肺动脉高压常用靶向药物与肺动脉去神经术治疗效果的对比:一项系统综述
Efficacy of Commonly Targeted Drugs versus Pulmonary Artery Denervation for Pulmonary Hypertension: A Systematic Review
DOI: 10.12677/ACM.2022.1271001, PDF, HTML, XML, 下载: 206  浏览: 350 
作者: 何加劲*:滨州医学院第二临床医学院,山东 烟台;丁立群:滨州医学院第一临床医学院,山东 滨州;田茂洲#:烟台毓璜顶医院,山东 烟台
关键词: 肺动脉高压波生坦伊洛前列素肺动脉去神经术Pulmonary Hypertension Bosentan Iloprost Pulmonary Artery Denervation
摘要: 目的:目前肺动脉高压的主要治疗方式仍为药物治疗,近年来新兴一种肺动脉去神经术以治疗肺动脉高压。本文旨在研究肺动脉高压常用靶向药物与肺动脉去神经术治疗效果及其治疗效果的对比。方法:两位研究者进行了独立、全面的文献检索。搜索了Pubmed、Embase以及灰色文献数据库OpenGray。两位研究者没有出现分歧。结果:纳入15篇相关文献,对其进行质量评价及关键信息提取。结论:波生坦、伊洛前列素、肺动脉去神经术都对肺动脉高压严重程度评估的各项指标如六分钟步行距离、平均肺动脉压、肺血管阻力等指标有明显改善。但对延缓患者临床恶化的时间及减轻临床恶化的严重程度的效果尚不太明确。当前以肺动脉高压患者为研究对象的肺动脉去神经术相关的随机对照实验还较少,本研究并不能证明其在治疗肺动脉高压方面明显强于药物治疗。
Abstract: Objective: At present, the main treatment for pulmonary hypertension is still drug therapy. In re-cent years, pulmonary artery denervation is a new treatment for pulmonary hypertension. The ob-jective of this study was to compare the therapeutic effects of commonly used targeted drugs and pulmonary denervation for pulmonary hypertension. Methods: Two researchers conducted an in-dependent and comprehensive literature search. Pubmed, Embase and grey literature database OpenGray were searched. There is no disagreement between the two researchers. Results: Fifteen related literatures were included, and their quality was evaluated and key information was ex-tracted. Conclusions: Bosentan, Iloprost, and pulmonary artery denervation significantly reduced the severity of pulmonary hypertension, including 6-minute walking distance, mean pulmonary ar-terial pressure, and pulmonary vascular resistance etc. However, the effect of delaying the time of Clinical deterioration and reducing the severity of clinical deterioration is not clear. Currently, there are few randomized controlled trials related to pulmonary artery denervation in patients with pulmonary hypertension, and this study cannot prove that pulmonary artery denervation is signif-icantly superior to drug therapy in the treatment of pulmonary hypertension.
文章引用:何加劲, 丁立群, 田茂洲. 肺动脉高压常用靶向药物与肺动脉去神经术治疗效果的对比:一项系统综述[J]. 临床医学进展, 2022, 12(7): 6943-6952. https://doi.org/10.12677/ACM.2022.1271001

1. 介绍

1.1. 疾病简介

肺动脉高压是一种由多种内部及外部因素所致肺血管结构和(或)功能改变从而引起肺动脉压力升高及肺血管阻力增大的综合征。其定义为海平面及静息状态下,经右心导管检查(right heart catheterization, RHC)所得的平均肺动脉压(mean pulmonary artery pressure, mPAP) ≥ 25 mmHg。 [1] 肺动脉高压患者的诊治现状仍有明显缺陷,其主要产生原因与肺动脉高压的极其复杂的病因有关。根据《2021版中国肺动脉高压诊断与治疗指南》 [1],目前肺动脉高压分为5大类:1) 动脉性肺动脉高压(PAH);2) 左心疾病所致肺动脉高压;3) 肺部疾病和/或低氧所致肺动脉高压;4) 慢性血栓栓塞性肺动脉高压和/或其他肺动脉阻塞性病变所致肺动脉高压;5) 未明和/或多因素所致肺动脉高压。

1.2. 研究目的

本文拟对比传统的常见肺动脉高压药物治疗(前列环素类似物伊洛前列素和内皮素受体拮抗剂波生坦)及新兴的肺动脉去神经术(pulmonary arterial denervation, PADN)两者之间对肺动脉高压的治疗效果区别并进行系统综述。

1.3. 肺动脉高压的发病机制

1.3.1. 肺动脉高压的病理表现

肺动脉高压的病理改变的基本特性主要是通过影响远端肺小动脉,主要包括肺动脉内膜增殖伴炎症反应、内皮间质化,从而出现血管中膜的肥厚,进一步出现血管外膜的纤维化,最终导致肺动脉管腔进行性狭窄甚至闭塞 [2]。

1.3.2. 肺动脉高压的病理生理

肺动脉高压是一种发病机制复杂的疾病,肺动脉内压力的高低与肺血管流量及肺血管阻力(pulmonary vascular resistance, PVR)有密切关系。任何增加肺血管内流量以及肺血管阻力的各种因素都能导致或加剧肺动脉高压的严重程度。左心疾病是引起肺动脉高压的最常见因素,其原因是左心充盈压增高导致肺静脉回流受阻,肺静脉压力升高,最终致肺动脉压升高,肺动脉升高再致右心后负荷增加,使右心肥厚功能不全最后右心衰竭 [3] [4]。

1.4. 药物治疗基本原理

1.4.1. 伊洛前列素

伊洛前列素是一种常用的前列环素类似物,它可以通过舒张血管、抗增殖、以及抑制血小板聚集而延缓肺动脉高压的发展 [5] [6]。伊洛前列素通过抑制内皮素-1 (ET-1)的产生和增加肺动脉高压患者肺内的ET-1消除来收缩血管 [7]。其还可以通过增加环腺苷一磷酸(cAMP)抑制平滑肌细胞增殖 [8],cAMP升高也同时抑制了血小板聚集 [9]。

1.4.2. 波生坦

波生坦是一种双重内皮素受体拮抗剂,是内皮素受体拮抗剂中第一个用于肺动脉高压患者治疗的口服靶向药物 [10]。内皮素受体分为ET-A和ET-B,ET-A:ET-B = 20:1 [11]。其可以通过竞争性和特异性地结合ET-A (内皮素A受体)和ET-B (内皮素B受体),使肺血管舒张。其同样也有抑制肺血管重塑的效应,原理取决于其抗纤维化和抗炎特性 [12] [13]。

1.5. 去神经术治疗基本原理

肺动脉外膜周围有大量交感神经分布,主要集中在肺动脉向左右肺动脉的分叉前,其分支分至肺动脉前侧壁及后侧壁 [14]。肺动脉高压患者交感神经活动性增加 [15],交感神经激活可能增加肺血管阻力,从而加重血管壁张力,促进血管重构 [16]。另外,肺动脉高压患者体内的儿茶酚胺增加 [17],故肺动脉高压患者的肾上腺素能受体的活性增加 [18]。以导管射频消融或经胸的肺动脉去神经术去除部分肺动脉壁上的交感神经可以治疗肺动脉高压。

2. 方法

2.1. 检索策略

网络检索数据库:Pubmed、embase以及灰色文献数据库opengray。数据库检索时间为2020.11.01之前。检索关键词为“Pulmonary arterial hypertension”或“pulmonary hypertension”、“iloprost”或“bosentan”、“denervation”或“radiofrequency ablation”、“RCT”或“randomized controlled trial”。Pubmed检索式为:Pulmonary arterial hypertension/pulmonary hypertension AND iloprost/bosentan/denervation/radiofrequency ablation AND RCT/randomized controlled trial。文献筛选流程见图1

Figure 1. Articles retrieval process

图1. 文献检索流程

2.2. 纳入标准

1) 实验必须为RCT,不限制盲法;

2)实验对象必须被明确诊断为肺动脉高压(除外呼吸系统疾病所致肺动脉高压及结缔组织病相关肺动脉高压);

3) 干预措施包括以下其一:① 伊洛前列素、波生坦,或它们的联合应用;② 肺动脉去神经术;

4) 研究至少提及一项可用的可比结局指标。

2.3. 排除标准

1) 研究不是RCT,或对照设计不合理;

2) 呼吸系统疾病所致肺动脉高压(如COPD所致肺动脉高压)、结缔组织病相关肺动脉高压;

3) 实验对象过少(<10例);

4) 研究重点在于药物剂量或用药模式的实验应当排除。

2.4. 结局指标

纳入实验结局应当包含6分钟步行距离、WHO功能分级、Brog呼吸困难评分、心脏指数、平均肺动脉压、平均右心室压、肺血管阻力、临床恶化、住院治疗、死亡、严重不良事件等。

2.5. 文献质量评价

文献质量评价应用Jadad法 [19] 评价,按照评分标准评分,1~3分视为低质量,4~7分视为高质量。评定结果是由两人单独进行的,如有分数不一致,则由第三方进行重新评估。

3. 结果

3.1. 最终检索

共纳入文献15篇,其中去神经术治疗肺动脉高压相关文献4篇,波生坦治疗肺动脉高压相关文献6篇,伊洛前列素治疗肺动脉高压相关文献5篇。

3.2. 质量评价

三组文献的质量评价结果如表1表2表3,波生坦组文献共计6篇,3篇质量低,3篇质量高;伊洛前列素组文献共计5篇,1篇质量低,4篇质量高;去神经术组文献共计4篇,1篇质量低,3篇质量高。可以认为质量评价等级为高的文献偏倚较小,反之,质量评价等级为低的文献偏倚较大。

Table 1. Quality evaluation results of Bosentan group articles by Jadad method

表1. 波生坦组文献Jadad法质量评价结果

Table 2. Quality evaluation results of Iloprost group articles by Jadad method

表2. 伊洛前列素组文献Jadad法质量评价结果

Table 3. Quality evaluation results of Denervation group articles by Jadad method

表3. 去神经术组文献Jadad法质量评价结果

3.3. 发表偏倚的评估

试以漏斗图法评估本研究的发表偏倚,但因本研究中三组纳入文献均少于7篇,且难以寻找各研究中共同提及的实验结局。故未能定性分析本研究的发表偏倚。

3.4. 纳入研究关键信息

4. 讨论

本文纳入波生坦、伊洛前列素、肺动脉去神经术治疗肺动脉高压的随机对照实验。从文献质量方面来看,本研究纳入的15篇文献中,有部分文献质量较低,估计本研究受其影响可能具有中至高程度的偏倚风险,这意味着这三种治疗的实际效果可能与本文不同。如部分研究没有应用盲法或没有详细描述盲法的具体形式,部分研究是多中心研究仅提及随机和盲法,但未描述在多中心执行时是否实验方案完全一致,部分研究随访时间过短或无随访。在发表偏倚评估方面,本研究未能完成定性分析也是一大不足,但在文献检索阶段尽可能多的检索灰色文献,一定程度上减小了本研究的发表偏倚。

4.1. 波生坦

总体来看,治疗方案为波生坦的相关研究得到的结论基本一致,都直接改善患者的六分钟步行距离、平均肺动脉压及肺血管阻力。Galie 2003 [20] 提及出现临床恶化的患者主要来自于对照组,可以理解为波生坦对于延缓临床恶化的时间,降低临床恶化的严重程度有一定意义。McLanghlin 2015 [21] 与其他研究相比具有一定特殊性,其研究对象为正在接受西地那非治疗的肺动脉高压患者,故其研究对象的基线数据相较其他研究更好更稳定,其主要结论证明波生坦与西地那非联用能比单用西地那非更好地改善六分钟步行距离,但双药联用和单用西地那非对于延后临床恶化的时间未见明显差异。

4.2. 伊洛前列素

伊洛前列素组的相关研究得到的结论也基本一致,其同样可以改善六分钟步行距离、平均肺动脉压及肺血管阻力。但也有阴性结果,Nashat 2020 [25] 中的结论为伊洛前列素未明显改善患者六分钟步行距离、心功能分级、BNP以及超声心动图指标,探究其原因,可能与其研究对象为艾森曼格综合征伴肺动脉高压患者有关。艾森曼格综合征形成的时间跨度更长,已是先天性心脏病患者肺动脉高压的最晚期形式 [34]。其肺血管病变更加彻底和顽固,故可能导致单一伊洛前列素用药不能明显改善患者症状。McLaughlin 2006 [28] 中的研究对象是正在使用波生坦治疗的肺动脉高压患者,加用伊洛前列素后患者的六分钟步行距离、博格指数、心功能分级改善三项主要指标均有较明显改善。

4.3. 肺动脉去神经术

本研究纳入的肺动脉去神经术均为射频消融肺动脉去神经术。从结果上看,不管是术后近期还是随访远期的实验结果都证明了其对收缩期肺动脉压、平均肺动脉压等指标有明显改善。Romannov 2020 [31] 和Zhang 2019 [30] 的研究中其对照组都是肺动脉高压常用的药物治疗,仅从这两个研究来看,肺动脉去神经术与药物治疗相比的稳定性和治疗效果都更优。Trofimov 2019 [33] 的研究对象除肺动脉高压之外,还伴有房颤,其肺动脉去神经治疗之后不仅改善了患者的肺动脉高压相关指标,还降低了房颤发生率,值得强调的是,实验组和对照组都做了双心房Maze IV术。近年来,Maze IV术已被证明对于长期持续性房颤的治疗明显有效 [35] [36],或许我们能从肺动脉去神经术与Maze IV术的联合中获得一些启发。

5. 结论

波生坦、伊洛前列素、肺动脉去神经术都对肺动脉高压严重程度评估的各项指标如六分钟步行距离、平均肺动脉压、肺血管阻力等指标有明显改善。但对延缓患者临床恶化的时间及减轻临床恶化的严重程度的效果尚不太明确。当前以患者为研究对象的肺动脉去神经术相关的随机对照实验还较少,本研究并不能证明其在治疗肺动脉高压方面明显强于药物治疗。但对于难治性肺动脉高压,或许肺动脉去神经术能有良好的表现。

参考文献

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 中华医学会呼吸病学分会肺栓塞与肺血管病血组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组, 等. 中国肺动脉高压诊断与治疗指南(2021版) [J] .中华医学杂志, 2021, 101(1): 11-51.
https://doi.org/10.3760/cma.j.cn112137-20201008-02778
[2] Vonk, N.A., Chin, K.M., Haddad, F., et al. (2018) Pathophysiology of the Right Ventricle and of the Pulmonary Circulation in Pulmonary Hypertension: An Update. European Respiratory Journal, 53, Article ID: 1801900.
https://doi.org/10.1183/13993003.01900-2018
[3] Humbert, M., Guignabert, C., Bonnet, S., et al. (2018) Pathol-ogy and Pathobiology of Pulmonary Hypertension: State of the Art and Research Perspectives. European Respiratory Journal, 53, Article ID: 1801887.
https://doi.org/10.1183/13993003.01887-2018
[4] Huertas, A. and Guignabert, C. (2018) Pulmonary Vascular Endothelium: Orchestra Conductor in Respiratory Diseases Highlights from Basic Research to Therapy. European Res-piratory Journal, 51, Article ID: 1700745.
https://doi.org/10.1183/13993003.00745-2017
[5] Claire, M. and Maurice, B. (2012) Inhaled Iloprost for the Control of Acute Pulmonary Hypertension in Children: A Systematic Review. Pediatric Critical Care Medicine, 13, 472-480.
https://doi.org/10.1097/PCC.0b013e31822f192b
[6] Stacey, E.B. and Rebecca, H.H. (2005) Inhaled Il-oprost in Pulmonary Arterial Hypertension. Annals of Pharmacotherapy, 39, 1265-1274.
https://doi.org/10.1345/aph.1E575
[7] Wilkens, H., Bauer, M., Forestier, N., et al. (2003) Influence of Inhaled Il-oprost on Transpulmonary Gradient of Big Endothelin in Patients with Pulmonary Hypertension. Circulation, 107, 1509-1513.
https://doi.org/10.1161/01.CIR.0000056104.49686.4B
[8] Giaid, A. and Saleh, D. (1995) Reduced Expression of Endothelial Nitric Oxide Synthase in the Lungs of Patients with Pulmonary Hypertension. The New England Journal of Medicine, 333, 214-221.
https://doi.org/10.1056/NEJM199507273330403
[9] Beghetti, M., Reber, G., de Moerloose, P., et al. (2002) Aerosolized Iloprost Induces a Mild but Sustained Inhibition of Platelet Aggregation. European Respiratory Journal, 19, 518-524.
https://doi.org/10.1183/09031936.02.00094302
[10] Nathan, D. and David, K. (2011) Bosentan for the Treatment of Adult Pulmonary Hypertension. Future Cardiology, 7, 19-37.
https://doi.org/10.2217/fca.10.114
[11] Roux, S., Breu, V., Ertel, S.I., et al. (1999) Endothelin Antagonism with Bosentan: A Review of Potential Applications. Journal of Molecular Medicine, 77, 364-376.
https://doi.org/10.1007/s001090050363
[12] Kim, H., Yung, G.L., Marsh, J.J., et al. (2000) Endothelin Mediates Pulmonary Vascular Remodelling in a Canine Model of Chronic Embolic Pulmonary Hypertension. European Respira-tory Journal, 15, 640.
https://doi.org/10.1034/j.1399-3003.2000.15d04.x
[13] Chen, S.J., Chen, Y.F., Meng, Q.C., et al. (1995) Endo-thelinreceptor Antagonist Bosentan Prevents and Reverses Hypoxic Pulmonary Hypertension in Rats. Journal of Applied Physiology, 79, 2122-2131.
https://doi.org/10.1152/jappl.1995.79.6.2122
[14] Alexander, M.K., Rothman, N.D.A., et al. (2015) Pulmonary Artery Denervation Reduces Pulmonary Artery Pressure and Induces Histological Changes in an Acute Porcine Model of Pulmonary Hypertension. Circulation: Cardiovascular Interventions, 8, e002569.
https://doi.org/10.1161/CIRCINTERVENTIONS.115.002569
[15] Jiang, X.M., Zhang, J., Zhou, L., et al. (2020) Sympathetic Innervation of Canine Pulmonary Artery and Morphometric and Functional Analysis in Dehydromono-crotaline-Induced Models after Pulmonary Artery Denervation. Interactive CardioVascular and Thoracic Surgery, 31, 708-717.
https://doi.org/10.1093/icvts/ivaa166
[16] Ciarka, A., Doan, V., Velez-Roa, S., et al. (2010) Prognostic Significance of Sympathetic Nervous System Activation Inpulmonary Arterial Hypertension. American Journal of Res-piratory and Critical Care Medicine, 181, 1269-1275.
https://doi.org/10.1164/rccm.200912-1856OC
[17] Salvi, S.S. (1999) Alpha1-Adrenergic Hypothesis for Pulmo-nary Hypertension. Chest, 115, 1708-1719.
https://doi.org/10.1378/chest.115.6.1708
[18] Zhao, Q., Deng, H., Jiang, X., et al. (2015) Effects of Intrinsic and Extrinsic Cardiac Nerves on Atrial Arrhythmia in Experimental Pulmonary Artery Hypertension. Hypertension, 66, 1042-1049.
https://doi.org/10.1161/HYPERTENSIONAHA.115.05846
[19] Rubin, L.J., Badesch, D.B., Barst, R.J., et al. (2002) Bosentan Therapy for Pulmonary Arterial Hypertension. New England Journal of Medicine, 346, 896-903.
https://doi.org/10.1056/NEJMoa012212
[20] Galiè, N., Hinderliter, A.L., Torbicki, A., et al. (2003) Effects of the Oral Endothelin-Receptor Antagonist Bosentan on Echocardiographic and Doppler Measures in Patients with Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 41, 1380-1386.
https://doi.org/10.1016/S0735-1097(03)00121-9
[21] McLaughlin, V., Channick, R.N., Ghofrani, H.A., et al. (2015) Bosentan Added to Sildenafil Therapy in Patients with Pulmonary Arterial Hypertension. European Respiratory Journal, 46, 405-413.
https://doi.org/10.1183/13993003.02044-2014
[22] Galiè, N., Rubin, L., Hoeper, M., et al. (2008) Treatment of Patients with Mildly Symptomatic Pulmonary Arterial Hypertension with Bosentan (EARLY Study): A Double-Blind, Randomised Controlled Trial. The Lancet, 371, 2093-2100.
https://doi.org/10.1016/S0140-6736(08)60919-8
[23] Badesch, D.B., Bodin, F., Channick, R.N., et al. (2002) Complete Results of the First Randomized, Placebo-Controlled Study of Bosentan, a Dual Endothelin Receptor Antago-nist, in Pulmonary Arterial Hypertension. Current Therapeutic Research—Clinical and Experimental, 63, 227-246.
https://doi.org/10.1016/S0011-393X(02)80029-7
[24] Kiowski, W., Sütsch, G., Hunziker, P., et al. (1995) Evi-dence for Endothelin-1-Mediated Vasoconstriction in Severe Chronic Heart Failure. The Lancet, 346, 732-736.
https://doi.org/10.1016/S0140-6736(95)91504-4
[25] Nashat, H., Kempny, A., Harries, C., et al. (2020) A Sin-gle-Centre, Placebo-Controlled, Double-Blind Randomised Cross-Over Study of Nebulised Iloprost in Patients with Ei-senmenger Syndrome: A Pilot Study. International Journal of Cardiology, 299, 131-135.
https://doi.org/10.1016/j.ijcard.2019.07.004
[26] Xu, Z., Zhu, L., Liu, X., et al. (2014) Iloprost for Children with Pulmonary Hypertension after Surgery to Correct Congenital Heart Disease. European Heart Journal, 35, 78.
[27] Rex, S., Schaelte, G., Metzelder, S., et al. (2008) Inhaled Iloprost to Control Pulmonary Artery Hypertension in Patients Un-dergoing Mitral Valve Surgery: A Prospective, Randomized-Controlled Trial. Acta Anaesthesiologica Scandinavica, 52, 65-72.
https://doi.org/10.1111/j.1399-6576.2007.01476.x
[28] McLaughlin, V.V., Oudiz, R.J., Frost, A., et al. (2006) Randomized Study of Adding Inhaled Iloprost to Existing Bosentan in Pulmonary Arterial Hypertension. Ameri-can Journal of Respiratory and Critical Care Medicine, 174, 1257- 1263.
https://doi.org/10.1164/rccm.200603-358OC
[29] Olschewski, H., Simonneau, G., Galiè, N., et al. (2002) Inhaled Iloprost for Severe Pulmonary Hypertension. The New England Journal of Medicine, 347, 322-329.
https://doi.org/10.1056/NEJMoa020204
[30] Zhang, H., Zhang, J., Chen, M., et al. (2019) Pulmonary Artery De-nervation Significantly Increases 6-Min Walk Distance for Patients with Combined Pre- and Post-Capillary Pulmonary Hypertension Associated with Left Heart Failure: The PADN-5 Study. JACC: Cardiovascular Interventions, 12, 274-284.
https://doi.org/10.1016/j.jcin.2018.09.021
[31] Romanov, A., Cherniavskiy, A., Novikova, N., et al. (2020) Pulmonary Artery Denervation for Patients with Residual Pulmonary Hypertension after Pulmonary Endarterec-tomy. Journal of the American College of Cardiology, 76, 916- 926.
https://doi.org/10.1016/j.jacc.2020.06.064
[32] Karaskov, A.M., Bogachev-Prokophiev, A.V., Demidov, D.P., et al. (2017) Perspective Directions in Management of Severe Group Two Pulmonary Hypertension. Kardiologiia, 57, 23-28.
https://doi.org/10.18087/cardio.2017.11.10050
[33] Trofimov, N.A., Medvedev, A.P., Nikolsky, A.V., et al. (2019) Denervation of Pulmonary Arteries in Patients with Mitral Valve Defects Complicated by Atrial Fibrillation and Pulmo-nary Hypertension. Sovremennye Tehnologii v Medicine, 11, 95-103.
https://doi.org/10.17691/stm2019.11.4.11
[34] Carla, F. andrew, H.C., Stephen, J.W., et al. (2019) Eisenmenger Syndrome and Other Types of Pulmonary Arterial Hypertension Related to Adult Congenital Heart Disease. Expert Re-view of Cardiovascular Therapy, 17, 449-459.
https://doi.org/10.1080/14779072.2019.1623024
[35] Lapenna, E., De Bonis, M., Giambuzzi, I., et al. (2020) Long-Term Outcomes of Stand-Alone Maze IV for Persistent/ Long-Standing Persistent Atrial Fibrillation. The Annals of Thoracic Surgery, 109, 124-131.
https://doi.org/10.1016/j.athoracsur.2019.05.061
[36] Camilla, S.E., Kenneth, B.P., Lars, P.R., et al. (2018) The Long-Term Efficacy of Concomitant Maze IV Surgery in Patients with Atrial Fibrillation. IJC Heart & Vasculature, 19, 20-26.
https://doi.org/10.1016/j.ijcha.2018.03.009