弱链对角占优M-矩阵逆的无穷范数新上界估计
New Upper Bound Estimates of the Infinite Norm for the Inverse of Weakly Chain Diagonally Dominant M-Matrices
DOI: 10.12677/AAM.2022.117494, PDF, HTML, XML, 下载: 282  浏览: 380  科研立项经费支持
作者: 李慧君, 莫宏敏*:吉首大学,数学与统计学院,湖南 吉首
关键词: 弱链对角占优M-矩阵逆矩阵无穷范数的上界Weak Chain Diagonally Dominant Matrices Inverse Matrices Upper Bound on an Infinite Norm
摘要: 根据弱链对角占优M-矩阵A的逆矩阵元素,定义新的参数,结合不等式放缩技巧,给出的新上界估计式。理论分析和数值例子说明,新估计式改进了现有文献的有关结果。
Abstract: According to the inverse matrix elements of weakly chain diagonally dominant M-matrix A, the new parameters are defined and the inequality scaling technique is used to obtain . Theoretical analysis and numerical examples show that the new estimate improves the relevant results in the existing literature.
文章引用:李慧君, 莫宏敏. 弱链对角占优M-矩阵逆的无穷范数新上界估计[J]. 应用数学进展, 2022, 11(7): 4683-4689. https://doi.org/10.12677/AAM.2022.117494

1. 引言

弱链对角占优矩阵在现代经济学、网络、信息论和算法设计等领域都有着广泛的应用。从1974年开始,众多学者对弱链对角占优M-矩阵的逆矩阵的无穷范数的上界估计进行了广泛研究,得到了一些不同的估计结果并将其进行了应用(见文献 [1] - [8])。本文将通过定义关于弱链对角占优M-矩阵A的元素的新参数,同时结合 A 1 的元素,从新的角度给出弱链对角占优M-矩阵 A 1 的新上界估计式,并验证结果的有效性。

C n × n ( R n × n ) 表示n阶复(实)矩阵集,设 A = ( a i j ) C n × n N = { 1 , 2 , , n } ,为方便叙述给出下列符号:

R i = k i | a i k | ,

d i = R i | a i i | ,

r i j = | a i j | | a i i | k i , j | a i k | j i ,

s i j = | a i j | + k i , j | a i k | r k j | a i i | j i ,

v i j = | a i j | + k i , j | a i k | s k j | a i i | j i ,

v i = max j i { v j i } ,

m k i = { | a k i | | a k k | j = i + 1 , j k n | a k j | s j i | a k i | 0 , 0 | a k i | = 0.

m i = { max i + 1 k n { m k i } 1 i n 1 , 0 i = n .

定义1 [1] 设 A = ( a i j ) R n × n ,若 i N ,有 d i 1 J ( A ) = { i N | d i < 1 } ϕ ,且 i N i J ( A ) ,有 a i i 1 a i 1 i 2 a i r i k 0 ,( i i 1 , i 1 i 2 , , i r i k ), 0 r k 1 i k J ( A ) ,则称A为弱链对角占优矩阵。

定义2 [1] 设 A = ( a i j ) Z n = { A = ( a i j ) R n × n | a i j 0 , i , j N , i j } ,若 A 1 0 ,则称A为M-矩阵;若 i N ,有 a i i > 0 ,则称A为L-矩阵。弱链对角占优L-矩阵为M-矩阵。

定义3 [1] 设 A = ( a i j ) R n × n A为弱链对角占优矩阵,若 A = ( a i j ) Z n A 1 0 ,则称A为弱链对角占优矩阵M-矩阵。

引理1 [1] 设An阶弱链对角占优M-矩阵,则 A ( k , n ) ( k = 1 , 2 , , n 1 ) 为弱链对角占优M-矩阵。

引理2 [1] 若 A = ( a i j ) R n × n 为弱链对角占优M-矩阵, B = A ( 2 , n ) R ( n 1 ) × ( n 1 ) A 1 = ( α i j ) B 1 = ( β i j ) ,则

α 11 = 1 Δ ,

α i 1 = 1 Δ k = 2 n β i k ( a k 1 ) ,

α 1 j = 1 Δ k = 2 n β k j ( a 1 k ) ,

α i j = β i j + α 1 j k = 2 n β i k ( a k 1 ) ,

Δ = a 11 k = 2 n a 1 k ( k = 2 n β k i a i 1 ) > 0.

引理3 [1] 若 A = ( a i j ) R n × n 为弱链对角占优M-矩阵, A 1 = ( α i j ) ,则 i , j N i j ,有

| α i j | d i | α j j | | α j j | .

引理4 [2] 若 A = ( a i j ) R n × n 为弱链对角占优M-矩阵,且 J ( A ) = { i 1 , i 2 , , i k } ,那么存在一个N的置换 { i 1 , i 2 , , i n } ,使得对所有的 j N ,有

g i = | a i j i j | l = j + 1 n | a i j i l | > 0.

引理5 若 A = ( a i j ) R n × n 为弱链对角占优M-矩阵, n 2 A 1 = ( α i j ) ,满足 u 1 < 1 ,则

α 11 1 a 11 ( 1 m 1 d 1 ) .

证明

A为M-矩阵,则 A 1 0 ,设 A m = x ,其中 m = ( 1 , m 1 , , m 1 ) T x = ( x 1 , x 2 , , x n ) T ,因为 0 m 1 1 u 1 = k = 2 n | a 1 k | / | a 11 | < 1 ,则

x 1 = a 11 + k = 2 n a 1 k m 1 = | a 11 | k = 2 n | a 1 k | m 1 | a 11 | k = 2 n | a 1 k | > 0 ,

i N 2 i n ,有

k = 2 n a i k = | a i i | k N , k 1 , i | a i k | | a i i | k N , k i | a i k | 0.

a i 1 = 0 时, x i = k = 2 n a i k m 1 0 ;当 a i 1 0 时, x i = a i 1 + k = 2 n a i k m 1 a i 1 + ( k = 2 n a i k ) m i 1 = 0 ,即

x 1 > 0 , x i 0 ( i = 2 , , n ) .

再由 A 1 x = m A 1 0 ,有

α 11 1 x 1 = 1 a 11 + m 1 k = 2 n a 1 k = 1 a 11 ( 1 m 1 d 1 ) .

引理6 设 A = ( a i j ) R n × n 为弱链对角占优M-矩阵,且 A 1 = ( α i j ) ,对 i , j N i j ,有

| α i j | | a i j | + k i , j | a i k | s k j | a i i | | α j j | v j | α j j | | α j j | .

证明

根据引理3,设

s j i ( ε , 1 ) = { | a i j | + k i , j | a i k | r k j + ε | a i i | i J ( A ) , 1 i N , i J ( A ) .

其中 ε > 0 足够小,使得 0 < s j i ( ε , 1 ) 1 ( i , j N , i j )

S j ( ε , 1 ) = d i a g ( s j 1 ( ε , 1 ) , , s j j 1 ( ε , 1 ) , 1 , s j j + 1 ( ε , 1 ) , , s j n ( ε , 1 ) ) , j N .

显然,当 S j ( ε , 1 ) = d i a g ( 1 , 1 , , 1 ) = I 时, A S j ( ε , 1 ) 是弱链对角占优矩阵,且当 S j ( ε , 1 ) I 时, A S j ( ε , 1 ) 是严格对角占优矩阵,所以, A S j ( ε , 1 ) 一定是一个弱链对角占优矩阵,从而

| α i j | s j i ( ε , 1 ) | a i j | + k i , j | a i k | s k j ( ε , 1 ) | a i i | s j i ( ε , 1 ) | α j j | , i j

也就是

| α i j | | a i j | + k i , j | a i k | s k j ( ε , 1 ) | a i i | | α j j | , i j

ε 0 时,得

| α i j | | a i j | + k i , j | a i k | s k j | a i i | | α j j | v j | α j j | | α j j | , i j .

2. 主要结果

1974年,P N Shivakumar在文献 [1] 中给出弱链对角占优M-矩阵A A 1 的上界:

A 1 i = 1 n [ a i i j = 1 i 1 ( 1 u j ) ] 1 . (1)

2012年,潘淑珍在文献 [3] 中给出优于文献 [1] 的弱链对角占优M-矩阵A A 1 的上界估计式:

A 1 1 | a 11 | ( 1 u 1 t 1 ) + i = 2 n [ 1 | a i i | ( 1 u i t i ) j = 1 i 1 ( 1 + u j 1 u j t j ) ] . (2)

其中

t i = { max i + 1 k n { t k i } 1 i n 1 , 0 i = n . 0 t i 1 , i N

t k i = { | a k i | | a k k | j = i + 1 , j k n | a k j | | a k i | 0 , 0 | a k i | = 0. k N , i + 1 k n , 1 i ( n 1 )

本文继续给出弱链对角占优M-矩阵A A 1 的新上界估计式。

2.1. 定理1

A = ( a i j ) R n × n 为弱链对角占优M-矩阵, n 2 A 1 = ( α i j ) B = A ( 2 , n ) B 1 = ( β i j ) ,满足 u 1 < 1 ,则

A 1 max { 1 a 11 ( 1 m 1 d 1 ) + d 1 B 1 1 m 1 d 1 , v 1 a 11 ( 1 m 1 d 1 ) + ( v 1 d 1 1 m 1 d 1 + 1 ) B 1 } .

证明

r i = j = 1 n α i j M A = A 1 M B = B 1 ,即 M A = max i N { r i } M B = max 2 i n { j = 2 n β i j } ,由引理2和引理5可得

r 1 = α 11 + j = 2 n α 1 j = 1 Δ + 1 Δ k = 2 n ( a 1 k ) j = 2 n β k j 1 Δ + 1 Δ k = 2 n ( a 1 k ) M B = 1 Δ + 1 Δ a 11 d 1 M B 1 a 11 ( 1 m 1 d 1 ) + d 1 1 m 1 d 1 M B , (3)

2 i n ,由引理3知,

α i 1 α 11 ,

2 j n ,由引理6知,

α i j = β i j + α 1 j k = 2 n β i k ( a k 1 ) β i j + α 1 j v 1 ,

r i = α i 1 + j = 2 n α i j v 1 α 11 + j = 2 n ( β i j + α 1 j v 1 ) = r 1 v 1 + M B v 1 ( 1 a 11 ( 1 m 1 d 1 ) + d 1 M B 1 m 1 d 1 ) + M B = v 1 a 11 ( 1 m 1 d 1 ) + ( v 1 d 1 1 m 1 d 1 + 1 ) M B , (4)

由(3)式和(4)式可得

M A = max { r 1 , r i : 2 i n } max { 1 a 11 ( 1 m 1 d 1 ) + d 1 B 1 1 m 1 d 1 , v 1 a 11 ( 1 m 1 d 1 ) + ( v 1 d 1 1 m 1 d 1 + 1 ) B 1 } .

2.2. 定理2

A = ( a i j ) R n × n 为弱链对角占优M-矩阵,且对 k N ,有 u k < 1 ,则

M A max { 1 a 11 ( 1 m 1 u 1 ) + i = 2 n [ 1 a i i ( 1 m i u i ) j = 1 i 1 ( u j 1 m j u j ) ] , v 1 a 11 ( 1 m 1 u 1 ) + i = 2 n [ v i a i i ( 1 m i u i ) j = 1 i 1 ( v j u j 1 m j u j + 1 ) ] } . (5)

证明

A为弱链对角占优M-矩阵,对 k N 1 k n 1 A ( k , n ) 为弱链对角占优M-矩阵,由定理1关于k A ( k , n ) 做数学归纳法可得。

A = ( a i j ) R n × n 为弱链对角占优M-矩阵,且对 k N ,满足 u k < 1 ,由 v i m i t i 表达式可知 0 v i 1 0 m i t i 1 ,那么(5)式中 A 1 的上界小于等于(2)式中的上界,即

max { 1 a 11 ( 1 m 1 u 1 ) + i = 2 n [ 1 a i i ( 1 m i u i ) j = 1 i 1 ( u j 1 m j u j ) ] , v 1 a 11 ( 1 m 1 u 1 ) + i = 2 n [ v i a i i ( 1 m i u i ) j = 1 i 1 ( v j u j 1 m j u j + 1 ) ] } 1 | a 11 | ( 1 u 1 t 1 ) + i = 2 n [ 1 | a i i | ( 1 u i t i ) j = 1 i 1 ( 1 + u j 1 u j t j ) ] .

3. 数值算例

例1设

A = ( 4 1 1 2 5 3 1 2 4 ) .

J = { 1 , 3 } ,易得到A为弱链对角占优M-矩阵, A 1 = 1.100

应用(1)式得

A 1 2.7500 ;

应用(2)式得

A 1 1.500 ;

应用定理2得

A 1 1.1503.

例2 设

A = ( 4 2 1 1 3 2 1 0 2 ) .

易得到A为弱链对角占优M-矩阵, A 1 = 1.54

应用(1)式得

A 1 11 ;

应用(2)式得

A 1 5.6667 ;

应用定理2得

A 1 1.996.

4. 结论

理论证明本文所得弱链对角占优M-矩阵逆矩阵无穷范数的新上界估计式优于文献 [1] [3] 中的结果,数值算例亦说明了本文所得新上界估计式的有效性和可行性。

致谢

感谢莫宏敏老师对本篇论文的悉心指导和帮助。

基金项目

吉首大学研究生科研项目(JDY21012)。

NOTES

*通讯作者。

参考文献

[1] Shivakumar, P.N., Wiliams, J.J., Ye, Q., et al. (1996) On Two-Sided Bounds Related to Weakly Diagonally Dominant M-Matrices with Application to Digital Circuit Dynamics. SIAM Journal on Matrix Analysis and Applications, 17, 298-312.
https://doi.org/10.1137/S0895479894276370
[2] Huang, T.Z. and Zhu, Y. (2010) Estimation of for Weakly Chained Diagonally Dominant M-Matrices. Linear Algebra and Its Applications, 432, 670-677.
https://doi.org/10.1016/j.laa.2009.09.012
[3] 潘淑珍, 陈神灿. 弱链对角占优矩阵 的上界估计[J]. 福州大学学报(自然科学版), 2012, 40(3): 281-284.
[4] 李艳艳, 蒋建新. 弱链对角占优矩阵的 的新界[J]. 云南民族大学学报(自然科学版), 2014, 23(4): 259-261.
[5] 赵仁庆, 刘鹏. 弱链对角占优M-矩阵的逆矩阵的无穷大范数的上界估计[J]. 楚雄师范学院学报, 2014, 29(3): 5-10.
[6] 蒋建新, 李艳艳. 弱链对角占优矩阵的逆矩阵无穷范数的新上界[J]. 咸阳师范学院学报, 2016, 31(2): 53-55.
[7] Sang, C. and Chen, Z. (2021) A New Error Bound for Linear Complementarity Problems of Weakly Chained Diagonally Dominant B-Matrices. Linear and Multilinear Al-gebra, 69, 1909-1921.
https://doi.org/10.1080/03081087.2019.1649995
[8] Zhao, R., Zheng, B. and Liang, M. (2020) A New Error Bound for Linear Complementarity Problems with Weakly Chained Diagonally Dominant B-Matrices. Applied Mathe-matics and Computation, 367, Article ID: 124788.
https://doi.org/10.1016/j.amc.2019.124788