渗流力学进展  >> Vol. 2 No. 1 (March 2012)

直接甲醇质子交换膜燃料电池的格子Boltzmann方法研究进展
Advance in Lattice Boltzmann Method Applied in Direct Methanol Fuel Cell

DOI: 10.12677/apf.2012.21001, PDF, HTML, XML, 下载: 3,409  浏览: 13,924  国家自然科学基金支持

作者: 苏卫卫, 许友生:浙江师范大学物理系

关键词: 格子Boltzmann方法直接甲醇燃料电池质子交换膜燃料电池
Lattice Boltzmann Method; Direct Methanol Fuel Cell; Polymer Electrolyte Membrane Fuel Cell

摘要: 综述了用格子Boltzmann方法模拟直接甲醇质子交换膜燃料电池的研究进展,具体介绍了利用格子Boltzmann方法模拟燃料电池中的多相流,传热传质和电化学反应过程等的最新进展,认识到格子Boltzmann方法作为一种计算流体力学的介观模拟方法,是一种有效的分析燃料电池性能的数值方法,通过数值模拟可以更好地了解电池的复杂物理化学过程,为优化电池性能提供更充分的理论依据。文章还对研究最新进展予以简单评述,同时指出了目前研究过程中所建模型存在的不足。 The development of lattice Boltzmann method numerical simulation was reviewed in the article for the direct methanol fuel cell (DMFC). The up-to-the-minute progress of the lattice Boltzmann method applied in multiphase flow, mass and heat transfer and electrochemical reactions in the fuel cells was described in detail. As a computational fluid dynamic method, the lattice Boltzmann method is an effective and efficient numerical scheme to analyze the performance of the fuel cell. The numerical simulations performed better understanding of the complex phenomena of fuel cells. These processes were needed for optimum call design. The latest research development was also reviewed in the article. At the same time, the deficiency of the present model was pointed out.

文章引用: 苏卫卫, 许友生. 直接甲醇质子交换膜燃料电池的格子Boltzmann方法研究进展[J]. 渗流力学进展, 2012, 2(1): 1-8. http://dx.doi.org/10.12677/apf.2012.21001

参考文献

[1] G. Inoue, T. Yoshimoto, Y. Matsukuma, et al. Development of simulated gas diffusion layer of polymer electrolyte fuel cells and evaluation of its structure. Journal of Power Sources, 2008, 175(1): 145-158.
[2] 林鸿, 陶文铨. 质子交换膜燃料电池的三维数值模拟[J]. 西安交通大学学报. 2008, 42(1): 41-45.
[3] A. A. Kulikovsky, J. Divisek and A. A. Kornyshev. Two-dimen- sional simulation of direct methanol fuel cell—A new (embed-ded) type of current collector. Journal of the Electrochemical Society, 2000, 147(3): 953-959.
[4] J. Ge, H. Liu. A three-dimensional mathematical model for liq-uid-fed direct methanol fuel cells. Journal of Power Sources, 2006, 160(1): 413-421.
[5] C. Xu, A. Faghri, X. Li, et al. Methanol and water crossover in a passive liquid-feed direct methanol fuel cell. International Jour-nal of Hydrogen Energy, 2010, 35(4): 1469-1777.
[6] G. Tang, W. Tao and Y. He. Gas slippage effect on microscale porous flow using the lattice Boltzmann method. Physical Re-view E, 2005, 72(5): Article ID 056301.
[7] Z. L. Guo, T. S. Zhao. Lattice Boltzmann model for incom-pressible flows through porous media. Physical Review E, 2002, 66(32B): 036301-036304.
[8] S. Chen, S. P. Dawson and G. D. Doolen, et al. Lattice methods and their applications to reacting systems. Computers and Chemi- cal Engineering, 1995, 19(6): 617-646.
[9] S. Chen, H. D. Chen, D. Martinez, et al. Lattice Boltzmann model for simulation of magnetohydrodynamics. Physical Re- view Letters, 1991, 67(27): 3776-3779.
[10] N. Rakotomalala, D. Salin and P. Watzky. Simulations of viscous flows of complex fluids with a Bhatnagar, Gross, and Krook lat-tice gas. Physics of Fluids, 1996, 8(11): 3200-3202.
[11] E. S. Boek, J. Chin and P. V. Coveney. Lattice Boltzmann simu-lation of the flow of non-Newtonian fluids in porous media. In- ternational Journal of Modern Physics B, 2003, 17(1-2): 99-102.
[12] S. Gabbanelli, G. Drazer and J. Koplik. Lattice Boltzmann mot-hod for non-Newtonian (powerlaw) fluids. Physical Review E, 2005, 72: Article ID 046312.
[13] D. Grunau, S. Chen and K. Eggert. A Lattice Boltzmann model for multiphase fluid-flows. Physics of Fluids, 1993, 5: 2557- 2562.
[14] A. Gunstensen, D. Rothman, S. Zaleski, et al. Lattice Boltzmann model of immiscible fluids. Physical Review E, 1991, 43(8): 4320-4327.
[15] 李维仲, 李爽. 用格子Boltzmann方法模拟液滴合并过程[J]. 热科学与技术, 2007, 6(3): 379-393.
[16] M. Swift, E. Orlandini, W. Osborn, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Physical Re-view E, 1996, 54: 5041-5052.
[17] T. Inamuro, T. Ogata, S. Tajima, et al. A lattice Boltzmann mot-hod for incompressible two-phase flows with large density dif-ferences. Journal of Computational Physics, 2004, 198(2): 628- 644.
[18] L. Luo. Theory of the lattice Boltzmann mothod: Lattice Boltz-mann models for nonideal gases. Physical Review E, 2000, 62 (4): 4982.
[19] X. He, S. Chen and R. Zhang. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. Journal of Computational Physics, 1999, 152(2): 642-663.
[20] C. L. Tien, A. Majumdar, V. P. Carey, et al. Molecular and mi-croscal transport phnomena: A report on the 2nd US Japan joint seminar, Santa Barbara, California, 1996. Microscale Thermo-physical Engineering, 1997, 1(1): 71-84.
[21] A. S. Joshi, K. N. Grew, A. A. Peracchio, et al. Lattice Boltz-mann modeling of 2D gas transport in a solid oxide fuel cell an-ode. Journal of Power Sources, 2007, 164(2): 631-638.
[22] Y. Tabe, T. Ochi, K. Kikuta, et al. Numerical simulation of liquid water behavior in separator-channels in PEMFC using LBM. Proceedings of 3rd International Conference on Fuel Cell Sci-ence Engineering and Technology, Ypsilanti, 2005: 1-6.
[23] K. Fei, T. S. Chen and C. W. Hong. Direct methanol fuel cell bubble transport simulations via thermal lattice Boltzmann and volume of fluid methods. Journal of Power Sources, 2010, 195(7): 1940-1945.
[24] L. Hao, P. Cheng. Lattice Boltzmann simulations of liquid drop-let dynamic behavior on a hydrophobic surface of a gas flow channel. Journal of Power Sources, 2009, 190(2): 435-446.
[25] J. Park, X. Li. Multi-phase micro-scale flow simulation in the electrodes of a PEM fuel cell by lattice Boltzmann method. Journal of Power Sources, 2008, 178: 248-257.
[26] X. D. Niu, T. Munekata, S. A. Hyodoa, et al. An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model. Journal of Power Sources, 2007, 172(2): 542- 552.
[27] 陈志. 直接甲醇质子交换膜燃料电池中阳极CO2去除及水、热的综合管理[D]. 东南大学, 2006.
[28] A. Cancelliere, C. Chang, E. Foti, et al. The permeability of a random medium: Comparison of simulation with theory. Physics of Fluids A, 1990, 2(12): 2085-2088.
[29] K. J. Malory, L. Furuberg, J. Feder, et al. Dynamics of slow drainage in porous media. Physical Review Letters, 68(14): 2161-2164.
[30] M. A. Delavar, M. Farhadi and K. Sedighi. Effect of the heater location on heat transfer and entropy generation in the cavity using the lattice Boltzmann Methode. Heat Transfer Research, 2009, 40(6): 521-536.
[31] A. Mezrhab, M. Jami, C. Abid, et al. Lattice-Boltzmann model-ling of natural convection in an inclined square enclosure with partitions attached to its cold wall. International Journal of Heat Fluid Flow, 2006, 27(3): 456-465.
[32] A. A. Mohammad. Applied lattice Boltzmann method for trans-port phenomena momentum heat and mass transfer. Calgary: The University of Calgary Press, 2007.
[33] S. Chen, G. D. Doolen. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998, 30(1): 329- 364.
[34] B. Chopard, P. O. Luthi. Lattice Boltzmann computations and applications to physics. Theory Computational Physics, 1999, 217: 115-130.
[35] J. R. Ho, C. P. Kuo and W. S. Jiaung. Study of heat transfer in multilayered structure within the framework of dualphaselag heat conduction model using lattice Boltzmann method. International Journal of Heat Mass Transfer, 2003, 46(1): 55-69.
[36] J. R. Ho, C. P. Kuo, W. S. Jiaung, et al. Lattice Boltzmann scheme for hyperbolic heat conduction equation. Numerical Heat Trans-fer B, 2002, 41(6): 591-607.
[37] R. R. Nourgaliev, T. N. Dinh, T. G. Theofanous, et al. The Lattice Boltzmann equation method: Theoretical interpretation, numerics and implications. International Journal of Multiphase Flow, 2003, 29(1): 117-169.
[38] R. G. M. VonderSman, M. H. Ernst and A. C. Berkerbosch. Lattice Boltzmann scheme for cooling of packed cut flowers. International Journal of Heat Mass Transfer, 2000, 43(4): 577- 587.
[39] Y. Tabe, Y. Lee, T. Chikahisa, et al. Numerical simulation of liquid water and gas flow in a channel and a simplifed gas diffu-sion layer model of polymer electrolyte membrane fuel cells us-ing the lattice Boltzmann method. Journal of Power Sources, 2009, 193(1): 24-31.
[40] J. Park, M. Matsubara and X. Li. Application of lattice Boltz-mann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell. Journal of Power Sources, 2007, 173: 404-414.
[41] F. R. Phelan, Jr., G. Wise. Analysis of transverse flow in aligned fibrous porous media. Composites, 1995, 27A: 25.
[42] H. Li, C. Pan and C. T. Miller. Pore-scale investigation of vis-cous coupling effects for two-phase flow in porous media. Physi-cal Review E, 2005, 72(4): Article ID 026705.
[43] H. Chen, S. Chen and W. H. Matthaeus. Recovery of the Navier- Stokes equations using a lattice-gas Boltzmann method. Physical Review A, 1992, A45: 5539.
[44] J. P. Feser, A. K. Prasad and S. G. Advani. Experimental charac-terization of in-plane permeability of gas diffusion layers. Jour-nal of Power Sources, 2006, 162(2): 1226-1231.
[45] 陈黎, 栾辉宝, 陶文铨. PEMFC阴极催化层的LBM模拟[J]. 电源技术, 2009, 33(9): 794-797.
[46] G. Wang, P. P. Mukherjee and C. Y. Wang. Direct numerical simulation (DNS) modeling of PEFC electrodes Part I. Random micro-structure. Electrochimica Acta, 2005, 51(15): 3151-3160.
[47] M. A. Delavar, M. Farhadi and K. Sedighi. Numerical simula-tion of direct methanol fuel cells using lattice Boltzmann method. International Journal of Hydrogen Energy, 2010, 35(17): 9306- 9317.