#### 期刊菜单

Research the Permanent Magnet Synchronous Motor Vector Control Based on the Air Compressor
DOI: 10.12677/DSC.2022.113015, PDF, HTML, XML, 下载: 63  浏览: 100

Abstract: The air compressor is indispensable key equipment in the industrial production process. The permanent magnet synchronous motor is the core component of the air compressor. Optimizing the control technology of the motor can effectively improve the operation efficiency of the air compressor. Permanent magnet synchronous motor is studied. This paper analyzes the air compressor load, establishes a permanent magnet synchronous motor model, and adopts PI speed loop and PI current loop vector control. The simulation analysis is carried out by inputting the load torque and the reference speed. The results show that the motor vector control effect of this paper is better, and the motor speed and torque can be output stably when the load torque of the air compressor fluctuates.

1. 引言

2. 空压机负载力矩分析

${M}_{T}=Tr=pr\left(\mathrm{sin}\alpha +\frac{\lambda \mathrm{sin}2\alpha }{2\sqrt{1-{\lambda }^{2}{\mathrm{sin}}^{2}\alpha }}\right)$ (1)

Figure 1. Straight league air compressor

3. 永磁同步电机模型

$\left\{\begin{array}{l}{u}_{A}={R}_{s}{i}_{A}+\frac{\text{d}{\psi }_{A}}{\text{d}t}\\ {u}_{B}={R}_{s}{i}_{B}+\frac{\text{d}{\psi }_{B}}{\text{d}t}\\ {u}_{C}={R}_{s}{i}_{C}+\frac{\text{d}{\psi }_{C}}{\text{d}t}\end{array}$ (2)

$\left[\begin{array}{l}{U}_{\alpha }\\ {U}_{\beta }\end{array}\right]=m×\left[\begin{array}{ccc}1& -\frac{1}{2}& -\frac{1}{2}\\ 0& \frac{\sqrt{3}}{2}& -\frac{\sqrt{3}}{2}\end{array}\right]\left[\begin{array}{c}{U}_{a}\\ {U}_{b}\\ {U}_{c}\end{array}\right]$ (3)

$m=\sqrt{\frac{2}{3}}$ 时，clark变换为等功率变换；当 $m=\frac{2}{3}$ 时，clark变换为等幅值变换。在本文中，采用等幅值变换。

$\left[\begin{array}{l}{x}_{d}\\ {x}_{q}\end{array}\right]=\left[\begin{array}{cc}\mathrm{cos}\theta & \mathrm{sin}\theta \\ -\mathrm{sin}\theta & \mathrm{cos}\theta \end{array}\right]\left[\begin{array}{l}{x}_{\alpha }\\ {x}_{\beta }\end{array}\right]$ (4)

$\left\{\begin{array}{l}\frac{\text{d}}{\text{d}t}{i}_{d}=-\frac{R}{{L}_{d}}{i}_{d}+{p}_{n}{\omega }_{m}\frac{{L}_{q}}{{L}_{d}}{i}_{q}+\frac{1}{{L}_{d}}{u}_{q}\\ \frac{\text{d}}{\text{d}t}{i}_{q}=-\frac{R}{{L}_{q}}{i}_{q}-{p}_{n}{\omega }_{m}\frac{{L}_{d}}{{L}_{q}}{i}_{d}-{p}_{n}{\omega }_{m}\frac{1}{{L}_{q}}{\psi }_{f}+\frac{1}{{L}_{q}}{u}_{d}\end{array}$ (5)

$J\frac{\text{d}}{\text{d}t}{\omega }_{m}={T}_{e}-{T}_{L}-{B}_{m}{\omega }_{m}$ (6)

${T}_{e}=\frac{3}{2}{p}_{n}{i}_{q}\left[{i}_{d}\left({L}_{d}-{L}_{q}\right)+{\psi }_{f}\right]$ (7)

4. 永磁同步电机矢量控制

Figure 2. Vector control system block diagram

Figure 3. Permanent magnet synchronous motor model in simulink

5. 仿真分析

Figure 4. Permanent magnet synchronous motor output torque

Figure 5. Permanent magnet synchronous motor output speed

Figure 6. dq shaft current permanent magnet synchronous motor

Figure 7. Three-phase permanent magnet synchronous motor current coordinate system

6. 结论

 [1] 宋茂良. 空压机用永磁同步电机无传感器控制研究[D]: [硕士学位论文]. 武汉: 湖北工业大学, 2020. [2] 胡乐利. 车用燃料电池超高速电动空压机稳定性控制[D]: [硕士学位论文]. 镇江: 江苏大学, 2021. [3] 钟美鹏, 黄风立. 三种不同型式的高压直联压缩机仿真研究[J]. 压缩机技术, 2010(6): 4-7. [4] 叶廷胜. 基于滑模观测器的永磁同步电机模型预测控制系统研究[D]: [硕士学位论文]. 南昌: 南昌航空大学, 2020. [5] 刘宇博. 基于滑模观测器的永磁同步电机控制系统关键技术研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨理工大学, 2020. [6] 张耿. 全无油涡旋空压机永磁同步电机无感控制系统设计[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2018. [7] 钟美鹏, 郑水英, 潘晓弘. 直联式空压机PWM变占空比控制[J]. 农业机械学报, 2009, 40(5): 213-217. [8] 何凤有, 鲍卫宁, 汤瑒, 刘西超. 基于模糊PID控制器的空压机恒压供气系统的设计[J]. 工矿自动化, 2010, 36(1): 91-93.