急性胰腺炎严重程度及预后评估指标的研究进展
Research Progress in Severity and Prognosis Evaluation Indicators of Acute Pancreatitis
DOI: 10.12677/ACM.2022.127961, PDF, HTML, XML, 下载: 383  浏览: 764  科研立项经费支持
作者: 张凤莲, 施荣杰*, 杨开霞, 陈 怡:大理大学临床医学院,云南 大理
关键词: 急性胰腺炎预后严重程度实验室指标评分系统Acute Pancreatitis Prognosis Severity Laboratory Markers Scoring Systems
摘要: 急性胰腺炎(acute pancreatitis, AP)是由多种病因引起的胰腺炎症疾病,也是导致急腹症的常见原因,虽然大部分呈自限性,但仍有较多患者可以出现多种并发症,当伴有严重的局部和全身并发症时,则有较高死亡率。因此,早期评估患者病情严重程度并给予有效的治疗,有助于改善患者预后。既往研究发现AP的严重程度可根据临床、放射学危险因素、多种严重程度评分系统和生物标志物等进行预测,故本综述概述了可用于预测AP严重程度的各评分系统和生物标志物在临床的应用价值。
Abstract: Acute pancreatitis (AP) is an inflammatory disease of the pancreas caused by multiple etiologies, it is also the most common inflammatory disease of the digestive system. Although most patients are self-limited, there are still many patients with multiple complications, and when accompanied by serious local and systemic complications, there is a high mortality rate. Therefore, early assessment of the severity of the patient’s disease and effective treatment can help improve the prognosis of the patient. Previous studies have found that the severity of AP can be predicted based on clinical, radi-ological risk factors, multiple severity scoring systems and biomarkers. Therefore, this review summarizes the clinical value of various scoring systems and biomarkers that can be used to pre-dict the severity of AP.
文章引用:张凤莲, 施荣杰, 杨开霞, 陈怡. 急性胰腺炎严重程度及预后评估指标的研究进展[J]. 临床医学进展, 2022, 12(7): 6659-6670. https://doi.org/10.12677/ACM.2022.127961

1. 引言

急性胰腺炎(acute pancreatitis, AP)是由多种病因引起的胰腺炎性疾病,也是消化系统最常见的炎症性疾病,可导致局部和全身炎症反应,在全球范围内的发病率正在增加。据2012年修订后的亚特兰大分类标准可将AP分为轻症急性胰腺炎(mild acute pancreatitis, MAP)、中度重症急性胰腺炎moderately severe acute pancreatitis, MSAP)、重症急性胰腺炎(severe acute pancreatitis, SAP) [1]。虽然大部分的患者为轻症且病程呈自限性,但仍有15%~20%发展成重症 [2]。而SAP患者的病死率可高达20%~40% [3],基于此,在疾病的早期阶段识别其严重程度极为重要,它可以帮助临床医生更好地评估患者病情并给予积极的治疗以改善预后。对于AP的严重程度的评估最早于1974年由Ranson等人开始 [4]。自此,越来越多的常见临床生化指标及多因素评分系统被用来预测AP严重程度,故本文就各评分系统及实验室指标等在AP严重程度评估中的研究进展进行概述。

2. 多因素评分系统进展

2.1. Ranson评分

Ranson评分于1974年发表,是AP的第一个特异性多因素评分系统 [5],由11个参数组成,当Ranson评分 ≥ 3分提示SAP,被用于评估AP严重程度超过30年,能够反映胰腺炎局部病变、全身炎症反应及第三间隙液体丢失情况。但有研究示Ranson评分的敏感性和NPV分别为85.7%和95.3%,而特异性和PPV较低(分别为44.4%和18.8%),可见Ranson评分的SAP假阳性率较高,因此在预测器官功能衰竭和病死率方面存有争议 [6]。且因其中6个指标于入院48小时后方可获得,并使用临床实践中不常用的参数,故容易错过早期最佳治疗窗口。

2.2. APACHE II评分

APACHE II评分是于1985年由Wagner等人 [7] 提出的,最初用于评估重症监护室中相关疾病的严重程度,在临床研究中较常使用,可用于预测AP的严重程度,并可确定在病程中是否需要早期复苏和及时转诊等 [8],但其由急性生理指数、年龄和慢性健康指数构成,共包含15项评分项目 [9],需要收集大量临床资料,在临床中较难实现;且既往研究示APACHE II评分侧重于全身并发症的演变、器官功能障碍的预测,而对局部病灶的评估效果并不理想,具有一定的局限性 [10]。

2.3. SOFA评分

1994年提出的以器官功能障碍为评价核心的量化评分系统——SOFA评分,其评价指标覆盖6个系统,能客观反映患者各器官系统状况 [11]。结合AP患者主要死亡原因为持续性器官功能衰竭 [12],SOFA评分系统对多器官功能障碍的预测价值,可帮助临床医师更准确地判断病情,从控制器官功能障碍或衰竭入手,改善患者预后。然而,该评分常用于ICU重症患者病情评估,许多指标是ICU特有的,且此评分系统不易记忆,因此其普通病房使用常常受限 [13]。

2.4. BISAP评分

BISAP评分是于2008年由Wu等人于2008年制定 [14],其包括尿素氮、精神障碍、全身炎症反应综合征、年龄、胸腔积液5个项目,旨在住院24小时内使用,结合AP患者发病24至48小时内是临床管理最关键的时间窗口,这一项特征就显得极为重要,有助于临床医生在入院后数小时内就对患者病情进行评估,及时做出决策并管理。但因存在评价患者精神状态等主观性指标,可能存在一定误差 [15]。

2.5. MCTSI评分

MCTSI评分是Mortelé等于2004年CTSI评分基础上考虑到器官功能衰竭、胰实质外的并发症等与CTSI相关性不高 [16] 后提出的。因其在CTSI的基础上增加了对胰外并发症(胰腺实质外的病变、血管及胃肠道受累、胸腔及腹腔积液等)的评估 [17] [18],使得该评分预测在局部并发症(AUC:0.791)、严重程度(AUC:0.654)和病死率(AUC:0.839)等方面更加精确。有研究表明MCTSI虽在预测短期死亡率方面更准确,但并不能比传统系统更好地预测AP的严重程度,故不建议仅出于严重程度考虑而行此检查 [19] [20]。另外由于AP的胰腺坏死存在进展的过程,CT扫描无法及时发现胰腺形态学改变,导致其对AP严重程度评估存在一定滞后性 [21] [22] [23]。

2.6. CPWAG评分系统

CPWAG评分系统是唐豪佑等人于2021年由提出的,包括白细胞、C-反应蛋白、血清白蛋白、降钙素原、血糖、血钙及胸腔积液7个指标 [24],所有指标均可在入院第一时间内获得,具有简便、快捷、客观性等优点。唐豪佑等人研究结果示CPWAG评分在预测AP严重程度方面(AUC = 0.866)优于CTSI评分(AUC = 0.805)、Ranson评分(AUC = 0.722)及APACHE II评分(AUC = 0.706);在预测SAP方面的特异度达88.80%;在预测AP患者死亡方面的敏感度为70.59%、特异度为88.25%。故该评分系统在预测AP患者的严重程度及死亡方面均有很好的价值,可指导临床医生对患者病情进行早期评估,对下一步诊疗措施的计划具有积极意义。

3. 实验室生物学指标研究进展

3.1. 血液学指标

3.1.1. 白细胞(WBC)

WBC作为最早的实验室测试项目之一,在炎症状态下一般都会随着炎症反应程度而升高,然而研究表明其在AP严重程度的评估上特异性不高 [25] [26]。

3.1.2. 红细胞分布宽度(RDW)

RDW是反映红细胞体积异质性的参数,既往主要用于贫血的鉴别诊断 [27]。有研究 [28] 证明RDW的变化与炎症反应有关,炎症反应可促进红细胞死亡、抑制红细胞成熟、使铁代谢紊乱并增加溶血,导致造血受损并增加红细胞大小的异质性。故RDW可用作非特异性炎症指标通过反映AP的炎症反应程度来早期预测AP的严重程度。Zhang FX,等人研究 [29] 也证明RDW的AUC大于APACHE II评分和SOFA评分,且是预测SAP患者预后的独立危险因素。

3.1.3. 血细胞比容(HCT)

HCT是反映血液黏稠度的血清学指标,其数值受红细胞量及血浆量等影响。在胰腺炎发病过程中由于血管活性因子、炎症介质释放等原因使毛细血管通透性增加,使得血浆外渗、血容量丢失,造成血液浓缩,故HCT由此升高 [30];同时HCT越高,全血黏度增大,进而可导致机体局部缺血或胰腺坏死 [31]。

3.1.4. 未成熟粒细胞(IG)

未成熟粒细胞(IG)是来自骨髓中母细胞的嗜中性粒细胞,通常不能在外周血中检测到。感染时可因炎症进入外周血,因此在外周血中检测出IG是骨髓活化和严重感染的指标 [32]。最近的研究表明 [33] [34],感染和脓毒症病例中未成熟的粒细胞计数(IGC)和百分比(IG%)均明显增加。而近期研究 [35] [36] 也表明在SAP的早期预测中,IG%是比WBC、NLR、CRP等传统炎症标志物更有效、更可靠的指标,且它能够轻松、快捷、简易获得。

3.1.5. 中性粒细胞/淋巴细胞比值与血小板/淋巴细胞比值组合(NLR-PLR)

NLR (中性粒细胞计数/淋巴细胞计数)和PLR (血小板计数/淋巴细胞计数)作为预测许多疾病的预后的炎症标志物,在临床常被用于评估各种疾病的严重程度,土耳其的一项研究也显示,NLR、PLR可预测AP的严重程度和并发症 [37],但鲜少有人将其组合起来评估,直至Zhang等人建议可将其组合 [38] [39] 用于预测疾病预后,尤其在肿瘤方面。Kaplan M等人通过研究 [40] 进一步证实PLR-NLR组合在预测AP生存率方面具有最高的AUC值,并且在预测死亡率方面与Ranson、亚特兰大和BISAP评分系统相比,具有更好的诊断鉴别性,且PLR-NLR组合是确定预后的重要标志物。(NLR-PLR组合是指将NLR和PLR阈值算出后,若两者均升高的患者评分为2分,显示其中一个或没有升高的患者分别为1分或0分。)

3.2. 细胞因子

3.2.1. 白介素(IL)

白介素能促进细胞生长、分化、循环、并参与炎症过程和免疫反应 [41]。主要包括促炎因子IL-1、IL-6、IL-8和抗炎因子IL-10。IL-1中的IL-1β能够与TNF-α介导胰腺组织或其他组织释放更多炎症因子并进一步诱导IL-6和IL-8产生 [42]。IL-6由活化的T细胞产生,是肝脏中急性期蛋白质合成的主要刺激物,也是纤维蛋白原、CRP和铁调素合成的主要介质。Jiang等人测定了入院后数日IL-6、TNF-α和CRP的浓度,发现IL-6在入院第一天具有最高的敏感性和特异性(100%和89.7%) [43],故可作为判断早期AP预后的一种生物标志物,在临床广泛应用。IL-8是中性粒细胞的趋化因子和诱导剂,能促进碱性粒细胞释放组胺、促进中性粒细胞脱颗粒和释放溶酶体酶 [44]。既往研究 [45] 表明IL-8在血液中的含量随着AP病情程度的增加而增加,且症状恢复后,其含量也会随之下降。而Fisic E等人研究也表明 [46] IL-6在预测AP严重程度敏感性为82%,特异性为65%,IL-8在预测AP严重程度敏感性和特异性分别为68%和67%。IL-10是一种具有抗炎特性的细胞因子,在限制宿主对病原体的免疫反应方面起核心作用,从而防止对宿主的损害和维持正常的组织稳态。研究证明 [47] IL-10通过降低胰腺病理评分以及血清淀粉酶和TNF-α分泌来减轻SAP炎症的严重程度。伏玲 [48] 等研究证明MAP组患者血清IL-10显著高于SAP组,提示病情严重时IL-10水平降低。

3.2.2. 肿瘤坏死因子α (TNF-α)

TNF-α可通过引起其他细胞因子、炎症和凋亡细胞死亡的上调,在炎症的进展中起着至关重要的作用 [49]。AP病理生理学包括微循环中断、氧化应激和促炎细胞因子的明显释放,其中氧化应激是主要的致病因素之一,它参与AP的早期阶段 [50]。El-Ashmawy等人 [51] 研究证实,胰腺TNF-α浓度在l-精氨酸给药后显著升高,这可能归因于活性氧(ROS)的过度产生激活了核因子NF-κB,使得各种炎症细胞因子上调。TNF-α作为AP病程中最早出现的细胞因子,对早期评估AP严重程度具有关键作用,Jiang Y等 [52] 研究示,AP发生后1 h,血清TNF-α水平升高,6 h即可达到高峰。而Yang等人研究 [53] 也证明MSAP组和SAP组血清TNF-α浓度在第1天达到峰值,其动态检测过程中重症组血清TNF-α浓度均高于非重症组。

3.3. 其他单一临床实验室指标

3.3.1. C反应蛋白(CRP)

CRP是由肝脏分泌的一种非特异性急性反应蛋白,当机体组织损伤发生6小时后,CRP水平即可开始升高,24~48 h可达到高峰,且其升高的幅度与组织损失程度呈正相关,故其动态变化可反映胰腺细胞损伤和坏死程度 [54]。既往研究 [55] 证实重症急性胰腺炎组CRP值明显高于轻度急性胰腺炎组,Dancu等人 [56] 研究示CRP 48 h预测SAP预后方面敏感性为71%,特异性为88%;CRP水平不仅是SAP的独立预测因子还是死亡率的独立预测因子,且CRP价格低廉并易于获得的特点使得其在临床应用更为方便。但因其作为胰腺炎标志物没有特异性 [57],其他炎症状况也可能会影响其增加。

3.3.2. 肝素结合蛋白(HBP)

HBP是一种储存在中性粒细胞分泌囊泡中的糖蛋白,在全身炎症反应早期中性粒细胞活化时释放,活化的中性粒细胞可通过磷脂酰肌醇3-激酶(PI3K)途径 [58] 从分泌囊泡中释放HBP,迅速提高胰腺和循环中的HBP水平。而HBP作为中性粒细胞中的一种促炎蛋白,对单核细胞、中性粒细胞、T细胞等具有趋化作用并刺激单核细胞产生TNF-α、IL-1、IL-6和其他炎症介质 [59],并会增加内皮细胞通透性,导致脓毒症和其他炎症性疾病中的血管功能障碍和血浆渗漏。Linder等 [60] 研究示HBP水平先于其他已知生物标志物(如CRP、PCT、WBC)升高,可成为重症脓毒症伴器官功能障碍的早期预测因子。而胰腺坏死及持续性器官衰竭是SAP早期死亡的主要原因,Shu [61] 等人基于此,对HBP水平与急性胰腺炎器官衰竭进行相关研究得出24小时后HBP水平的升高可以作为一种生物标志物,能够区分可能发展为SAP的患者和MAP的患者,且HBP可以作为预测POF的可靠指标,其水平 ≥ 7 ng/ml对POF的特异性为74%,敏感性为90%,AUC为0.82。Zhong等 [62] 也进一步证实HBP预测SAP的敏感性为70.59%,特异性88.24%,AUC为0.79。因此,HBP可以作为SAP筛查和严重程度预测的有效生物标志物。

3.3.3. 白蛋白(ALB)

白蛋白是由肝脏合成的阴性急性期蛋白质,有抗炎、抗氧化、合成代谢等作用,在炎症过程中会降低。既往研究表明ALB是AP患者的保护因素,具有良好的预测AP严重程度及死亡率的能力 [63]。Xu等 [64] 在对两个大型ICU数据库进行数据分析后证实ALB不仅对SAP的预测具有良好的诊断准确性,而且对AP患者的院内死亡率也具有很高的预测能力,并确定患者院内死亡率的ALB的最佳临界值2.1 g/dL。Ocskay等 [65] 通过动态检测ALB并进行分析后发现住院期间任何时候ALB低于25 g/L的AP患者的死亡风险高出16.8倍,表明ALB丢失与严重程度和死亡率显着相关。而在临床中,ALB来源方便且经济实惠,在临床实践中可积极推广。

3.3.4. 降钙素原(PCT)

PCT是在甲状腺C细胞和肺内分泌细胞中发现的激素降钙素的前体,作为诊断细菌感染的特异性标志物之一,其血清浓度与感染或器官衰竭密切相关。而众所周知SAP与脓毒症、感染性胰腺坏死和多器官衰竭有关,故PCT可用作AP预后的早期工具。Liang等 [66] 研究证明PCT是SAP的独立危险因素,其在诊断SAP时的AUC为0.906。另外一项多中心试验显示,在症状发作后96小时内PCT值为3.8 ng/ml时,胰腺坏死或死亡的诊断敏感性和特异性分别为93%和79% [67]。且有研究发现在急性重症胰腺炎中,血清PCT和APACHE II作为死亡率预测因子从入院到48小时的变化之间存在正相关关系,且在AP幸存者中,血清PCT变化比APACHE II具有更好预测价值 [68]。但PCT检测成本较高,在临床应用方面存在一定的经济限制。

3.3.5. 血尿素氮(BUN)

血尿素氮是反应血管内容量状态的标志物,可用于评估复苏工作的有效性,在AP中可以反映血液浓缩、微循环变化和肾功能损害等基本事件。在AP中,血管内液体外渗导致的血容量不足、炎性介质的释放及由细胞因子激活酶、蛋白酶、自由基等介导的直接肾小球损伤均可导致急性肾损伤(AKI),研究证明BUN的升高也反映了AP患者AKI [69],而并发AKI时能使AP患者生存率更低和预后更差 [70]。Chen等人 [71] 研究发现入院后48小时内PCT、CRP、HCT和BUN的最高水平是感染性胰腺坏死(IPN)的独立危险因素,它们的组合可以准确预测继发于坏死性胰腺炎(NP)的IPN的发生。Elizabeth等 [72] 研究示24小时尿素氮升高在预测死亡、POF和SAP方面的敏感性为78.26%、特异性为87.60%、AUC为0.842,得出24小时BUN升高是预测AP患者死亡和持续多器官衰竭的快速且可靠的检测指标。不仅如此,David等人 [73] 研究示在儿童AP方面BUN本身也是SAP最重要的预测因子(敏感性63%、特异性81%)。

3.3.6. 乳酸脱氢酶(LDH)

LDH是一种广泛表达于组织中的细胞质酶,可作为细胞死亡的指标,其正常范围为140 U/L~280 U/L,在组织损伤、坏死、缺氧或恶性肿瘤等疾病中可观察到LDH升高。在Cui等 [74] 研究中证实了血清LDH是AP中持续性器官衰竭(POF)的独立预后因素,当以LDH ≥ 647 U/L为截断值时,预测POF的AUC为0.876,其预测价值较Ranson和SIRS等高,而POF是发病2周内最常见的死亡原因,在另一项研究中 [75] 提出了当LDH ≥ 273.04 U/L时,SAP预测的AUC为0.919、敏感性为82.7%、特异性为96%,且联合检测PCT、IL-6、CRP、LDH对于判断AP的严重程度具有很高的诊断价值(AUC为0.98),LDH还是一种方便廉价的实验室检测指标,可常规用于临床检测。

3.3.7. D-二聚体(D-D)

D-D是一种可溶性纤维蛋白降解产物,是凝血活化和纤维蛋白溶解的重要标志物,可快速评估血栓形成活性。在AP发作时,胰酶的异常激活导致胰腺炎症和损伤,然后诱发血栓形成并进一步加重损伤,且凝血系统紊乱一直被认为与全身性和局部胰腺炎并发症的发病机制有关 [76],故D-D作为血栓形成的常见指标,通过监测胰腺和胰腺外血栓形成,可在评估AP严重程度方面可能起重要作用。有研究表明D-D水平可能是预测AP严重程度的潜在生物标志物,且AP的结局(如器官衰竭和胰腺坏死)随着血清D-D水平的升高而恶化 [77]。Zhang等人 [78] 研究示D-D值可用作AP严重程度的预测指标,当D-D < 4.868 ng/ml提示MAP,>7.268 ng/ml提示SAP,4.868~7.268 ng/ml提示MSAP。近期一项研究示D-D 48 h诊断MSAP + SAP时的AUC、临界值、敏感性、特异性分别为0.789、1.805 mg/L、74.70%、75.00% [79]。结合D-D方便、稳定的特点,可广泛用于临床环境。

4. 组合检测指标

4.1. 甘油三酯–葡萄糖(Triglyceride and Glucose, TyG)指数

近年来,代谢相关因素在急性胰腺炎中的作用越来越得到认可,胰岛素抵抗(IR)是指对胰岛素的敏感性或反应性降低的临床状态,为一种慢性、低度炎症状态,与多种促炎分子如TNF-α、瘦素、降钙素基因相关肽、IL-6等之间存在联系 [80],而这些分子在IR患者的AP发病机制中起关键作用。炎症因素可诱发IR,同样IR亦可诱发炎症。HOMA-IR是胰岛素抵抗的替代标志物,Cho等研究 [81] 发现无论胰腺炎的病因如何,HOMA-IR是预测AP患者SAP或入住ICU的独立预后因素,进一步说明IR可能会影响SAP的风险。TyG指数的概念源于一项研究,其表明骨骼肌中存在的甘油三酯与骨骼肌胰岛素敏感性和全身胰岛素作用呈负相关 [82]。作为胰岛素抵抗的新型标志物,TyG指数的计算公式为:ln [空腹甘油三酯(mg/dL) × 空腹血浆葡萄糖(mg/dL)]/2。Park等人证明了在AP患者中TyG指数是一个独立的预后因素,其用于预测SAP的临界值为4.92 (敏感性:0.920,特异性:0.374,AUC为0.787) [83]。另一项研究 [84] 也证明SAP患者的TyG指数显著高于非SAP患者,高水平的TyG指数和PCT是AP患者发生SAP的独立危险因素且在预测SAP方面TyG指数比PCT具有更高的检验效能。

4.2. 系统免疫炎症指数(SII)

我们知道炎症反应可由中性粒细胞、淋巴细胞、血小板和急性期蛋白的水平表示,最近,中性粒细胞、淋巴细胞和血小板已被用于一种连接工具,即系统内免疫炎症指数(SII),SII = 血小板计数 × 中性粒细胞计数/淋巴细胞计数。既往研究中,SII是肿瘤患者生存及复发的独立预测因子,能够反映患者免疫炎症失衡状态 [85]。但最近已应用于炎症相关疾病,如慢性阻塞性肺疾病 [86] 和抗中性粒细胞胞浆自身抗体相关血管炎 [87] 等。陈等人 [88] 研究证明SII值有助于帮助脓毒症患者病情严重程度及预后的判断。Lu等人也证明 [89] SII是SAP患者AKI的独立预测因子,可用于早期准确预测SAP患者的AKI。另外也有研究示SII是预测AP严重程度的潜在指标,当SII值 ≥ 2207.53时预测SAP的能力(敏感性92.9%,特异性87.7%,AUC 0.920)比PLR (敏感性82.1%,特异性84.9%,AUC 0.877)和NLR (敏感性82.1%,特异性82.2%,AUC 0.811)更具特异性 [90]。Zhang等人 [91] 也表明高SII值与AP的死亡率显著相关,SII是AP的潜在有用的预后生物标志物。

4.3. 载脂蛋白B与A1比值(ApoB/A1)

载脂蛋白A1 (ApoA1)是HDL的主要成分,在保护动脉中起着至关重要的作用,同时也是一种重要的急性期蛋白。ApoA1在体内可防止T淋巴细胞与巨噬细胞之间的相互作用并抑制各种炎症因子的产生,从而限制炎症的“瀑布”效应并起到抗氧化作用 [92]。载脂蛋白B (ApoB)是低密度脂蛋白(LDL)的主要结构,可以促进脂蛋白进入血管壁,刺激巨噬细胞的吞噬作用,从而诱发炎症 [93]。因此,ApoA1和ApoB分别反映了体内抗炎和促炎之间的平衡。结合ApoB促进炎症,ApoA1抑制全身炎症特点,ApoB/A1比率可能反映AP严重程度的进展。Wu等人研究显示 [94] ApoB/A1比值与AP患者的疾病严重程度密切相关,其预测SAP的最佳临界值为0.88,敏感性为83.08%,特异性为69.03%。也有研究显示ApoB/A1预测AP患者发生POF具有较高的准度,且ApoB/A1比TG/HDL-C具有更高预测POF的价值 [95]。同时ApoA1和ApoB的检查是入院时常规血液检查,其操作简单、方便,可以在大多数医院进行,故ApoB/A1比率可能比评分系统更适用于预测AP严重程度。

尽管近年来对AP的病理生理学进行了深入研究,但总体疾病死亡率仍较高,早期预测和识别AP的严重程度仍是治疗的关键。研究表明,早期积极治疗可降低一定死亡率,故需要临床医生早期准确评估患者病情来指导治疗,目前研究发现越来越多的生物学标志物在预测AP严重程度具有良好的运用前景,但由于各研究对象不同、样本量较小、目标结局不同,且具有各自的局限性,故仍需进一步积极探索更理想的早期评估AP严重程度的实验室指标。

基金项目

云南省教育厅科学研究基金项目(编号:2022Y859)。

参考文献

NOTES

*通讯作者。

参考文献

[1] Banks, P.A., Bollen, T.L., Dervenis, C., et al. (2013) Classification of Acute Pancreatitis-2012: Revision of the Atlanta Lassification and Definitions by International Consensus. Gut, 62, 102-111.
https://doi.org/10.1136/gutjnl-2012-302779
[2] Tee, Y.-S., Fang, H.-Y., Kuo, I.-M., et al. (2018) Serial Evalua-tion of the SOFA Score Is Reliable for Predicting Mortality in Acute Severe Pancreatitis. Medicine, 97, e9654.
https://doi.org/10.1097/MD.0000000000009654
[3] Boxhoorn, L., Voermans, R.P., Bouwense, S.A., et al. (2020) Acute Pancreatitis. Lancet, 396, 726-734.
https://doi.org/10.1016/S0140-6736(20)31310-6
[4] Ranson, J.H., Rifkind, K.M. and Turner, J.W. (1976) Prog-nostic Signs and Nonoperative Peritoneal Lavage in Acute Pancreatitis. Surgery, Gynecology and Obstetrics, 143, 209-219.
[5] Ranson, J.H., Rifkind, K.M., Roses, D.F., et al. (1974) Prognostic Signs and the Role of Operative Management in Acute Pancreatitis. Surgery, Gynecology and Obstetrics, 139, 69-81.
[6] Cho, J.H., Kim, T.N., Chung, H.H., et al. (2015) Comparison of Scoring Systems in Predicting the Severity of Acute Pancreatitis. World Journal of Gastroenterology, 21, 2387-2394.
https://doi.org/10.3748/wjg.v21.i8.2387
[7] Knaus, W.A., Draper, E.A., Wag-ner, D.P. and Zimmerman, J.E. (1985) APACHE II: A Severity of Disease Classification System. Critical Care Medicine, 13, 818-829.
https://doi.org/10.1097/00003246-198510000-00009
[8] Harshit, K.A. and Singh, G.M. (2018) A Comparison of APACHE II, BISAP, Ranson’s Score and Modified CTSI in Predicting the Severity of Acute Pancreatitis Based on the 2012 Revised Atlanta Classification. Gastroenterology Report, 6, 127-131.
https://doi.org/10.1093/gastro/gox029
[9] 时毓雯, 吴琼, 王玉刚, 施敏. 急性胰腺炎: 预后标志物的研究进展[J]. 胃肠病学和肝病学杂志, 2022, 31(3): 349-353.
[10] Adam, F., Bor, C., Uyar, M., et al. (2013) Severe Acute Pancreatitis Admitted to Intensive Care Unit: SOFA Is Superior to Ranson’s Criteria and APACHE II in Determining Prognosis. Turkish Journal of Gastroenterology, 24, 430-435.
https://doi.org/10.4318/tjg.2013.0761
[11] 施佳民, 宋彩萍, 陈巧颖. 序贯器官衰竭估计评分预测急诊严重感染患者预后的临床分析[J]. 中华医院感染学杂志, 2015, 25(18): 4152-4154.
[12] Petrov Maxim, S., Shanbhag, S., Chakraborty, M., et al. (2010) Organ Failure and Infection of Pancreatic Necrosis as Determinants of Mortality in Pa-tients with Acute Pancreatitis. Gastroenterology, 139, 813-820.
https://doi.org/10.1053/j.gastro.2010.06.010
[13] Kilinc, T.A., Kose, S. and Turken, M. (2021) Comparison of SOFA Score, SIRS, QSOFA, and QSOFA + L Criteria in the Diagnosis and Prognosis of Sepsis. The Eurasian Journal of Medicine, 53, 40-47.
https://doi.org/10.5152/eurasianjmed.2021.20081
[14] Wu, B.U., Johannes, R.S., Sun, X., et al. (2008) The Early Prediction of Mortality in Acute Pancreatitis: A Large Population-Based Study. Gut, 57, 1698-1703.
https://doi.org/10.1136/gut.2008.152702
[15] Ye, J.F., Zhao, Y.X., Ju, J., et al. (2017) Building and Verifying a Severity Prediction Model of Acute Pancreatitis (AP) Based on BISAP, MEWS and Routine Test Indexes. Clinics and Research in Hepatology and Gastroenterology, 41, 585-591.
https://doi.org/10.1016/j.clinre.2016.11.013
[16] Mortele, K.J., Mergo, P.J., Taylor, H.M., et al. (2004) Peripan-creatic Vascular Abnormalities Complicating Acute Pancreatitis: Contrast-Enhanced Helical CT Findings. European Journal of Radiology, 52, 67-72.
https://doi.org/10.1016/j.ejrad.2003.10.006
[17] Irshad Ahmad, B., Imran, G., Azher Maqbool, K., et al. (2015) Modified Computed Tomography Severity Index for Evaluation of Acute Pancreatitis and Its Correlation with Clinical Outcome: A Tertiary Care Hospital Based Observational Study. Journal of Clinical and Diagnostic Research, 9, TC01-TC05.
[18] Yang, L., Liu, J., Xing, Y., et al. (2016) Comparison of BISAP, Ranson, MCTSI, and APACHE II in Predicting Severity and Prognoses of Hyperlipidemic Acute Pancreatitis in Chinese Patients. Gastroenterology Re-search and Practice, 2016, Article ID: 1834256.
https://doi.org/10.1155/2016/1834256
[19] London, N.J., Ne-optolemos, J.P., Lavelle, J., et al. (1989) Contrast-Enhanced Abdominal Computed Tomography Scanning and Prediction of Severity of Acute Pancreatitis: A Prospective Study. British Journal of Surgery, 76, 268-272.
https://doi.org/10.1002/bjs.1800760317
[20] Bollen Thomas, L., Singh Vikesh, K., Maurer, R., et al. (2012) A Comparative Evaluation of Radiologic and Clinical Scoring Systems in the Early Prediction of Severity in Acute Pancrea-titis. American Journal of Gastroenterology, 107, 612-619.
https://doi.org/10.1038/ajg.2011.438
[21] Bollen Thomas, L., Singh Vikesh, K., Maurer, R., et al. (2011) Comparative Evaluation of the Modified CT Severity Index and CT Severity Index in Assessing Severity of Acute Pancreatitis. American Journal of Roentgenology, 197, 386-392.
https://doi.org/10.2214/AJR.09.4025
[22] Ortiz Morales, C.M., Girela Baena, E.L., Olalla Muñoz, J.R., et al. (2019) Radiology of Acute Pancreatitis Today: The Atlanta Classification and the Current Role of Imaging in Its Diagnosis and Treatment. Radiología, 61, 453-466.
https://doi.org/10.1016/j.rxeng.2019.06.005
[23] Choi, H.W., Park, H.J., Choi, S.-Y., et al. (2018) Early Prediction of the Severity of Acute Pancreatitis Using Radiologic and Clinical Scoring Systems with Classification Tree Analysis. American Journal of Roentgenology, 211, 1035-1043.
https://doi.org/10.2214/AJR.18.19545
[24] 唐豪佑, 刘胜, 胡程俊, 马林, 李建水. 新血液生化评分系统对急性胰腺炎严重程度及死亡的预测价值[J]. 中国普外基础与临床杂, 2021, 28(8): 1039-1044.
[25] Lipinski, M., Rydzewska-Rosolowska, A., Rydzewski, A., et al. (2017) Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) in Patients with Acute Pancreatitis (AP)—Progress in Predic-tion of AP Severity. Pancreatology, 17, 24-29.
https://doi.org/10.1016/j.pan.2016.11.005
[26] Wang, Y., Xu, Z., Zhou, Y., et al. (2021) Leukocyte Cell Population Data from the Blood Cell Analyzer as a Predictive Marker for Severity of Acute Pancreatitis. Journal of Clinical Laboratory Analysis, 35, e23863.
https://doi.org/10.1002/jcla.23863
[27] Miyamoto, K., Inai, K., Takeuchi, D., et al. (2015) Relationships Among Red Cell Distribution Width, Anemia, and Interleukin-6 in Adult Congenital Heart Disease. Circulation Journal, 79, 1100-1106.
https://doi.org/10.1253/circj.CJ-14-1296
[28] Ku, N.S., Kim, H.W., Oh, H.J., et al. (2012) Red Blood Cell Distri-bution Width Is an Independent Predictor of Mortality in Patients with Gram-Negative Bacteremia. Shock, 38, 123-127.
https://doi.org/10.1097/SHK.0b013e31825e2a85
[29] Zhang, F.-X., Li, Z.-L., Zhang, Z.-D., et al. (2019) Prognos-tic Value of Red Blood Cell Distribution Width for Severe Acute Pancreatitis. World Journal of Gastroenterology, 25, 4739-4748.
https://doi.org/10.3748/wjg.v25.i32.4739
[30] 招杰, 苏有盛, 朱海山. 红细胞比容、血清C反应蛋白及IL-6与急性胰腺炎严重程度的相关性分析[J]. 临床医学工程, 2019, 26(8): 1057-1058.
[31] Zimmerman, R., Tsai, A.G., Salazar Vázquez Beatriz, Y., et al. (2017) Posttransfusion Increase of Hematocrit Per Se Does Not Improve Circulatory Oxygen Delivery Due to Increased Blood Viscosity. Anesthesia & Analgesia, 124, 1547-1554.
https://doi.org/10.1213/ANE.0000000000002008
[32] Park, J.H., Byeon, H.J., Lee, K.H., Lee, J.W., Kronbichler, A., Eisenhut, M., et al. (2017) Delta Neutrophil Index (DNI) as a Novel Diagnostic and Prognostic Marker of Infection: A Systematic Review and Meta-Analysis. Inflammation Research, 66, 863-870.
https://doi.org/10.1007/s00011-017-1066-y
[33] Mare, T.A., Treacher, D.F., Shankar-Hari, M., et al. (2015) The Diagnostic and Prognostic Significance of Monitoring Blood Levels of Immature Neutrophils in Patients with Systemic Inflammation. Critical Care, 19, Article No. 57.
https://doi.org/10.1186/s13054-015-0778-z
[34] Hampson, P., Dinsdale, R.J., Wearn, C.M., et al. (2017) Neutro-phil Dysfunction, Immature Granulocytes, and Cell-Free DNA Are Early Biomarkers of Sepsis in Burn-Injured Patients: A Prospective Observational Cohort Study. Annals of Surgery, 265, 1241-1249.
https://doi.org/10.1097/SLA.0000000000001807
[35] Bedel, C., Korkut, M. and Selvi, F. (2021) New Markers in Predicting the Severity of Acute Pancreatitis in the Emergency Department: Immature Granulocyte Count and Percentage. Postgraduate Medical Journal, 67, 7-11.
https://doi.org/10.4103/jpgm.JPGM_784_20
[36] Ünal, Y. and Barlas Aziz, M. (2019) Role of Increased Immature Granulocyte Percentage in the Early Prediction of Acute Necrotizing Pancreatitis. Ulus Travma Acil Cerrahi Derg, 25, 177-182.
https://doi.org/10.14744/tjtes.2019.70679
[37] Eyüboğlu, M. (2016) Predictive Value of Combination of Neutro-phil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio for Prognosis. Angiology, 67, 195.
https://doi.org/10.1177/0003319715593224
[38] Akdur, G., Bardakçı, O., Das, M., et al. (2022) Diagnostic Utility of Hematological Indices in Predicting Adverse Outcomes and Severity of Acute Pancreatitis Based on BISAP and Mod-ified Glasgow Score. Ulus Travma Acil Cerrahi Derg, 28, 268-275.
[39] Zhang, H., Zhang, L., Zhu, K., et al. (2015) Prognostic Significance of Combination of Preoperative Platelet Count and Neutrophil-Lymphocyte Ratio (COP-NLR) in Patients with Non-Small Cell Lung Cancer: Based on a Large Cohort Study. PLOS ONE, 10, e0126496.
https://doi.org/10.1371/journal.pone.0126496
[40] Kaplan, M., Ates, I., Oztas, E., et al. (2018) A New Marker to Determine Prognosis of Acute Pancreatitis: PLR and NLR Combination. Journal of Medical Biochemistry, 37, 21-30.
https://doi.org/10.1515/jomb-2017-0039
[41] Ćeranić, D.B., Zorman, M. and Skok, P. (2020) Interleukins and In-flammatory Markers Are Useful in Predicting the Severity of Acute Pancreatitis. Bosnian Journal of Basic Medical Sci-ences, 20, 99-105.
https://doi.org/10.17305/bjbms.2019.4253
[42] Chen, Z.-P., Huang, H.-P., He, X.-Y., et al. (2022) Early Continu-ous Blood Purification Affects TNF-α, IL-1β, and IL-6 in Patients with Severe Acute Pancreatitis via Inhibiting TLR4 Signaling Pathway. The Kaohsiung Journal of Medical Sciences, 38, 479-485.
https://doi.org/10.1002/kjm2.12497
[43] Jiang, C.-F., Shiau, Y.-C., Ng, K.-W. and Tan, S.-W. (2004) Serum In-terleukin-6, Tumor Necrosis Factor Alpha and C-Reactive Protein in Early Prediction of Severity of Acute Pancreatitis. Journal of the Chinese Medical Association, 67, 442-446.
[44] 张嘉. 细胞因子联合BISAP评分系统在早期预测急性胰腺炎严重程度的临床价值[D]: [博士学位论文]. 济南: 山东大学, 2014.
[45] 高科, 张龙久, 王广益, 李军, 张辉. 血清IL-6、IL-8和PCT对急性重症胰腺炎继发感染的诊断价值[J]. 世界华人消化杂志, 2014, 22(16): 2343-2346.
[46] Fisic, E., Poropat, G., Bilic-Zulle, L., et al. (2013) The Role of IL-6, 8, and 10, STNFr, CRP, and Pan-creatic Elastase in the Prediction of Systemic Complications in Patients with Acute Pancreatitis. Gastroenterology Re-search and Practice, 2013, Article ID: 282645.
https://doi.org/10.1155/2013/282645
[47] Lin, R., Chen, F., Wen, S., et al. (2018) Interleukin-10 Attenuates Impairment of the Blood-Brain Barrier in a Severe Acute Pancreatitis Rat Model. Journal of Inflammation, 15, Article No. 4.
https://doi.org/10.1186/s12950-018-0180-0
[48] 伏玲, 余学春, 董静武. 血清DcR3、IL-10和IFN-γ联合检测在急性胰腺炎患者严重程度评估中的价值[J]. 热带医学杂志, 2019, 19(12): 1539-1542.
[49] Abdelzaher, W.Y., Ahmed, S.M., Welson, N.N., et al. (2021) Vinpocetine Ameliorates L-Arginine Induced Acute Pancreatitis via Sirt1/Nrf2/TNF Pathway and Inhibition of Oxidative Stress, Inflammation, and Apoptosis. Biomedicine & Pharmacotherapy, 133, Article ID: 110976.
https://doi.org/10.1016/j.biopha.2020.110976
[50] Jeong, Y.K., Lee, S., Lim, J.W., et al. (2017) Docosahexaenoic Acid Inhibits Cerulein-Induced Acute Pancreatitis in Rats. Nutrients, 9, Article No. 744.
https://doi.org/10.3390/nu9070744
[51] El-Ashmawy Nahla, E., Khedr Naglaa, F., El-Bahrawy Hoda, A., et al. (2018) Suppression of Inducible Nitric Oxide Synthase and Tumor Necrosis Factor-Alpha Level by Lycopene Is Com-parable to Methylprednisolone in Acute Pancreatitis. Digestive and Liver Disease, 50, 601-607.
https://doi.org/10.1016/j.dld.2018.01.131
[52] Jiang, Y., An, Y., Jiang, D., Wu, B., Yang, Y. and Sun, D. (2016) TNF-α Regulating Interleukin-33 Induces Acute Pancreatic Inflammation in Rats. Annals of Clinical & Laboratory Sci-ence, 46, 54-59.
[53] Yang, Y.-Z., Xiang, Y., Chen, M., et al. (2016) Clinical Significance of Dynamic Detection for Serum Levels of MCP-1, TNF-α and IL-8 in Patients with Acute Pancreatitis. Asian Pacific Journal of Tropical Medicine, 9, 1111-1114.
https://doi.org/10.1016/j.apjtm.2016.09.001
[54] Staubli Sebastian, M., Schäfer, J., Rosenthal, R., et al. (2019) The Role of CRP and Pentraxin 3 in the Prediction of Systemic Inflammatory Response Syndrome and Death in Acute Pan-creatitis. Scientific Report, 9, Article No. 18340.
https://doi.org/10.1038/s41598-019-54910-8
[55] Karabuga, B., Gemcioglu, E., Konca Karabuga, E., et al. (2022) Comparison of the Predictive Values of CRP, CRP/albumin, RDW, Neutrophil/Lymphocyte, and Platelet/Lymphocyte Levels in Determining the Severity of Acute Pancreatitis in Patients with Acute Pancreatitis According to the BISAP Score. Bratislava Medical Journal, 123, 129-135.
https://doi.org/10.4149/BLL_2022_020
[56] Dancu Greta, M., Popescu, A., Sirli, R., et al. (2021) The BISAP Score, NLR, CRP, or BUN: Which Marker Best Predicts the Outcome of Acute Pancreatitis? Medicine, 100, e28121.
https://doi.org/10.1097/MD.0000000000028121
[57] Párniczky, A., Lantos, T., Tóth, E.M., et al. (2019) Antibiotic Therapy in Acute Pancreatitis: From Global Overuse to Evidence Based Recommendations. Pancreatology, 19, 488-499.
https://doi.org/10.1016/j.pan.2019.04.003
[58] Fisher, J. and Linder, A. (2017) Heparin-Binding Protein: A Key Player in the Pathophysiology of Organ Dysfunction in Sepsis. Journal of Internal Medicine, 281, 562-574.
https://doi.org/10.1111/joim.12604
[59] Heinzelmann, M., Mer-cer-Jones, M.A., Flodgaard, H. and Miller, F.N. (1998) Heparin-Binding Protein (CAP37) Is Internalized in Monocytes and Increases LPS-Induced Monocyte Activation. The Journal of Immunology, 160, 5530-5536.
[60] Linder, A., Ar-nold, R., Boyd John, H., et al. (2015) Heparin-Binding Protein Measurement Improves the Prediction of Severe Infection with Organ Dysfunction in the Emergency Department. Critical Care Medicine, 43, 2378-2386.
https://doi.org/10.1097/CCM.0000000000001265
[61] Shu, W., Wan, J., Yang, X., et al. (2021) Heparin-Binding Protein Levels at Admission and within 24 h Are Associated with Persistent Organ Failure in Acute Pancreatitis. Diges-tive Diseases and Sciences, 66, 3597-3603.
https://doi.org/10.1007/s10620-020-06660-1
[62] Zhong, Y., Yu, Z., Wang, L., et al. (2021) Combined Detection of Procalcitonin, Heparin-Binding Protein, and Interleukin-6 Is a Promising Assay to Diagnose and Predict Acute Pan-creatitis. Journal of Clinical Laboratory Analysis, 35, e23869.
https://doi.org/10.1002/jcla.23869
[63] 李素青, 王利军. 老年急性胰腺炎患者血清胆红素和白蛋白与病情严重程度及死亡风险的相关性[J]. 中国老年学杂志, 2021, 41(19): 4224-4227.
[64] Xu, X., Ai, F. and Huang, M. (2020) Deceased Serum Bilirubin and Albumin Levels in the Assessment of Severity and Mortality in Patients with Acute Pancreatitis. International Journal of Medical Sciences, 17, 2685-2695.
https://doi.org/10.7150/ijms.49606
[65] Ocskay, K., Vinkó, Z., Németh, D., et al. (2021) Hypoalbuminemia Af-fects One Third of Acute Pancreatitis Patients and Is Independently Associated with Severity and Mortality. Scientific Reports, 11, Article No. 24158.
https://doi.org/10.1038/s41598-021-03449-8
[66] Liang, Y., Zhao, X. and Meng, F. (2019) Procalcitonin, C-Reactive Protein, and Neutrophil Ratio Contribute to the Diagnosis and Prognosis of Severe Acute Pancreatitis. Irani-an Journal of Public Health, 48, 2177-2186.
https://doi.org/10.18502/ijph.v48i12.3548
[67] Semmlack, S., Kaplan, P.W., Spiegel, R., et al. (2019) Illness Se-verity Scoring in Status Epilepticus—When STESS Meets APACHE II, SAPS II, and SOFA. Epilepsia, 60, 189-200.
https://doi.org/10.1111/epi.14623
[68] Choudhuri, A.H., Duggal, S., Biswas, P.S., et al. (2020) A Comparison of Acute Physiology and Chronic Health Evaluation II Score and Serum Procalcitonin Change for Predicting Mortality in Acute Pancreatitis. Indian Journal of Critical Care Medicine, 24, 190-194.
https://doi.org/10.5005/jp-journals-10071-23377
[69] Nassar Tareq, I. and Qunibi Wajeh, Y. (2019) AKI Associ-ated with Acute Pancreatitis. Clinical Journal of the American Society of Nephrology, 14, 1106-1115.
https://doi.org/10.2215/CJN.13191118
[70] Shi, N., Sun, G.-D., Ji, Y.-Y., et al. (2021) Effects of Acute Kidney Injury on Acute Pancreatitis Patients’ Survival Rate in Intensive Care Unit: A Retrospective Study. World Journal of Gastroenterology, 27, 6453-6464.
https://doi.org/10.3748/wjg.v27.i38.6453
[71] Chen, H.-Z., Ji, L., Li, L., et al. (2017) Early Prediction of Infected Pancreatic Necrosis Secondary to Necrotizing Pancreatitis. Medicine, 96, e7487.
https://doi.org/10.1097/MD.0000000000007487
[72] Pando, E., Alberti, P., Mata, R., et al. (2021) Early Changes in Blood Urea Nitrogen (BUN) Can Predict Mortality in Acute Pancreatitis: Comparative Study between BISAP Score, APACHE-II, and Other Laboratory Markers-A Prospective Observational Study. Canadian Journal of Gastroenterology and Hepatology, 2021, Article ID: 6643595.
https://doi.org/10.1155/2021/6643595
[73] Vitale, D.S., Hornung, L., Lin, T.K., et al. (2019) Blood Urea Nitrogen Elevation Is a Marker for Pediatric Severe Acute Pancreatitis. Pancreas, 48, 363-366.
https://doi.org/10.1097/MPA.0000000000001265
[74] Cui, J., Xiong, J., Zhang, Y., et al. (2017) Serum Lactate Dehydrogenase Is Predictive of Persistent Organ Failure in Acute Pancreatitis. Journal of Critical Care, 41, 161-165.
https://doi.org/10.1016/j.jcrc.2017.05.001
[75] Tian, F., Li, H., Wang, L., et al. (2020) The Diagnostic Value of Serum C-Reactive Protein, Procalcitonin, Interleukin-6 and Lactate Dehydrogenase in Patients with Severe Acute Pancre-atitis. Clinica Chimica Acta, 510, 665-670.
https://doi.org/10.1016/j.cca.2020.08.029
[76] Maeda, K., Hirota, M., Ichihara, A., et al. (2006) Applicability of Disseminated Intravascular Coagulation Parameters in the Assessment of the Severity of Acute Pancreatitis. Pancreas, 32, 87-92.
https://doi.org/10.1097/01.mpa.0000186248.89081.44
[77] Wan, J., Yang, X., He, W., et al. (2019) Serum D-Dimer Levels At Admission for Prediction of Outcomes in Acute Pancreatitis. BMC Gastroenterology, 19, Article No. 67.
https://doi.org/10.1186/s12876-019-0989-x
[78] Zhang, G.-Q.,Wang, G., Li, L., et al. (2019) Plasma D-Dimer Level Is an Early Predictor of Severity of Acute Pancreatitis Based on 2012 Atlanta Classification. Medical Science Mon-itor, 25, 9019-9027.
https://doi.org/10.12659/MSM.918311
[79] He, Q.Y., Ding, J., He, S.S., et al. (2022) The Predictive Value of Procalcitonin Combined with C-Reactive Protein and D Dimer in Moderately Severe and Severe Acute Pancreatitis. Eu-ropean Journal of Gastroenterology & Hepatology, 34, 744-750.
https://doi.org/10.1097/MEG.0000000000002376
[80] Anusree, S.S., Sindhu, G., Preetha Rani, M.R., et al. (2018) Insulin Resistance in 3T3-L1 Adipocytes by TNF-α Is Improved by Punicic Acid through Upregulation of Insulin Sig-nalling Pathway and Endocrine Function, and Downregulation of Proinflammatory Cytokines. Biochimie, 146, 79-86.
https://doi.org/10.1016/j.biochi.2017.11.014
[81] Cho, S.K., Huh, J.H., Yoo, J.S., et al. (2019) HOMA-Estimated Insulin Resistance as an Independent Prognostic Factor in Patients with Acute Pancreatitis. Scientific Reports, 9, Article No. 14894.
https://doi.org/10.1038/s41598-019-51466-5
[82] Pan, D.A., Lillioja, S., Kriketos, A.D., et al. (1997) Skeletal Muscle Triglyceride Levels Are Inversely Related to Insulin Action. Diabetes, 46, 983-988.
https://doi.org/10.2337/diab.46.6.983
[83] Park, J.M., Shin, S.P., Cho, S.K., et al. (2020) Triglyceride and Glucose (TyG) Index Is an Effective Biomarker to Identify Severe Acute Pancreatitis. Pancreatology, 20, 1587-1591.
https://doi.org/10.1016/j.pan.2020.09.018
[84] 陈旭, 马佳丽, 周玉玲, 熊号峰, 洪珊, 李坪. 甘油三酯-葡萄糖指数对急性胰腺炎严重程度的早期预测价值[J]. 中日友好医院学报, 2021, 35(5): 280-283.
[85] 朱光琼, 许华斌, 陈传平, 张光满. 外周血NLR、MLR、PLR和SII在宫颈癌中的临床意义分析[J]. 国际检验医学杂志, 2021, 42(10): 1208-1212+1218.
[86] Zuo, H., Xie, X., Peng, J., et al. (2019) Predictive Value of Novel Inflammation-Based Bi-omarkers for Pulmonary Hypertension in the Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Analytical Cellular Pathology, 2019, Article ID: 5189165.
https://doi.org/10.1155/2019/5189165
[87] Kim, Y., Choi, H., Jung, S.M., et al. (2019) Systemic Immune-Inflammation Index Could Estimate the Cross-Sectional High Activity and the Poor Outcomes in Immunosuppressive Drug-Naïve Patients with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Nephrology, 24, 711-717.
https://doi.org/10.1111/nep.13491
[88] 陈小莹, 陈忆青. 系统免疫炎症指数在脓毒症严重程度和预后判断中的应用价值[J]. 中国医药, 2021, 16(6): 893-896.
[89] Lu, L., Feng, Y., Liu, Y.-H., et al. (2022) The Systemic Immune-Inflammation Index May Be a Novel and Strong Marker for the Accurate Early Prediction of Acute Kidney Injury in Severe Acute Pancreatitis Patients. Journal of Investigative Surgery, 35, 962-966.
https://doi.org/10.1080/08941939.2021.1970864
[90] Liu, X., Guan, G., Cui, X., et al. (2021) Systemic Immune-Inflammation Index (SII) Can Be an Early Indicator for Predicting the Severity of Acute Pancreatitis: A Retro-spective Study. International Journal of General Medicine, 14, 9483-9489.
https://doi.org/10.2147/IJGM.S343110
[91] Zhang, D., Wang, T., Dong, X., et al. (2021) Systemic Im-mune-Inflammation Index for Predicting the Prognosis of Critically Ill Patients with Acute Pancreatitis. International Journal of General Medicine, 14, 4491-4498.
https://doi.org/10.2147/IJGM.S314393
[92] Gordon Elizabeth, M., Figueroa Debbie, M., Barochia Amisha, V., et al. (2016) High-Density Lipoproteins and Apolipoprotein A-I: Potential New Players in the Prevention and Treatment of Lung Disease. Frontiers in Pharmacology, 7, Article No. 323.
https://doi.org/10.3389/fphar.2016.00323
[93] Feng, M., Rached, F., Kontush, A., et al. (2018) Impact of Lipoproteins on Atherobiology: Emerging Insights. Cardiology Clinics, 36, 193-201.
https://doi.org/10.1016/j.ccl.2017.10.001
[94] Wu, J., Wang, Y., Li, H., et al. (2019) Serum Apolipoprotein B-to-Apolipoprotein A1 Ratio Is Independently Associated with Disease Severity in Patients with Acute Pancreatitis. Scientific Reports, 9, Article No. 7764.
https://doi.org/10.1038/s41598-019-44244-w
[95] 李涛, 费素娟. APOB/APOA1和TG/HDL-C对急性胰腺炎患者发生持续性器官衰竭的预测[J]. 胃肠病学和肝病学杂志, 2021, 30(7): 740-747.