左右侧结肠癌差异研究进展
Research Progress on the Difference between Left and Right Colon Cancer
DOI: 10.12677/ACM.2022.127866, PDF, HTML, XML, 下载: 267  浏览: 586 
作者: 翟丁莹, 刘勇峰*:延安大学附属医院,陕西 延安
关键词: 结肠癌侧边性免疫靶向治疗Colon Cancer Sidedness Immunity Targeting Therapy
摘要: 结肠癌不是一个单一的疾病。因组织胚胎发育、肠道免疫及大肠菌群分布的差异性,左侧结肠癌和右侧结肠癌可能具有不同的生物学行为。在转移性结肠癌的辅助治疗中,左侧RAS野生型结肠癌使用抗EGFR单克隆抗体加化疗比较合理,右侧RAS野生型结肠癌的一线治疗方案可选择化疗加贝伐珠单抗。作者对左右侧结肠癌差异研究进展进行了综述。
Abstract: Colon cancer is not a single disease. Due to differences in tissue embryonic development, intestinal immunity and distribution of coliforms, left colon cancer and right colon cancer may have different biological behaviors. In the adjuvant treatment of metastatic colon cancer, it is reasonable to use anti-EGFR monoclonal antibody plus chemotherapy for left RAS wild-type colon cancer, and chemo-therapy plus bevacizumab is the first-line treatment option for right RAS wild-type colon cancer. The author reviewed the research progress of the difference between left and right colon cancer.
文章引用:翟丁莹, 刘勇峰. 左右侧结肠癌差异研究进展[J]. 临床医学进展, 2022, 12(7): 5999-6006. https://doi.org/10.12677/ACM.2022.127866

1. 引言

结肠癌为全球第三大常见癌症,是导致癌症相关死亡率的第二大原因 [1]。在我国,结肠癌的癌症负担正快速增加 [2],据2015年的数据 [3],其发病率在男性中居第四位,在女性中居第五位,是导致癌症相关死亡率的第五大原因。结肠癌以解剖标记结肠脾曲为界划分为:左侧(远端)结肠癌和右侧(近端)结肠癌 [4],右侧结肠包括:盲肠、升结肠、结肠肝曲、横结肠;左侧结肠包括:结肠脾曲、降结肠、乙状结肠。这些部位有助于识别结肠癌与关键生理标志相关的异质性特征,并指导肿瘤的个体化治疗 [5]。本综述回顾了生物学行为、临床行为和治疗策略在左、右侧结肠癌中的不同,侧重于结肠癌的侧边性在指导肿瘤治疗中的进展。

2. 左右侧结肠癌的生物学行为

右侧结肠癌(RSCC, right-sided colon cancer)一般与女性、组织学分级差、多为黏液型、高微卫星不稳定性 [6]、高肿瘤突变负荷、高甲基化、免疫细胞浸润、RAS激活和BRAF突变 [7]、易转移至腹膜有关。这些肿瘤大多为无蒂锯齿状腺瘤和黏液腺瘤,呈扁平状,早期难以检测,可能是由于高微卫星不稳定状态难以触发息肉形成 [8]。近期的一项研究发现了一种营养消耗代谢亚型的女性右侧结肠癌,其主要表现出更高的能量生产来促进天门冬酰胺合成和氨基酸的摄取 [9],这对女性RSCC的首发症状多以全身症状为主作了解释。

左侧结肠癌(LSCC, left-sided colon cancer)与男性、多为息肉样形态、染色体不稳定、免疫细胞浸润差,基质浸润明显 [7]、APC、p53突变、表皮生长因子受体(EGFR)配体的过表达 [10]、易转移至肝肺有关。由于左半结肠管腔直径小,左侧结肠癌患者的临床症状主要以排便习惯改变、肠梗阻等为主。这些行为对不同治疗方法的选择也是一种指导,此前就已经有许多证据 [11] [12] 证明了原发肿瘤的位置与抗EGFR治疗的反应有关,对于左侧结肠癌及RAS野生型肿瘤,抗EGFR治疗效果十分显著,而RAS突变型肿瘤在抗EGFR治疗中难以获益,导致这种结果的原因是携带RAS、BRAF或PIK3CA突变、PTEN缺失、HER-2扩增以及VEGF和VEGFR信号改变的肿瘤对抗EGFR治疗会产生耐药性 [13]。Nam等的一项研究显示,HER2在左侧结肠癌中的表达高于右侧结肠癌(p = 0.006) [14],因此可以推测在HER2阳性的左侧结肠癌中,不适用抗EGFR治疗。结肠癌标本常规病理免疫组化及基因检测,对肿瘤有效控制及预防复发转移具有重要指导价值。

除此之外,肿瘤的侧边性被发现在转移性结肠癌中具有预测预后的价值 [15],与LSCC相比,RSCC的预后更差,而这可能是由于RSCC早期难以发现,右侧结肠管腔较大而症状出现晚,诊断时通常分期较晚所致。而在非转移性结肠癌中,侧边性的预测预后价值存在争议,一项对1437,846名结直肠癌患者的分析证实了肿瘤侧面的预后作用 [16]。与右侧肿瘤相比,左侧肿瘤的死亡风险显著降低(HR 0.82; p = 0.0001),无论分期、种族和辅助化疗类型,左侧结肠癌预后更好。但也有报道称RSCC与LSCC的OS无差异,近期的一项研究对417例I-IV期结肠癌患者进行分析,提示RSCC与LSCC患者的总生存率无显著差异(p = 0.354) [6],推测可能是由于该研究纳入了IV期结肠癌患者,且样本量较小、随访时间短。总的来说,目前还是将侧边性作为预测预后的因素,认为右侧结肠癌的预后稍差。

侧边性也表现在环境方面,肿瘤微环境及肠道微环境。RSCC可见大量肿瘤浸润淋巴细胞(TILs, tumor-infiltrating lymphocytes),具有更多新抗原,更高的免疫原性 [17],并且由于BRAF等肿瘤突变基因通过调控DNA甲基化影响PD-1和LAG3的表达水平 [18] [19],导致LSCC与RSCC不同的药物敏感性与预后。近期我国的一项研究构建了基于免疫相关基因的免疫风险评分系统,提出免疫风险特征与免疫治疗生存率显著相关(HR 0.60, P = 0.015),其中TP53和MSH6富集的低危组对免疫检查点抑制剂(ICIs, Immune Checkpoint Inhibitors)治疗更敏感 [20]。这为MSI-H的右侧结肠癌患者对于免疫治疗的敏感性提供了证据,并为TP53突变患者使用ICIs治疗敏感提供了证据。不断探免探索疫治疗的适用群体,可能会使患者有更好获益。

肠道菌群失调与结肠癌的发生发展密切相关,并且肠道菌群代谢物也在其中发挥作用。最近的研究将牛链球菌、产肠毒素脆弱拟杆菌、核梭杆菌、粪肠球菌、大肠杆菌和厌氧胃链球菌确定为结肠癌致病病原体 [21]。它们通过炎症、致病菌及其毒力因子、基因毒素、氧化应激、细菌代谢物和生物膜等不同促癌机制参与结肠癌的发生。如核梭杆菌通过其独特的粘连蛋白A (Fap A)粘附并诱导结肠癌 [22],此外Fap2依赖的侵袭诱导促炎细胞因子IL-8和CXCLI的分泌,从而促进CRC细胞迁移 [23]。大肠杆菌编码的多酮肽基因毒素使暴露于大肠杆菌中的上皮细胞出现DNA损伤 [24],促进结肠癌的发生。有人提出Alpha-Bug假说 [25]、Driver-Passenger模型 [26] 来说明肠道菌群与结肠癌之间的复杂关系。肿瘤相关菌群受肿瘤微环境的影响,受粘膜免疫系统、遗传和表观遗传因素等多种因素的调控,这些因素在左右侧结肠癌间存在差异,因此,左右侧结肠癌肿瘤内外菌群的变化受到不同的调节 [10] [27]。英国近期一项针对结直肠癌不同位置肿瘤内外菌群差异的研究 [28] 发现,右侧结肠癌肿瘤外的细菌更多样、更丰富,而肿瘤本身的菌群受位置的影响较小,且与右侧结肠癌肿瘤外菌群更一致。这说明右侧结肠癌的肠道菌群更接近肿瘤生长的环境,这也部分解释了右侧结直肠癌症状出现较晚,比左侧结肠癌更晚期、更大的原因。在我国的一项研究中发现 [29],虽然不同地区导致左右侧结肠癌肠道菌群种类存在差异,但总的来说,我国左侧结肠微生物类群比右侧结肠丰富,左侧结直肠癌中富集核梭杆菌和产气梭状芽孢杆菌,而右侧结肠癌中的菌群侵袭性较小,富含牙双岐杆菌,这与亚洲地区左侧结直肠癌发病率较高一致。且差异菌群在不同部位具有不同的功能,就链球菌来说,作为EGFR的靶点在左右结肠样本中均有表达,而在左侧结肠样本中表达水平更高。这也是抗EGFR靶向治疗对LSCC十分有效的原因之一。

另外,一些目前新兴的左右侧结肠癌的分子标记,为未来的诊断治疗提供了更多思路。液体活检作为一种基于循环肿瘤细胞(CTC, circulating tumor cells)和游离DNA的微创且简便的检测技术,近些年已被认为是筛查左、右侧结肠癌 [30] 的有用方法。有研究发现 [31],在左侧结肠癌患者中,CTC表现为主要的间叶细胞表型,右侧结肠癌患者的大部分CTC呈凋亡模式,这说明右侧结肠癌的不良预后不是由肿瘤细胞的血行播散决定的。除此之外,循环肿瘤DNA (ctDNA, circulating tumor DNA)被认为可以作为预测结直肠癌患者术后复发的因素,并指导术后辅助治疗和监测辅助治疗疗效 [32]。

3. 非转移性结肠癌的治疗

目前全球结肠癌的治疗方式为手术。此前已有许多研究对左右侧结肠癌根治性切除术后的效果进行了比较。一项包括6790例接受根治性切除术的I-III期结肠癌患者的研究分析,在I-II期结肠癌患者中,LSCC是无复发生存的重要危险因素,在Ⅲ期结肠癌中,RSCC与LSCC相比显著缩短了癌症特异性复发后生存 [33],证明了肿瘤位置预测非转移性结肠癌的复发的价值。

除此之外,侧边性也是选择手术术式需要考虑的因素。近期的一项随机临床试验中,使用腹腔镜下完全性结肠系膜切除术(CME, Complete Mesocolic Excision)和常规右半结肠切除术治疗右侧结肠癌,结果显示使用CME可以获得更多的淋巴结数量和更大的标本,阳性淋巴结率也更高(25.2% vs 17.8%),在出血等术后并发症方面与常规组无差异 [34]。这对右半结肠癌手术治疗提供了一种安全可行的方式,但仍需更多的临床实践来证明其应用价值。

淋巴结总数与结肠癌的预后有关,这可能与更准确的临床分期有关,目前认为淋巴结切除至少要分析12个淋巴结,但因为结肠癌的异质性,对于左右侧结肠癌淋巴结切除数量的标准是否应一致也引起了思考。有研究表明III期结肠癌中淋巴结总数与生存期的相关性仅在RSCC中存在,在LSCC中不存在 [35],因此笼统的定义淋巴结总数并不合理。在一项包含17,385例II期RSCC患者的研究中,认为至少需要分析19个淋巴结才能有最大的生存获益及足够的淋巴结分期 [36]。虽然目前还没有更权威的证据来界定不同部位结肠癌的淋巴结切除数量,但对于右侧结肠癌来说,较高的淋巴结切除量意味着更好的生存率 [37]。因此,在选择手术方式时,充分考虑结肠癌淋巴结分布的侧位性,可以减少分期的低估,更好的识别需要行术后辅助治疗的人群,为患者带来更好的预后。此外,在充分切除足够数量的淋巴结后,是否会对后续辅助免疫治疗产生影响是一个需要进一步研究的问题。

4. 转移性结肠癌的治疗

目前全身转移性结肠癌(Mcrc, metastatic colorectal cancer)治疗的方案主要为化疗、抗VEGF单克隆抗体和抗EGFR单克隆抗体,化疗方案包括FOLFOX (奥沙利铂、亚叶酸钙、5-氟尿嘧啶)、CAPEOX9 (奥沙利铂、卡培他滨)、FOLFIRI (伊立替康、亚叶酸钙、5-氟尿嘧啶)、FOLFOXIRI (伊立替康、奥沙利铂、亚叶酸钙、5-氟尿嘧啶)。FOLFOX和CAPEOX治疗mCRC的有效性相似 [38],FOLFOX作为一线治疗的频率要比FOLFIRI高得多 [39]。

对于可切除结直肠肝转移患者,手术是治疗的金标准。但是只有25% [40] 的结直肠肝转移病例在最初出现时可以被切除。在有的肝转移的患者中,由于肿瘤负担广泛且解剖位置不佳,因而无法切除。在这些患者中,选择性内照射(SIRT, selective internal radiation therapy) [41],射频消融(RFA, radiofrequency ablation) [42],肝动脉灌注(HAI, hepatic arterial infusion) [43] 可能改善局部控制,缩小肿瘤体积,使病变可切除。虽然右侧结肠癌患者肝切除术后生存率低于左侧结肠癌患者,但中位生存率差异无统计学意义,且对PFS无影响 [44]。总的来说,原发肿瘤位置不影响结肠癌肝转移的手术策略。转移时相对结肠癌肝转移患者肝切除术后的预后影响更大。Colloca等 [45] 根据转移的时间以及与同时性肝转移和异时性肝转移相关的不同肿瘤特征调查了患者的预后,同时性肝转移患者的预后较差(18.5个月vs 62.5个月)。

转移性结肠癌的原发肿瘤位置显著影响药物治疗的效果。Holch和他的同事进行的meta分析发现 [11],与贝伐珠单抗相比,抗EGFR单克隆抗体加入RAS-野生型左侧mCRC患者的标准化疗后,具有显著的生存获益。Arnold等人对6项随机试验的分析发现 [12],化疗加EGFR抗体治疗对左侧肿瘤患者(OS和PFS的HRs分别为0.75和0.78)有显著好处,而对右侧肿瘤患者(OS和PFS的HRs分别为1.12和1.12)没有显著好处。对于ORR而言,与右侧肿瘤相比,左侧肿瘤患者化疗加EGFR抗体治疗有更大的获益的趋势。此后开展的广泛的研究均发现原发性肿瘤定位对预后的潜在影响,这对临床实践产生了巨大影响。近期一项对于欧洲各国mCRC患者治疗策略的研究中 [46],得出临床实践中左侧RAS野生型结肠癌患者相比于与右侧RAS野生型结肠癌患者更经常使用抗EGFR单克隆抗体加化疗(71.6%;95%CI:67.9%、75.0%和44.7%;95%CI分别为39.2%和50.2%)。因此,ESMO指南建议 [47],对于左侧RAS野生型疾病的患者,首选FOLFOX或FOLFIRI等细胞毒性双联疗法加抗EGFR单克隆抗体,而对于右侧RAS野生型肿瘤,首选细胞毒性三联疗法FOLFOXIRI加贝伐珠单抗或细胞毒性双联疗法加抗EGFR单克隆抗体。南昌大学的一项荟萃分析 [48] 显示与抗EGFR药物相关的化疗相比,化疗加贝伐珠单抗的右侧RAS野生型患者获得了更长的PFS (联合HR 0.67,95%CI 0.52至0.88)和OS (联合HR 0.74,95%CI 0.56至0.98),更建议使用化疗加贝伐珠单抗作为治疗右侧mCRC的RAS野生型患者的最佳一线治疗方案。由于左侧RAS野生型结肠癌患者对抗EGFR治疗的有效性,其在进展后的二线治疗中也有更多的方案可选择 [49],而抗EGFR药物在二线治疗右侧mCRCs中的作用目前仍存在争议。另外,近期基于OPYTIMOX3 DREAM III期试验的一项研究表明,无论KRAS突变状态如何,在使用抗EGFR药物的基础上,RSCC的预后相比于LSCC更差 [50]。这一发现若得到更多临床研究证明,未来对于转移性结肠癌的治疗,仅基于原发肿瘤位置,便可以选择合适的靶向药物。

最近的meta分析显示抗EGFR对RAS野生型/BRAF突变型的CRC患者的益处与标准治疗相比没有增加 [51],充分体现了BRAF突变型结肠癌的独特性。美国一项大型试验中,报告了贝伐珠单抗(15个月)与西妥昔单抗(11.7个月)治疗BRAF突变的肿瘤OS更好,但差异无统计学意义 [52]。另一项TRIBE试验表明,16例BRAF突变肿瘤患者使用FOLFOXIRI + 贝伐珠单抗(19个月)较FOLFIRI + 贝伐珠单抗(10.7个月)中位OS更好,但仍无统计学意义 [53]。但总的来说,目前认为FOLFOXIRI + 贝伐珠单抗是治疗BRAF突变型mCRC的一线治疗策略 [54]。而当此类患者一线治疗失败时,则考虑联合使用二代BRAF抑制剂。最近BEACON CRC 3期研究的评估了BRAF抑制剂、MEK抑制剂和西妥昔单抗联合应用于BRAF V600E突变mCRC患者的安全性和有效性。该组合被证明具有良好的耐受性,ORR为41%。

微卫星不稳定(MSI, microsatellite instability)结肠癌的特征是高肿瘤突变负荷(TMB, tumor mutational burden)和高活化CD8+细胞毒性T淋巴细胞(CTLs, cytotoxicCD8+ T lymphocytes)浸润和活化的Th1细胞产生IFN,是免疫检查点抑制剂有效性的主要预测指标 [55]。MSI患者约占mCRC患者的3.5%~5%。对MSI状态的患者使用IgG4单克隆抗体帕博利珠单抗,其PFS明显长于化疗(中位16.5月vs. 8.2月;OR,0.60;95%CI:0.45~0.80;P = 0.0002) [56],或人源IgG4 PD-1阻断抗体纳武单抗 [57],或纳武单抗与伊匹木单抗 [58] 联合使用,均显示了ORR和PFS的有效性。因此,NCCN小组推荐帕博利珠单抗、纳武单抗或纳武单抗联合伊匹木单抗作为转移性MSI结直肠癌患者的后续治疗方案。在最新的观点中 [59],认为一些MSS肿瘤的特定子集,具有高肿瘤突变负荷,可能具有高免疫细胞浸润,使其易对ICIs治疗作出反应,这在理论上是可行的,但需要更多临床证据来证明。

5. 小结

侧边性在结肠癌中研究价值有待进一步探讨,临床医生也在不断提出新的问题并尝试更具有针对性的手术术式。目前主要基于RAS、BRAF、MSI状态选择转移性左右侧结肠癌的治疗方案,但近来对HER2的研究表明其可能作为未来指导治疗的重要分子标记。还有许多新兴的分子标记,可以作为左右侧结肠癌的治疗靶点。虽然有很多研究关注肠道菌群在左右侧结肠癌中的差异,但由于其受地域、药物等多种因素的影响,目前还没有统一的左右侧结肠癌差异菌群,甚至还没有通用肠道菌群生物标记物。对于这一领域的开发,将极大地促进早期结肠癌的发现。左右侧结肠癌不同的肿瘤微环境及生物学特征研究对指导临床治疗具有重要的价值。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Feng, R.M., Zong, Y.N., Cao, S.M. and Xu, R.H. (2019) Current Cancer Situation in China: Good or Bad News from the 2018 Global Cancer Statistics? Cancer Communications, 39, 1-12.
https://doi.org/10.1186/s40880-019-0368-6
[3] Chen, W., Zheng, R., Baade, P.D., et al. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132.
https://doi.org/10.3322/caac.21338
[4] Ben-son III, A.B., Venook, A.P., Cederquist, L., et al. (2017) Colon Cancer, Version 1.2017, NCCN Clinical Practice Guide-lines in Oncology. Journal of the National Comprehensive Cancer Network, 15, 370-398.
https://doi.org/10.6004/jnccn.2017.0036
[5] Dekker, E., Tanis, P.K., Vleugels, J.L.A. and Kasi, P.M. (2019) Colorectal Cancer. The Lancet, 394, 1467-1480.
https://doi.org/10.1016/S0140-6736(19)32319-0
[6] Degro, C.E., Strozynski, R., Loch, F.N., et al. (2021) Sur-vival Rates and Prognostic Factors in Right- and Left-Sided Colon Cancer Stage I-IV: An Unselected Retrospective Sin-gle-Center Trial. International Journal of Colorectal Disease, 36, 2683-2696.
https://doi.org/10.1007/s00384-021-04005-6
[7] Dienstmann, R., Vermeulen, L., Guinney, J., et al. (2017) Con-sensus Molecular Subtypes and the Evolution of Precision Medicine in Colorectal Cancer. Nature Reviews Cancer, 17, 79-92.
https://doi.org/10.1038/nrc.2016.126
[8] Manes, M., Garcia-Gomes, M.S.A., Sandini, T.M., et al. (2019) Behavioral and Neurochemical Characterization of the mlh Mutant Mice Lacking Otoconia. Behavioural Brain Research, 359, 958-966.
https://doi.org/10.1016/j.bbr.2018.06.012
[9] Cai, Y., Rattray, N.J.W., Zhang, Q., et al. (2020) Sex Differences in Colon Cancer Metabolism Reveal A Novel Subphenotype. Scientific Reports, 10, Article No. 4905.
https://doi.org/10.1038/s41598-020-61851-0
[10] De Renzi, G., Gaballo, G., Gazzaniga, P. and Nicolazzo, C. (2021) Molecular Biomarkers according to Primary Tumor Location in Colorectal Cancer: Current Standard and New In-sights. Oncology, 99, 135-143.
https://doi.org/10.1159/000510944
[11] Holch, J.W., Ricard, I., Stintzing, S., et al. (2017) The Relevance of Pri-mary Tumour Location in Patients with Metastatic Colorectal Cancer: A Meta-Analysis of First-Line Clinical Trials. Eu-ropean Journal of Cancer, 70, 87-98.
https://doi.org/10.1016/j.ejca.2016.10.007
[12] Arnold, D., Lueza, B., Douillard, J.Y., et al. (2017) Prognostic and Predictive Value of Primary Tumour Side in Patients with RAS Wild-Type Metastatic Colorectal Cancer Treated with Chemotherapy and EGFR Directed Antibodies in Six Randomized Trials. Annals of Oncology, 28, 1713-1729.
https://doi.org/10.1093/annonc/mdx175
[13] Zhao, B., Wang, L., Qiu, H., et al. (2017) Mechanisms of Resistance to Anti-EGFR Therapy in Colorectal Cancer. Oncotarget, 8, 3980-4000.
https://doi.org/10.18632/oncotarget.14012
[14] Nam, S.K., Yun, S., Koh, J., et al. (2016) BRAF, PIK3CA, and HER2 Oncogenic Alterations According to KRAS Mutation Status in Advanced Colorectal Cancers with Distant Metas-tasis. PLOS ONE, 11, e0151865.
https://doi.org/10.1371/journal.pone.0151865
[15] Zhao, B., Lopez, N.E., Eisenstein, S., et al. (2020) Synchro-nous Metastatic Colon Cancer and the Importance of Primary Tumor Laterality—A National Cancer Database Analysis of Right- versus Left-Sided Colon Cancer. The American Journal of Surgery, 220, 408-414.
https://doi.org/10.1016/j.amjsurg.2019.12.002
[16] Petrelli, F., Tomasello, G., Borgonovo, K., et al. (2017) Prog-nostic Survival Associated with Left-Sided vs Right-Sided Colon Cancer: A Systematic Review and Meta-Analysis. JAMA Oncology, 3, 211-219.
https://doi.org/10.1001/jamaoncol.2016.4227
[17] Laghi, L., Negri, F., Gaiani, F., et al. (2020) Prognostic and Predictive Cross-Roads of Microsatellite Instability and Immune Response to Colon Cancer. International Journal of Molecular Sciences, 21, Article No. 9680.
https://doi.org/10.3390/ijms21249680
[18] Yi, T., Zhang, Y., Ng, D.M., et al. (2021) Regulatory Network Analy-sis of Mutated Genes Based on Multi-Omics Data Reveals the Exclusive Features in Tumor Immune Microenvironment between Left-Sided and Right-Sided Colon Cancer. Frontiers in Oncology, 11, Article ID: 685515.
https://doi.org/10.3389/fonc.2021.685515
[19] Wang, X., Duanmu, J., Fu, X., Li, T. and Jiang, Q. (2020) Ana-lyzing and Validating the Prognostic Value and Mechanism of Colon Cancer Immune Microenvironment. Journal of Translational Medicine, 18, 324.
https://doi.org/10.1186/s12967-020-02491-w
[20] Li, X.Y., Wen, D.C., Li, X.K., et al. (2020) Identification of an Immune Signature Predicting Prognosis Risk and Lymphocyte Infiltration in Colon Cancer. Frontiers in Immunology, 11, Article No. 1678.
https://doi.org/10.3389/fimmu.2020.01678
[21] Cheng, Y., Ling, Z. and Li, L. (2020) The Intestinal Microbiota and Colorectal Cancer. Frontiers in Immunology, 11, Article ID: 615056.
https://doi.org/10.3389/fimmu.2020.615056
[22] Rubinstein, M.R., Wang, X., Liu, W., et al. (2013) Fusobacte-rium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhe-sin. Cell Host & Microbe, 14, 195-206.
https://doi.org/10.1016/j.chom.2013.07.012
[23] Casasanta, M.A., Yoo, C.C., Udayasuryan, B., et al. (2020) Fusobacterium nucleatum Host-Cell Binding and Invasion Induces IL-8 and CXCL1 Secretion that Drives Colorectal Cancer Cell Migration. Science Signaling, 13, eaba9157.
https://doi.org/10.1126/scisignal.aba9157
[24] Cuevas-Ramos, G., Petit, C.R., Marcq, I., et al. (2010) Escherichia coli Induces DNA Damage in Vivo and Triggers Genomic Instability in Mammalian Cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 11537-11542.
https://doi.org/10.1073/pnas.1001261107
[25] Sears, C.L. and Pardoll, D.M. (2011) Perspective: Alpha-Bugs, Their Microbial Partners, and the Link to Colon Cancer. The Journal of Infectious Diseases, 203, 306-311.
https://doi.org/10.1093/jinfdis/jiq061
[26] Tjalsma, H., Boleij, A., Marchesi, J.R. and Dutilh, B.E. (2012) A Bacte-rial Driver-Passenger Model for Colorectal Cancer: Beyond the Usual Suspects. Nature Reviews Microbiology, 10, 575-582.
https://doi.org/10.1038/nrmicro2819
[27] Alhinai, E.A., Walton, G.E. and Commane, D.M. (2019) The Role of the Gut Microbiota in Colorectal Cancer Causation. International Journal of Molecular Sciences, 20, Article No. 5295.
https://doi.org/10.3390/ijms20215295
[28] Phipps, O., Quraishi, M.N., Dickson, E.A., et al. (2021) Differ-ences in the On- and Off-Tumor Microbiota between Right- and Left-Sided Colorectal Cancer. Microorganisms, 9, 1108.
https://doi.org/10.21203/rs.3.rs-226410/v1
[29] Zhong, M., Xiong, Y., Ye, Z., et al. (2020) Microbial Community Profiling Distinguishes Left-Sided and Right-Sided Colon Cancer. Frontiers in Cellular and Infection Microbiology, 10, Article ID: 498502.
https://doi.org/10.3389/fcimb.2020.498502
[30] Bach, S., Sluiter, N.R., Beagan, J.J., et al. (2019) Circulating Tumor DNA Analysis: Clinical Implications for Colorectal Cancer Patients. A Systematic Review. JNCI Cancer Spec-trum, 3, pkz042.
https://doi.org/10.1093/jncics/pkz042
[31] Nicolazzo, C., Raimondi, C., Gradilone, A., et al. (2019) Circulating Tumor Cells in Right- and Left-Sided Colorectal Cancer. Cancers, 11, Article No. 1042.
https://doi.org/10.3390/cancers11081042
[32] Taniguchi, H., Nakamura, Y., Kotani, D., et al. (2021) CIRCULATE-Japan: Circulating Tumor DNA-Guided Adaptive Platform Trials to Refine Adjuvant Therapy for Colo-rectal Cancer. Cancer Science, 112, 2915-2920.
https://doi.org/10.1111/cas.14926
[33] Kishiki, T., Kuchta, K., Matsuoka, H., et al. (2019) The Impact of Tumor Location on the Biological and Oncological Differences of Colon Cancer: Multi-Institutional Propensity Score-Matched Study. The American Journal of Surgery, 217, 46-52.
https://doi.org/10.1016/j.amjsurg.2018.07.005
[34] Di Buono, G., Buscemi, S., Cocorullo, G., et al. (2021) Feasibility and Safety of Laparoscopic Complete Mesocolic Exci-sion (CME) for Right-Sided Colon Cancer: Short-Term Outcomes. A Randomized Clinical Study. Annals of Surgery, 274, 57-62.
https://doi.org/10.1097/SLA.0000000000004557
[35] Yang, L., Xiong, Z., Xie, Q., et al. (2018) Prognostic Value of Total Number of Lymph Nodes Retrieved Differs between Left-Sided Colon Cancer and Right-Sided Colon Cancer in Stage III Patients with Colon Cancer. BMC Cancer, 18, Article No. 558.
https://doi.org/10.1186/s12885-018-4431-5
[36] Cai, Y., Cheng, G., Lu, X., Ju, H. and Zhu, X. (2020) The Re-Evaluation of Optimal Lymph Node Yield in Stage II Right-Sided Colon Cancer: Is a Minimum of 12 Lymph Nodes Adequate? International Journal of Colorectal Disease, 35, 623-631.
https://doi.org/10.1007/s00384-019-03483-z
[37] Lee, L., Erkan, A., Alhassan, N., et al. (2018) Lower Survival after Right-Sided Versus Left-Sided Colon Cancers: Is an Extended Lymphadenectomy the Answer? Surgical Oncology, 27, 449-455.
https://doi.org/10.1016/j.suronc.2018.05.031
[38] Benson III, A.B., Venook, A.P., Al-Hawary, M.M., et al. (2021) Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Com-prehensive Cancer Network, 19, 329-359.
https://doi.org/10.6004/jnccn.2021.0012
[39] Neugut, A.I., Lin, A., Raab, G.T., et al. (2019) FOLFOX and FOLFIRI Use in Stage IV Colon Cancer: Analysis of SEER-Medicare Data. Clinical Colorectal Cancer, 18, 133-140.
https://doi.org/10.1016/j.clcc.2019.01.005
[40] Fong, Y. (1999) Surgical Therapy of Hepatic Colorectal Metasta-sis. CA: A Cancer Journal for Clinicians, 49, 231-255.
https://doi.org/10.3322/canjclin.49.4.231
[41] Teo, J.Y., Allen, J.C., Ng, D.C., et al. (2016) A Systematic Review of Contralateral Liver Lobe Hypertrophy after Unilobar Selective Internal Radiation Therapy with Y90. HPB, 18, 7-12.
https://doi.org/10.1016/j.hpb.2015.07.002
[42] Ruers, T., Van Coevorden, F., Punt, C.J.A., et al. (2017) Local Treatment of Unresectable Colorectal Liver Metastases: Results of a Randomized Phase II Trial. Journal of the National Cancer Institute, 109, djx015.
https://doi.org/10.1093/jnci/djx015
[43] Lévi, F.A., Boige, V., Hebbar, M., et al. (2016) Conversion to Resection of Liver Metastases from Colorectal Cancer with Hepatic Artery Infusion of Combined Chemotherapy and Systemic Ce-tuximab in Multicenter Trial OPTILIV. Annals of Oncology, 27, 267-274.
https://doi.org/10.1093/annonc/mdv548
[44] Garajova, I., Balsano, R., Tommasi, C., et al. (2020) Synchronous and Metachronous Colorectal Liver Metastases: Impact of Primary Tumor Location on Patterns of Recurrence and Sur-vival after Hepatic Resection. Acta Biomedica, 92, e2021061.
[45] Colloca, G.A., Venturino, A. and Guarneri, D. (2020) Different Variables Predict the Outcome of Patients with Synchronous versus Metachronous Metastases of Colorectal Cancer. Clinical and Translational Oncology, 22, 1399-1406.
https://doi.org/10.1007/s12094-019-02277-7
[46] Kafatos, G., Banks, V., Burdon, P., et al. (2021) Impact of Bi-omarkers and Primary Tumor Location on the Metastatic Colorectal Cancer First-Line Treatment Landscape in five Euro-pean Countries. Future Oncology, 17, 1495-1505.
https://doi.org/10.2217/fon-2020-0976
[47] Yoshino, T., Amold, D., Taniguchi, H., et al. (2018) Pan-Asian Adapted ESMO Consensus Guidelines for the Management of Patients with Metastatic Colorectal Cancer: A JSMO-ESMO Initiative Endorsed by CSCO, KACO, MOS, SSO and TOS. Annals of Oncology, 29, 44-70.
https://doi.org/10.1093/annonc/mdx738
[48] You, X.H., Jiang, Y.H., Fang, Z., et al. (2020) Chemotherapy Plus Bevacizumab as an Optimal First-Line Therapeutic Treatment for Patients with Right-Sided Metastatic Colon Cancer: A Meta-Analysis of First-Line Clinical Trials. ESMO Open, 4, e000605.
https://doi.org/10.1136/esmoopen-2019-000605
[49] Temraz, S., Mukherji, D., Nassar, F., et al. (2021) Treatment Sequencing of Metastatic Colorectal Cancer Based on Primary Tumor Location. Seminars in Oncology, 48, 119-129.
https://doi.org/10.1053/j.seminoncol.2021.05.001
[50] Chibaudel, B., André, T., Tournigand, C., et al. (2020) Understanding the Prognostic Value of Primary Tumor Location and KRAS in Metastatic Colorectal Cancer: A Post Hoc Analysis of the OPTIMOX3 DREAM Phase III Study. Clinical Colorectal Cancer, 19, 200-208.E1.
https://doi.org/10.1016/j.clcc.2020.02.012
[51] Pietrantonio, F., Petrelli, F., Coinu, A., Ghilardi, M., et al. (2015) Predictive Role of BRAF Mutations in Patients with Advanced Colorectal Cancer Receiving Cetuximab and Pani-tumumab: A Meta-Analysis. European Journal of Cancer, 51, 587-594.
https://doi.org/10.1016/j.ejca.2015.01.054
[52] Innocenti, F., Ou, F.S., Qu, X., et al. (2019) Mutational Analysis of Patients with Colorectal Cancer in CALGB/SWOG 80405 Identifies New Roles of Microsatellite Instability and Tu-mor Mutational Burden for Patient Outcome. Journal of Clinical Oncology, 37, 1217-1227.
https://doi.org/10.1200/JCO.18.01798
[53] Cremolini, C., Loupakis, F., Antoniotti, C., et al. (2015) FOLFOXIRI Plus Bevacizumab versus FOLFIRI Plus Bevacizumab as First-Line Treatment of Patients with Metastatic Colorectal Cancer: Updated Overall Survival and Molecular Subgroup Analyses of the Open-Label, Phase 3 TRIBE Study. The Lancet Oncology, 16, 1306-1315.
https://doi.org/10.1016/S1470-2045(15)00122-9
[54] Ducreux, M., Chamseddine, A., Laurent-Puig, P., et al. (2019) Molecular Targeted Therapy of BRAF-Mutant Colorectal Cancer. Therapeutic Advances in Medical Oncology, 11, Article ID: 1758835919856494.
https://doi.org/10.1177/1758835919856494
[55] Bao, X., Zhang, H., Wu, W., et al. (2020) Analysis of the Mo-lecular Nature Associated with Microsatellite Status in Colon Cancer Identifies Clinical Implications for Immunotherapy. Journal for ImmunoTherapy of Cancer, 8, e001437.
https://doi.org/10.1136/jitc-2020-001437
[56] André, T., Shiu, K.K., Kim, T.W., et al. (2020) Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. The New England Journal of Medicine, 383, 2207-2218.
https://doi.org/10.1056/NEJMoa2017699
[57] Overman, M.J., McDermott, R., Leach, J.L., et al. (2017) Nivolumab in Patients with Metastatic DNA Mismatch Repair-Deficient or Microsatellite Instability-High Colorectal Cancer (CheckMate 142): An Open-Label, Multicentre, Phase 2 Study. The Lancet Oncology, 18, 1182-1191.
https://doi.org/10.1016/S1470-2045(17)30422-9
[58] Overman, M.J., Lonardi, S., Wong, K.Y.M., et al. (2018) Durable Clinical Benefit with Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instabil-ity-High Metastatic Colorectal Cancer. Journal of Clinical Oncology, 36, 773-779.
https://doi.org/10.1200/JCO.2017.76.9901
[59] Picard, E., Verschoor, C.P., Ma, G.W. and Pawelec, G. (2020) Relationships between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Frontiers in Immunology, 11, Article No. 369.
https://doi.org/10.3389/fimmu.2020.00369