那他霉素及其衍生物在眼部感染性疾病中的应用与研究进展
Application and Research Progress of Natamycin and Its Derivatives in Ocular Infectious Diseases
DOI: 10.12677/ACM.2022.126848, PDF, HTML, XML, 下载: 350  浏览: 533  国家自然科学基金支持
作者: 纪晓月, 田 雪:青岛大学,山东 青岛;青岛大学附属医院,山东 青岛;彭旭东*:青岛大学附属医院,山东 青岛
关键词: 那他霉素药理研究真菌性角膜炎临床应用Natamycin Pharmacological Research Fungal Keratitis Clinical Application
摘要: 那他霉素作为一种广谱抗真菌的多烯大环内酯类抗生素,在临床上被广泛用于治疗眼部浅表真菌感染,也应用于农业和食品防腐等领域。但随着长期使用,那他霉素也表现出眼部低渗透性、耐药性等缺点。本文主要以近年来国内外研究报道的那他霉素及其衍生物的文献为基础,对其药理作用和机制,以及在眼部感染性疾病中的应用进行总结,以期为那他霉素的深入研究和开发利用提供参考。
Abstract: Natamycin, as a broad-spectrum antifungal polyene macrolide antibiotic, is widely used in clinical treatment of superficial fungal infections of the eye, and also in the fields of agriculture and food preservation. However, with long-term use, natamycin also shows shortcomings such as low ocular permeability and drug resistance. This article is mainly based on the literature of natamycin and its derivatives reported in recent years at home and abroad, and summarizes its pharmacological ac-tion and mechanism, as well as its application in ocular infectious diseases, providing reference for in-depth research and development and utilization.
文章引用:纪晓月, 田雪, 彭旭东. 那他霉素及其衍生物在眼部感染性疾病中的应用与研究进展[J]. 临床医学进展, 2022, 12(6): 5863-5869. https://doi.org/10.12677/ACM.2022.126848

1. 引言

那他霉素(Natamycin, NAT)是1955年来自于南非土壤样品中的纳塔尔链霉菌Streptomyces natalensis,并通过菌株的发酵液中分离提纯获得 [1],首次被发现时被命名为匹马菌素,后来经研究被WHO统一称为那他霉素。NAT的分子式为C33H47NO13,分子量为665.75。那他霉素是一种包含大环内酯环的高分子量结构,其核心结构是一个四共轭双键二十六元内酯环。那他霉素内置中心中的四个共轭双键使其具有亲油性,而羟基化主链又为其提供亲水性。亲水区和疏水区共同存在使得那他霉素具有两亲性 [2]。

那他霉素在水、高级醇、酯溶液中很难溶解,在甲醇溶解性较低,但溶于二甲基亚砜和冰醋酸。那他霉素在PH值为5.9环境中相对稳定。研究发现相对PH值5.9,在较高或较低PH值环境下,那他霉素易发生化学键断裂和皂化反应,会导致抗真菌活性的丧失 [3]。那他霉素应储存在避光环境,由于那他霉素暴露在光照下易氧化、易降解 [4] [5]。

那他霉素作为一种多烯类抗真菌药物,在低浓度下即可表现出极强的抑菌性,并且毒性低、副作用相对较少。迄今为止,已有多个国家将那他霉素应用于食品的保鲜和防腐领域,也在农业领域作为一种防止真菌污染的保护剂。眼表感染性疾病的应用利用了那他霉素的两亲性特性,使它能够穿透角膜并到达相邻基质层,主要用于治疗浅表真菌感染。本综述通过探讨那他霉素及其衍生物的抗真菌作用机制,以及在眼部感染性疾病的临床应用和进展,总结概括那他霉素应用在眼科临床治疗的未来前景。

2. 那他霉素的抗真菌作用及其作用机制

那他霉素作为一种高特异性的抗真菌性药物,对细菌、病毒抑制作用较小。与其他抗真菌剂相比,那他霉素对丝状和少数非丝状真菌均显示出强效的抗真菌活性,而且通过以往的真菌性角膜炎临床病例,其那他霉素对曲霉菌属、镰刀菌属、头孢菌属和念珠菌属等菌属都具有有效的抗真菌活性。Brothers等人研究那他霉素对191种不同的曲霉属菌株具有抗菌活性,平均最低抑菌浓度(Minimum inhibitory concentration, MIC)范围为5~40 mg/mL [6]。Al-Hatmi等人研究那他霉素在4~8 mg/mL浓度范围内对20种引起真菌性角膜炎的相关镰刀菌菌株均产生抑菌作用 [7]。而且那他霉素还显示出对罗克福尔青霉、红色青霉和变色青霉等真菌菌属存在抑制活性,但对青霉孢子没有活性 [8]。

那他霉素作为多烯类化合物,其结构中大环内酯的共轭双键通过范德华力与真菌细胞膜的麦角甾醇结合,同时结构中的多醇可以使菌膜形成水孔,增加菌膜通透性,从而抑制真菌生长 [9]。这种机制与其他多烯类抗真菌药物作用机制不同,如两性霉素B主要是通过与麦角甾醇结合穿透菌膜来发挥抗真菌作用。

麦角甾醇不仅是真菌菌膜的重要组成成分,并且通过介导不同蛋白质复合物的重排参与细胞质液泡融合的启动阶段,在细胞融合和细胞分裂过程中起重要作用 [10] [11] [12] [13]。Welscher等人研究发现那他霉素通过与麦角甾醇结合来干扰这些蛋白质重排,从而阻碍依赖麦角甾醇的蛋白质功能,干扰麦角甾醇介导的液泡融合的启动阶段,由此阻碍真菌细胞的生长 [13] [14]。因此,那他霉素能够通过抑制麦角甾醇影响菌膜融合和分裂过程 [8] [15] [16] [17] [18]。

此外,那他霉素也影响麦角甾醇依赖的血浆蛋白转运复合物的活性。这些蛋白主要负责将必需氨基酸和糖运输到真菌细胞中,如精氨酸、脯氨酸和葡萄糖等 [19] [20],为真菌提供营养支持。那他霉素阻断或抑制蛋白的输入会影响真菌摄取营养进而抑制细胞生长,从而产生抗真菌活性 [21]。

3. 那他霉素在眼部感染性疾病中的临床应用

我国真菌性角膜炎的常见真菌菌属主要为镰刀菌,其次是曲霉属和念珠菌 [22] [23]。然而,在全球范围内,曲霉菌属是导致眼部真菌感染的主要致病真菌生物 [24]。因此,为评估那他霉素在真菌性角膜炎中的眼部抗真菌效果,已有研究针对从眼睛分离的镰刀菌、曲霉属和念珠菌属进行了那他霉素抗真菌评估。Lalitha 等人通过检测那他霉素对从角膜炎临床病例中收集的100种真菌菌株的抑菌活性,结果表明那他霉素对上述真菌物种都具有良好的抑菌活性,其中对曲霉菌的抑菌效果最佳 [25]。已有研究将那他霉素与两性霉素B、醋酸卡泊芬净、伊曲康唑、伏立康唑和泊沙康唑同时作用于从角膜感染中分离出来的真菌,比较评估各种药物的抑菌作用。结果表明那他霉素与其他抗真菌药物相比,能够更好的抑制真菌菌丝的生长和生物膜的形成,并且对真菌性角膜炎具有更优的治疗作用 [25] [26]。

4. 改良那他霉素在眼部感染性疾病方面的应用

纳他霉素是一种治疗真菌性角膜炎的关键药物。随着长期的临床应用,逐渐暴露出那他霉素本身存在的不足之处,可归结于组织渗透弱、半衰期短。那他霉素在临床上主要使进行滴眼治疗,药物在组织上流失过多,所以只有长期高频进行使用,才能在病灶处达到用药浓度,以至于患者治疗时依从性差 [27]。而且那他霉素水溶性差,限制药物渗透到角膜深层甚至前房,这一缺点使那他霉素仅能治疗浅表性真菌感染角膜炎 [28]。与此同时,所有抗真菌药物的长期使用都易产生耐药性。因此已有大量研究针对这些缺点对那他霉素进行改良,来提高其抗菌活性和治疗效果。目前研究主要通过优化药物递送系统(包括药物缓释水凝胶、纳米颗粒及胶束等)的方式来改良那他霉素,来提高那他霉素对真菌性角膜炎的治疗作用。

4.1. 水凝胶

水凝胶是一种具有亲水性的三维网状交联结构,具备良好的生物相容性和生物降解性,可以作为一种药物递送方式,可以克服传统药物脉冲给药产生的副作用,提供持续且可控的药物输送方式,增加药物眼部生物利用度。Janga等人为实现更加高效的眼部药物递送系统,制备了一种离子敏感性的那他霉素结合胆汁体的凝胶。主要利用原位凝胶体系,通过考察凝胶剂种类和组成对水凝胶形成及特性的影响,进而改善那他霉素的药物渗透性,同时水凝胶具有最佳的粘弹性和较强的穿透性,充分提高了对真菌性角膜炎的治疗效果 [29]。Amit等人通过设计那他霉素角膜特异性细胞穿透肽,发现明胶水凝胶在角膜上皮细胞上显现出明显的附着,并且在白色念珠菌和茄形念珠菌角膜炎中表现出持续释放药物24小时。水凝胶的使用能够改善药物的生物利用度,从而潜在的减少治疗所需的使用频率 [30]。

4.2. 纳米颗粒

聚合物纳米颗粒可以有效控制治疗速率和剂量,更好的将药物运送到特定的作用部位。Khames等人前期针对那他霉素角膜穿透性差,采用乳化–超声方法制备了一种那他霉素固体脂质纳米颗粒(NAT-SLNs)。结果发现NAT-SLNs能够延长药物释放时间长达10小时,并且增加了角膜渗透的表观渗透参数和稳态通量,同时药物的抑菌活性明显提高。这一研究表明NAT-SLNs纳米颗粒具有延长药物释放速率、提高角膜渗透力,增强抗真菌活性并且对角膜组织无细胞毒性作用等优点,是一种很有前景的治疗深层角膜炎的眼压输送系统 [31]。细胞穿透肽目前作为一种新型的纳米载体,已有研究通过细胞穿透肽将Tat2与那他霉素的结合,与单独的那他霉素进行比较探索细胞穿透肽的组织穿透能力和抗真菌效果。结果显示局部给予Tat2那他霉素穿透肽比单独给予那他霉素角膜穿透性高,增强了抗真菌疗效 [32]。Nabarawi等人则通过反相蒸发法制备那他霉素纳米载药质体,通过进行体外释放实验和体内研究表明纳米载药质体延长那他霉素的释放时间,增强其药物穿透角膜的能力 [33]。

4.3. 胶束

胶束作为一种良好的药物传递载体,具有较好的缓释能力和较高的水稳定性、副作用少等优点。由于那他霉素在治疗真菌性角膜炎过程中存在给药频率高的缺点,Guo等人通过制备一种自组装聚乙二醇–嵌段聚甲基丙烯酸缩水甘油酯(PEG-b-PGMA)胶束,包裹那他霉素形成载药胶束。实验结果发现载那他霉素胶束对角膜上皮并无毒性作用,并且可以通过释放那他霉素发挥抗真菌作用以及对白色念珠菌也具有较强的抗真菌能力。PEG-b-PGMA胶束能够提高那他霉素的溶解性及使其渗透到角膜和房水中 [34]。Veiga等人为了克服那他霉素水溶性低、眼部渗透性低等限制,将那他霉素封装在中制备成一种单个或混合胶束以及聚(假)轮烷中。结果发现混合胶束的药物溶解能力明显低于单个胶束,而且聚(假)轮烷胶束在眼表面条件下宏观粘度增加,延长药物治疗的持久性,增强角膜渗透性 [35]。

5. 那他霉素联合用药在临床中的应用

目前在临床上真菌性角膜炎的治疗方法主要首先进行局部病灶的清除,辅助合并使用药物来改善病情。潘飞等人研究发现那他霉素与伊曲康唑联合用药可以获得协同增效的治疗效果。那他霉素主要针对真菌的局部感染,而伊曲康唑则可以直接干预角膜深层以及前房 [36]。郑振扬等人发现伏立康唑作为新型的抗真菌药,角膜穿透性强并且眼部利用率高,当与那他霉素联合能协同增效,提高抑菌效果,改善病情,有助于角膜修复 [37]。局部滴用环孢素可以恢复角膜的免疫功能,而且对真菌性角膜炎有一定的治疗作用 [38]。梁静等人在临床上将环孢素滴眼液和那他霉素两两联合,研究发现两药联合治疗真菌性角膜炎,明显比单独使用那他霉素改善治疗效果,增强角膜恢复速度,改善视力 [39]。

6. 展望

目前那他霉素已成为治疗真菌性角膜炎、睑缘炎和结膜炎等眼部浅表真菌感染的首选药物,尤其针对以镰刀菌属和曲霉菌属为主要感染病原菌的眼部感染,具有强效的抑菌活性,且药物毒性及副作用发生率远低于其他抗真菌药物 [40] [41] [42]。但那他霉素的效用仅限于浅表眼部真菌感染,而且临床上局部点药方式的眼部生物利用度较低,需要重复高频使用才可以达到治疗浓度,导致患者依从性降低 [43] [44] [45]。为了克服当前那他霉素疗法存在的挑战,研究工作正集中寻找那他霉素的替代或改良剂型,以增强或改善那他霉素滴眼液在治疗过程中眼部的滞留时间、渗透性和生物利用度。

为了进一步改进那他霉素的抗真菌治疗,已经研究了几种药物制剂方法。根据角膜药代动力学评价,负载那他霉素的凝胶制剂和纳米颗粒在体内试验研究显示出比市售那他霉素悬浮液具有更高的角膜停留作用、缓释作用、眼部生物利用度和较低的给药频率 [46] [47] [48] 等优势。这些优化体系都有助于增强那他霉素的眼部治疗效果。除此之外,胶束系统、环糊精复合物、生物聚合物基质和表面包覆的纳米颗粒系统也已用于进一步提高那他霉素的跨角膜渗透率 [49] [50] [51] [52] [53]。这些创新型药物递送系统有助于改善那他霉素的治疗效果,也为将来在眼部更好地治疗感染性疾病奠定了研究基础。

基金项目

国家自然科学基金资助项目(81870632; 82101095);山东省自然科学基金青年计划(ZR2019BH004)。

NOTES

*通讯作者Email: drpxd@uw.edu

参考文献

[1] Stark, J. (1999) PRESERVATIVES|Permitted Preservatives—Natamycin. Encyclopedia of Food Microbiology, 1776-1781.
https://doi.org/10.1006/rwfm.1999.2080
[2] Thomas, A.H. (1976) Analysis and Assay of Polyene Antifungal Antibiotics. A Review. Analyst, 101, 321-340.
https://doi.org/10.1039/an9760100321
[3] Wang, D., Shen, W., Yuan, J., et al. (2021) Advances in the Biosyn-thesis of Natamycin and Its Regulatory Mechanisms. Chinese Journal of Bioengineering, 37, 1107-1119.
[4] Dekker, J. and Ark, P.A. (1959) Protection of Antibiotic Pimaricin from Oxidation and Ultraviolet Light by Chlorophyllin and Other Compounds. Antibiot Chemother (Northfield), 9, 327-332.
[5] Brik, H. (1976) New High-Molecular Decomposition Products of Natamycin (Pimaricin) with Intact Lactone-Ring. The Journal of Antibiotics (Tokyo), 29, 632-637.
https://doi.org/10.7164/antibiotics.29.632
[6] Brothers, A.M. and Wyatt, R.D. (2000) The Antifungal Activity of Natamycin toward Molds Isolated from Commercially Manufactured Poultry Feed. Avian Diseases, 44, 490-497.
https://doi.org/10.2307/1593087
[7] Al-Hatmi, A.M., Meletiadis, J., Curfs-Breuker, I., et al. (2016) In Vitro Combinations of Natamycin with Voriconazole, Itraconazole and Micafungin against Clinical Fusarium Strains Causing Keratitis. Journal of Antimicrobial Chemotherapy, 71, 953-955.
https://doi.org/10.1093/jac/dkv421
[8] Van Leeuwen, M.R., Golovina, E.A. and Dijksterhuis, J. (2009) The Polyene Antimycotics Nystatin and Filipin Disrupt the Plasma Membrane, Whereas Natamycin Inhibits Endocytosis in Germinating Conidia of Penicillium Discolor. Journal of Applied Microbiology, 106, 1908-1918.
https://doi.org/10.1111/j.1365-2672.2009.04165.x
[9] Te Welscher, Y.M., Ten Napel, H.H., Balagué, M.M., et al. (2008) Natamycin Blocks Fungal Growth by Binding Specifically to Ergosterol without Permeabilizing the Membrane. Journal of Biological Chemistry, 283, 6393-6401.
https://doi.org/10.1074/jbc.M707821200
[10] Takeda, T. and Chang, F. (2005) Role of Fission Yeast Myosin I in Organization of Sterol-Rich Membrane Domains. Current Biology, 15, 1331-1336.
https://doi.org/10.1016/j.cub.2005.07.009
[11] Kato, M. and Wickner, W. (2001) Ergosterol Is Required for the Sec18/ATP-Dependent Priming Step of Homotypic Vacuole Fusion. The EMBO Journal, 20, 4035-4040.
https://doi.org/10.1093/emboj/20.15.4035
[12] Munn, A.L. (2001) Molecular Requirements for the Internalisation Step of Endocytosis: Insights from Yeast. Biochimica et Biophysica Acta, 1535, 236-257.
https://doi.org/10.1016/S0925-4439(01)00028-X
[13] Te Welscher, Y.M., Jones, L., Van Leeuwen, M.R., et al. (2010) Natamycin Inhibits Vacuole Fusion at the Priming Phase via a Specific Interaction with Ergosterol. Antimicrobial Agents and Chemotherapy, 54, 2618-2625.
https://doi.org/10.1128/AAC.01794-09
[14] Baars, T.L., Petri, S., Peters, C., et al. (2007) Role of the V-ATPase in Regulation of the Vacuolar Fission-Fusion Equilibrium. Molecular Biology of the Cell, 18, 3873-3882.
https://doi.org/10.1091/mbc.e07-03-0205
[15] Wickner, W. and Haas, A. (2000) Yeast Homotypic Vacuole Fusion: A Window on Organelle Trafficking Mechanisms. Annual Review of Biochemistry, 69, 247-275.
https://doi.org/10.1146/annurev.biochem.69.1.247
[16] Heese-Peck, A., Pichler, H., Zanolari, B., et al. (2002) Multiple Functions of Sterols in Yeast Endocytosis. Molecular Biology of the Cell, 13, 2664-2680.
https://doi.org/10.1091/mbc.e02-04-0186
[17] Mayer, A. (2002) Membrane Fusion in Eukaryotic Cells. Annual Review of Cell and Developmental Biology, 18, 289-314.
https://doi.org/10.1146/annurev.cellbio.18.032202.114809
[18] Munn, A.L., Heese-Peck, A., Stevenson, B.J., et al. (1999) Specific Sterols Required for the Internalization Step of Endocytosis in Yeast. Molecular Biology of the Cell, 10, 3943-3957.
https://doi.org/10.1091/mbc.10.11.3943
[19] Ozcan, S. and Johnston, M. (1999) Function and Regula-tion of Yeast Hexose Transporters. Microbiology and Molecular Biology Reviews, 63, 554-569.
https://doi.org/10.1128/MMBR.63.3.554-569.1999
[20] Regenberg, B., Düring-Olsen, L., Kielland-Brandt, M.C., et al. (1999) Substrate Specificity and Gene Expression of the Amino-Acid Permeases in Saccharomyces cerevisiae. Current Genetics, 36, 317-328.
https://doi.org/10.1007/s002940050506
[21] Te Welscher, Y.M., Van Leeuwen, M.R., De Kruijff, B., et al. (2012) Polyene Antibiotic That Inhibits Membrane Transport Proteins. Proceedings of the National Academy of Sciences of the United States of America, 109, 11156-11159.
https://doi.org/10.1073/pnas.1203375109
[22] Bourcier, T., Sauer, A., Dory, A., et al. (2017) Fungal Keratitis. Journal Français d’Ophtalmologie, 40, 882-888.
https://doi.org/10.1016/j.jfo.2017.05.013
[23] Collier, S.A., Gronostaj, M.P., Macgurn, A.K., et al. (2014) Esti-mated Burden of Keratitis—United States, 2010. The Morbidity and Mortality Weekly Report, 63, 1027-1030.
[24] Manikandan, P., Abdel-Hadi, A., Randhir Babu Singh, Y., et al. (2019) Fungal Keratitis: Epidemiology, Rapid Detection, and Antifungal Susceptibilities of Fusarium and Aspergillus Isolates from Corneal Scrapings. BioMed Research International, 2019, Article ID: 6395840.
https://doi.org/10.1155/2019/6395840
[25] Lalitha, P., Vijaykumar, R., Prajna, N.V., et al. (2008) In Vitro Natamycin Susceptibility of Ocular Isolates of Fusarium and Asper-gillus Species: Comparison of Commercially Formulated Natamycin Eye Drops to Pharmaceutical-Grade Powder. Jour-nal of Clinical Microbiology, 46, 3477-3478.
https://doi.org/10.1128/JCM.00610-08
[26] Lalitha, P., Shapiro, B.L., Srinivasan, M., et al. (2007) Antimicrobial Susceptibility of Fusarium, Aspergillus, and Other Filamentous Fungi Isolat-ed from Keratitis. Archives of Ophthalmology, 125, 789-793.
https://doi.org/10.1001/archopht.125.6.789
[27] Prajna, N.V., Lalitha, P., Krishnan, T., et al. (2022) Patterns of Antifungal Resistance in Adult Patients with Fungal Keratitis in South India: A Post Hoc Analysis of 3 Randomized Clinical Trials. JAMA Ophthalmology, 140, 179-184.
https://doi.org/10.1001/jamaophthalmol.2021.5765
[28] Mahmoudi, S., Masoomi, A., Ahmadikia, K., et al. (2018) Fungal Keratitis: An Overview of Clinical and Laboratory Aspects. Mycoses, 61, 916-930.
https://doi.org/10.1080/21691401.2018.1443117
[29] Janga, K.Y., Tatke, A., Balguri, S.P., et al. (2018) Ion-Sensitive in Situ Hydrogels of Natamycin Bilosomes for Enhanced and Prolonged Ocular Pharmacotherapy: In Vitro Permeability, Cytotoxicity and in Vivo Evaluation. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1039-1050.
https://doi.org/10.1080/21691401.2018.1443117
[30] Amit, C., Muralikumar, S., Janaki, S., et al. (2019) Design-ing and Enhancing the Antifungal Activity of Corneal Specific Cell Penetrating Peptide Using Gelatin Hydrogel Delivery System. International Journal of Nanomedicine, 14, 605-622.
https://doi.org/10.2147/IJN.S184911
[31] Khames, A., Khaleel, M.A., El-Badawy, M.F., et al. (2019) Natamycin Solid Lipid Nanoparticles-Sustained Ocular Delivery Sys-tem of Higher Corneal Penetration against Deep Fungal Keratitis: Preparation and Optimization. International Journal of Nanomedicine, 14, 2515-2531.
https://doi.org/10.2147/IJN.S190502
[32] Rohira, H., Shankar, S., Yadav, S., et al. (2021) Enhanced in Vivo Antifungal Activity of Novel Cell Penetrating Peptide Natamycin Conjugate for Efficient Fungal Keratitis Management. International Journal of Pharmaceutics, 600, Article ID: 120484.
https://doi.org/10.1016/j.ijpharm.2021.120484
[33] El-Nabarawi, M.A., Abd El Rehem, R.T., Teaima, M., et al. (2019) Natamycin Niosomes as a Promising Ocular Nanosized Delivery System with Ketorolac Tromethamine for Dual Effects for Treatment of Candida Rabbit Keratitis; in Vitro/in Vivo and Histopathological Studies. Drug Development and Industrial Pharmacy, 45, 922-936.
https://doi.org/10.1080/03639045.2019.1579827
[34] Guo, Y., Karimi, F., Fu, Q., et al. (2020) Reduced Admin-istration Frequency for the Treatment of Fungal Keratitis: A Sustained Natamycin Release from a Micellar Solution. Ex-pert Opinion on Drug Delivery, 17, 407-421.
https://doi.org/10.1080/17425247.2020.1719995
[35] Lorenzo-Veiga, B., Sigurdsson, H.H., Loftsson, T., et al. (2019) Cyclodextrin-Amphiphilic Copolymer Supramolecular Assemblies for the Ocular Delivery of Natamycin. Nano-materials, 9, 745.
https://doi.org/10.3390/nano9050745
[36] 忻丹丽, 沈降, 潘飞. 那他霉素联合伊曲康唑治疗真菌性角膜炎的疗效分析[J]. 中国现代医学杂志, 2017, 27(20): 73-75.
[37] 郑振扬, 叶忠强. 那他霉素联合伏立康唑治疗真菌性角膜炎的疗效分析[J]. 中国实用医药, 2020, 15(30): 155-157.
[38] 霍灿明, 萧少雄, 袁启贤, 等. 维生素A和环孢素A治疗干眼症的临床对比分析[J]. 心电图杂志(电子版), 2019, 8(4): 118-119.
[39] 梁静. 环孢素联合那他霉素治疗真菌性角膜炎的效果观察[J]. 河南医学高等专科学校学报, 2020, 32(5): 513-515.
[40] Ansari, Z., Miller, D. and Galor, A. (2013) Current Thoughts in Fungal Keratitis: Diagnosis and Treat-ment. Current Fungal Infection Reports, 7, 209-218.
https://doi.org/10.1007/s12281-013-0150-1
[41] Rao, S.K., Madhavan, H.N., Rao, G., et al. (1997) Fluconazole in Filamentous Fungal Keratitis. Cornea, 16, 700.
https://doi.org/10.1097/00003226-199711000-00019
[42] Prajna, N.V., Mascarenhas, J., Krishnan, T., et al. (2010) Comparison of Natamycin and Voriconazole for the Treatment of Fungal Keratitis. Archives of Ophthalmology, 128, 672-678.
https://doi.org/10.1001/archophthalmol.2010.102
[43] Patil, A. and Majumdar, S. (2017) Echinocandins in Ocular Therapeutics. Journal of Ocular Pharmacology and Therapeutics, 33, 340-352.
https://doi.org/10.1089/jop.2016.0186
[44] Kaur, I.P. and Kakkar, S. (2010) Topical Delivery of Antifungal Agents. Expert Opinion on Drug Delivery, 7, 1303-1327.
https://doi.org/10.1517/17425247.2010.525230
[45] Thomas, P.A. (2003) Fungal Infections of the Cornea. Eye, 17, 852-862.
https://doi.org/10.1038/sj.eye.6700557
[46] Chandasana, H., Prasad, Y.D., Chhonker, Y.S., et al. (2014) Corneal Targeted Nanoparticles for Sustained Natamycin Delivery and Their PK/PD Indices: An Approach to Reduce Dose and Dosing Frequency. International Journal of Pharmaceutics, 477, 317-325.
https://doi.org/10.1016/j.ijpharm.2014.10.035
[47] Bhatta, R.S., Chandasana, H., Chhonker, Y.S., et al. (2012) Mucoadhesive Nanoparticles for Prolonged Ocular Delivery of Natamycin: In Vitro and Pharmacokinetics Studies. In-ternational Journal of Pharmaceutics, 432, 105-112.
https://doi.org/10.1016/j.ijpharm.2012.04.060
[48] Koontz, J.L. and Marcy, J.E. (2003) Formation of Natamycin: Cyclodextrin Inclusion Complexes and Their Characterization. Journal of Agricultural and Food Chemistry, 51, 7106-7110.
https://doi.org/10.1021/jf030332y
[49] Badhani, A., Dabral, P., Rana, V., et al. (2012) Evaluation of Cyclodextrins for Enhancing Corneal Penetration of Natamycin Eye Drops. Journal of Pharmacy & Bioallied Sciences, 4, S29-S30.
https://doi.org/10.4103/0975-7406.94128
[50] Tu, J., Pang, H., Yan, Z., et al. (2007) Ocular Permeabil-ity of Pirenzepine Hydrochloride Enhanced by Methoxy Poly(ethylene glycol)-Poly(D,L-lactide) Block Copolymer. Drug Development and Industrial Pharmacy, 33, 1142-1150.
https://doi.org/10.1080/03639040701397381
[51] Civiale, C., Licciardi, M., Cavallaro, G., et al. (2009) Polyhy-droxyethylaspartamide-Based Micelles for Ocular Drug Delivery. International Journal of Pharmaceutics, 378, 177-186.
https://doi.org/10.1016/j.ijpharm.2009.05.028
[52] Balguri, S.P., Adelli, G.R. and Majumdar, S. (2016) Topical Ophthalmic Lipid Nanoparticle Formulations (SLN, NLC) of Indomethacin for Delivery to the Posterior Segment Ocular Tissues. European Journal of Pharmaceutics and Biopharmaceutics, 109, 224-235.
https://doi.org/10.1016/j.ejpb.2016.10.015
[53] Punyamurthula, N.S., Adelli, G.R., Gul, W., et al. (2017) Ocular Disposition of ∆8-Tetrahydrocannabinol from Various Topical Ophthalmic Formulations. AAPS PharmSciTech, 18, 1936-1945.
https://doi.org/10.1208/s12249-016-0672-2