakoshi, M., et al. (2008) Inhibition of Autoph-agy Prevents Hippocampal Pyramidal Neuron Death after Hypoxic-Ischemic Injury. The American Journal of Pathology, 172, 454-469.
https://doi.org/10.2353/ajpath.2008.070876
[27] 徐倩, 许银丰, 杨杰杰, 王彬, 侯琳, 李宁. 内质网应激与细胞自噬的关系[J]. 中国细胞生物学学报, 2020, 42(8): 1489-1500.
[28] Cai, Y., Arikkath, J., Yang, L., et al. (2016) Interplay of Endoplasmic Reticulum Stress and Autophagy in Neurodegenerative Disorders. Autophagy, 12, 225-244.
https://doi.org/10.1080/15548627.2015.1121360
[29] Qin, L., Wang, Z., Tao, L., et al. (2010) ER Stress Nega-tively Regulates AKT/TSC/mTOR Pathway to Enhance Autophagy. Autophagy, 6, 239-247.
https://doi.org/10.4161/auto.6.2.11062
[30] 王雪, 张评浒. Ras/Raf/MEK/ERK信号通路参与自噬调控作用的研究进展[J]. 中国药科大学学报, 2017, 48(1): 110-116.
[31] Wang, S., Xue, H., Xu, Y., et al. (2019) Sevoflurane Postconditioning Inhibits Autophagy through Activation of the Extracellular Signal-Regulated Kinase Cascade, Alleviat-ing Hypoxic-Ischemic Brain Injury in Neonatal Rats. Neurochemical Research, 44, 347-356.
https://doi.org/10.1007/s11064-018-2682-9
[32] Kim, J.H., Hong, S.K., Wu, P.K., et al. (2014) Raf/MEK/ERK Can Regulate Cellular Levels of LC3B and SQSTM1/p62 at Expression Levels. Experimental Cell Research, 327, 340-352.
https://doi.org/10.1016/j.yexcr.2014.08.001
[33] Lai, Z., Zhang, L., Su, J., et al. (2016) Sevoflurane Postconditioning Improves Long-Term Learning and Memory of Neonatal Hypoxia-Ischemia Brain Damage Rats via the PI3K/Akt-MPTP Pathway. Brain Research, 1630, 25-37.
https://doi.org/10.1016/j.brainres.2015.10.050
[34] Xue, H., Xu, Y., Wang, S., et al. (2019) Sevoflurane Post-Conditioning Alleviates Neonatal Rat Hypoxic-Ischemic Cerebral Injury via Ezh2-Regulated Autophagy. Drug De-sign, Development and Therapy, 13, 1691-1706.
https://doi.org/10.2147/DDDT.S197325
[35] Henriquez, B., Bustos, F.J., Aguilar, R., et al. (2013) Ezh1 and Ezh2 Differentially Regulate PSD-95 Gene Transcription in Developing Hippocampal Neurons. Molecular and Cellular Neu-roscience, 57, 130-143.
https://doi.org/10.1016/j.mcn.2013.07.012
[36] Zemke, M., Draganova, K., Klug, A., et al. (2015) Loss of Ezh2 Promotes a Midbrain-to-Forebrain Identity Switch by Direct Gene Derepression and Wnt-Dependent Regulation. BMC Biology, 13, Article No. 103.
https://doi.org/10.1186/s12915-015-0210-9
[37] Niu, J., Wu, Z., Xue, H., et al. (2021) Sevoflurane Post-Conditioning Alleviated Hypoxic-Ischemic Brain Injury in Neonatal Rats by Inhibiting Endoplasmic Reticulum Stress-Mediated Autophagy via IRE1 Signalings. Neurochemistry International, 150, Article ID: 105198.
https://doi.org/10.1016/j.neuint.2021.105198
[38] Sun, L.R., Zhou, W., Zhang, H.M., et al. (2019) Modulation of Multiple Signaling Pathways of the Plant-Derived Natural Products in Cancer. Frontiers in Oncology, 9, Article No. 1153.
https://doi.org/10.3389/fonc.2019.01153
[39] Braicu, C., Mehterov, N., Vladimirov, B., et al. (2017) Nutri-genomics in Cancer: Revisiting the Effects of Natural Compounds. Seminars in Cancer Biology, 46, 84-106.
https://doi.org/10.1016/j.semcancer.2017.06.011
[40] Bing, X., Wang, Y., Zhao, S., et al. (2019) Chrysophanol In-hibits Autophagy to Improve Brain Histopathological Damage and Inflammatory Response in Neonatal Rats with Hy-poxic-Ischemic Brain Injury. Chinese Journal of Immunology, 35, 3015-3220.
[41] 符玉水, 符元证, 霍开明, 杨辉, 钟丽花, 杨方正. 香兰素通过抑制自噬及PINK1信号通路改善新生大鼠低氧缺血性脑损伤与炎症反应[J]. 脑与神经疾病杂志, 2021, 29(8): 463-469.
[42] 蔡晨晨, 叶丽霞, 朱将虎, 白俊杰, 曾珊珊, 陈尚勤, 等. 鞣花酸通过降低自噬作用减轻缺氧缺血性脑损伤[J]. 中国病理生理杂志, 2019, 35(2): 311-319.
[43] Petrat, F., Boengler, K., Schulz, R., et al. (2012) Glycine, A Simple Physiological Compound Protecting by Yet Puzzling Mechanism(s) against Ischaemia-Reperfusion Injury: Current Knowledge. British Journal of Pharmacology, 165, 2059-2072.
https://doi.org/10.1111/j.1476-5381.2011.01711.x
[44] Heidari, R., Ghanbarinejad, V., Mohammadi, H., et al. (2018) Mitochondria Protection as a Mechanism Underlying the Hepatoprotective Effects of Glycine in Cholestatic Mice. Biomedicine & Pharmacotherapy, 97, 1086-1095.
https://doi.org/10.1016/j.biopha.2017.10.166
[45] Cai, C.C., Zhu, J.H., Ye, L.X., et al. (2019) Glycine Protects against Hypoxic-Ischemic Brain Injury by Regulating Mitochondria-Mediated Autophagy via the AMPK Pathway. Oxi-dative Medicine and Cellular Longevity, 2019, Article ID: 4248529.
https://doi.org/10.1155/2019/4248529
[46] Phillips, A.W., Johnston, M.V. and Fatemi, A. (2013) the Potential for Cell- Based Therapy in Perinatal Brain Injuries. Translational Stroke Research, 4, 137-148.
https://doi.org/10.1007/s12975-013-0254-5
[47] Gu, Y., He, M., Zhou, X., et al. (2016) Endogenous IL-6 of Mesenchymal Stem Cell Improves Behavioral Outcome of Hypoxic-Ischemic Brain Damage Neonatal Rats by Supress-ing Apoptosis in Astrocyte. Scientific Reports, 6, Article No. 18587.
https://doi.org/10.1038/srep18587
[48] Yang, M., Sun, W., Xiao, L., et al. (2020) Mesenchymal Stromal Cells Suppress Hippocampal Neuron Autophagy Stress In-duced by Hypoxic-Ischemic Brain Damage: The Possible Role of Endogenous IL-6 Secretion. Neural Plasticity, 2020, Article ID: 8822579.
https://doi.org/10.1155/2020/8822579
[49] Saeedi Saravi, S.S., Saeedi Saravi, S.S., Arefi-doust, A., et al. (2017) The Beneficial Effects of HMG-CoA Reductase Inhibitors in the Processes of Neurodegeneration. Metabolic Brain Disease, 32, 949-965.
https://doi.org/10.1007/s11011-017-0021-5
[50] Carloni, S. and Balduini, W. (2020) Simvastatin Preconditioning Confers Neuroprotection against Hypoxia-Ischemia Induced Brain Damage in Neonatal Rats via Autophagy and Silent Information Regulator 1 (SIRT1) Activation. Experimental Neurology, 324, Article ID: 113117.
https://doi.org/10.1016/j.expneurol.2019.113117
[51] Liu, T., Ma, X., Ouyang, T., et al. (2018) SIRT1 Reverses Senescence via Enhancing Autophagy and Attenuates Oxidative Stress-Induced Apoptosis through Promoting P53 Deg-radation. International Journal of Biological Macromolecules, 117, 225-234.
https://doi.org/10.1016/j.ijbiomac.2018.05.174
[52] Ghosh, H.S., Mcburney, M. and Robbins, P.D. (2010) SIRT1 Negatively Regulates the Mammalian Target of Rapamycin. PLOS ONE, 5, e9199.
https://doi.org/10.1371/journal.pone.0009199
[53] Yang, X., Wang, M., Zhou, Q., et al. (2022) Macamide B Pre-treatment Attenuates Neonatal Hypoxic-Ischemic Brain Damage of Mice Induced Apoptosis and Regulates Autophagy via the PI3K/AKT Signaling Pathway. Molecular Neurobiology, 59, 2776-2798.
https://doi.org/10.1007/s12035-022-02751-4
[54] Bhalala, O.G., Srikanth, M. and Kessler, J.A. (2013) The Emerging Roles of MicroRNAs in CNS Injuries. Nature Reviews Neurology, 9, 328-339.
https://doi.org/10.1038/nrneurol.2013.67
[55] Wen, W., Mai, S.J., Lin, H.X., et al. (2019) Identification of Two MicroRNA Signatures in Whole Blood as Novel Biomarkers for Diagnosis of Nasopharyngeal Carcinoma. Journal of Translational Medicine, 17, Article No. 186.
https://doi.org/10.1186/s12967-019-1923-2
[56] Zhang, Z.B., Xiong, L.L., Xue, L.L., et al. (2021) miR-127-3p Targeting CISD1 Regulates Autophagy in Hypoxic-Ischemic Cortex. Cell Death & Disease, 12, Article No. 279.
https://doi.org/10.1038/s41419-021-03541-x
[57] Zhao, F., Qu, Y., Zhu, J., et al. (2017) miR-30d-5p Plays an Important Role in Autophagy and Apoptosis in Developing Rat Brains after Hypoxic-Ischemic Injury. Journal of Neu-ropathology & Experimental Neurology, 76, 709-719.
https://doi.org/10.1093/jnen/nlx052
[58] Zhao, R.B., Zhu, L.H., Shu, J.P., et al. (2018) GAS5 Silencing Protects against Hypoxia/Ischemia-Induced Neonatal Brain Injury. Biochemical and Biophysical Research Communications, 497, 285-291.
https://doi.org/10.1016/j.bbrc.2018.02.070
[59] Fu, C.H., Lai, F.F., Chen, S., et al. (2020) Silencing of Long Non-Coding RNA CRNDE Promotes Autophagy and Alleviates Neonatal Hypoxic-Ischemic Brain Damage in Rats. Molecular and Cellular Biochemistry, 472, 1-8.
https://doi.org/10.1007/s11010-020-03754-2
[60] Cui, D., Sun, D., Wang, X., et al. (2017) Impaired Autophago-some Clearance Contributes to Neuronal Death in a Piglet Model of Neonatal Hypoxic-Ischemic Encephalopathy. Cell Death & Disease, 8, e2919.
https://doi.org/10.1038/cddis.2017.318