厌氧发酵中微生物与磺胺类抗生素相互影响的研究进展
Research Advances on the Interaction between Microorganisms and Sulfonamide Antibiotics in Anaerobic Fermentation
DOI: 10.12677/HJCET.2022.124040, PDF, HTML, XML, 下载: 76  浏览: 135 
作者: 杜 康, 汪少娜*:中节能(北京)节能环保工程有限公司,北京
关键词: 厌氧发酵微生物磺胺类抗生素生物降解Anaerobic Fermentation Microorganism Sulfonamides Sulfonamide Antibiotics
摘要: 厌氧发酵技术是处理畜禽粪污的有效手段之一。畜禽粪污中含有的多种抗生素,通过影响厌氧发酵菌群的活性,造成发酵系统内有机物含量与组成发生变化,从而影响厌氧发酵的稳定运行,降低产气效率。与此同时,抗生素在厌氧环境下也会被厌氧微生物所降解。本文总结了磺胺类抗生素对厌氧发酵过程中微生物的影响,综述了生物降解磺胺类抗生素的菌群、效果及降解途径,为降低磺胺类抗生素对厌氧发酵效率的影响和提高磺胺类抗生素生物降解效果具有一定的指导意义。
Abstract: The technology of anaerobic fermentation was one of the effective means to treat livestock manure. A variety of antibiotics contained in livestock manure affected the activity of anaerobic fermentation bacteria, resulting in changes in the content and composition of organic matter in the fermentation system, which affected the stable operation of anaerobic fermentation and reduced the gas production efficiency. At the same time, antibiotics can be degraded by anaerobic microorganisms in anaerobic environment. This paper summarized the effects of sulfonamide antibiotics on microorganisms in the process of anaerobic fermentation. The degrading bacteria, degradation effect and degradation pathway of sulfonamide antibiotics were reviewed. It had important significance for reducing the impact of sulfonamide antibiotics on anaerobic fermentation efficiency and improving the biodegradation effect of sulfonamide antibiotics.
文章引用:杜康, 汪少娜. 厌氧发酵中微生物与磺胺类抗生素相互影响的研究进展[J]. 化学工程与技术, 2022, 12(4): 302-312. https://doi.org/10.12677/HJCET.2022.124040

1. 引言

厌氧发酵技术被广泛应用于畜禽粪污无害化与资源化处理之中 [1] [2]。厌氧发酵主要依靠微生物种群之间的相互作用,为保证厌氧发酵稳定运行且有较高的产气效率,提高微生物活性是最有效手段。磺胺类抗生素作为一种广谱抑菌类药物,被广泛应用于畜禽养殖过程中 [3]。由于其在动物肠道中的吸附和降解性差,导致大部分磺胺类抗生素随尿液和粪便排出体外,并且不发生任何变化 [4]。由于磺胺类抗生素中的磺酰胺基对位氨基(N4)上R2基团和磺酰胺基的R1基团与对氨基苯甲酸相似,二者竞争二氢叶酸合成酶,抑制微生物二氢叶酸的合成,影响微生物核酸的生成,从而抑制微生物的生长繁殖 [5]。

研究表明,畜禽粪污中的抗生素会降低厌氧发酵产气效率 [6]。磺胺类抗生素浓度为25 mg/L时,磺胺噻唑和磺胺甲恶唑对生成甲烷的抑制作用在42%~49% [7]。Cetecioglu等研究磺胺甲恶唑浓度对厌氧发酵的影响,表明产甲烷量随磺胺甲恶唑浓度的增高而逐渐降低,浓度低于100 mg/L时抑制效果不明显;浓度在100~250 mg/L时抑制效果明显,甲烷产量明显降低;超过250 mg/L时厌氧环境失衡,无甲烷产生 [8]。但Mitchell等考察4种抗生素对产气量的影响,其中磺胺二甲基嘧啶浓度达到280 mg/L时,对产气量依旧没有影响 [9]。说明不同种类的磺胺类抗生素对厌氧发酵过程中微生物的活性影响不同。

另外,磺胺类抗生素存在于环境会引起一系列的危害,尤其是会增加细菌抗药性,威胁人类身体健康 [10]。因此,研究磺胺类抗生素的去除方法成为研究热点,其中生物降解由于其价格低廉、二次污染少等优点被广泛研究。本研究梳理了厌氧发酵中主要功能微生物,通过阐述磺胺类抗生素对厌氧微生物的影响,分析磺胺类抗生素对厌氧发酵的影响机理。另外,通过归纳总结磺胺类抗生素降解菌群、降解效果及降解途径,为在天然生态系统和工程生态系统中原位或异位降解磺胺类抗生素提供技术和数据支撑。

2. 磺胺类抗生素对厌氧发酵微生物的影响

厌氧发酵过程需要水解、产酸、产氢和产甲烷菌的共同参与,包含细菌和古菌两种。但磺胺类抗生素对细菌和古菌的影响却不同,某些磺胺类抗生素可通过抑制细菌的核糖体蛋白合成过程来阻止细菌繁殖 [11]。而古菌由于其核糖体由不均一的蛋白质组成,故对磺胺类抗生素有较高的耐受性 [12]。

2.1. 对厌氧细菌的影响

细菌主要参与厌氧发酵中水解和酸化阶段,其主要功能和分类如图1所示。

Figure 1. Classification and main functions of bacteria in anaerobic fermentation

图1. 细菌在厌氧发酵中分类与主要功能

参与厌氧发酵的细菌主要包括ThermotogaeActinobacteriaSpirochaetesBacteroidetesFirmicutes菌门。Cetecioglu等 [13] 发现Firmicutes菌门中的Clostiridum菌属可降解大分子有机物,并产生乳酸、乙醇和挥发性脂肪酸。Clostiridum菌属丰度不受环境中磺胺甲恶唑的影响,Acinetobacter的丰度随着磺胺甲恶唑浓度的增加而变大,说明磺胺甲恶唑对各种细菌的影响不同,从而影响水解和产酸过程 [13]。Aydin等 [11] 证明抗生素会对BacteroidetesAcinetobacterProteobacteria菌门会产生负面影响,且抑制作用与抗生素浓度有关,但当环境中抗生素浓度达到3.0 mg/L时,Firmicutes丰度无显著变化。

抗生素对丙酸和丁酸等挥发性脂肪酸的降解有一定抑制作用,通过抑制相关微生物活性来实现,包括SyntrophomonasSyntrophosporaSyntrophobacterPelotomaculum等。Aydin等 [12] 证明挥发性有机酸的利用受抗生素的抑制,其中抗生素对利用丙酸的细菌的抑制作用高于利用丁酸的细菌。Bauer等 [14] 研究表明低浓度的抗生素对微生物群落结构影响不大,增加抗生素浓度会降低微生物多样性。Wang等 [15] 研究4种磺胺类抗生素对厌氧细菌的影响,结果表明磺胺甲恶唑的抑制作用最小,磺胺喹噁啉的抑制作用最大。

2.2. 对厌氧古菌的影响

参与厌氧发酵过程的古菌种类以产甲烷菌为主,其在厌氧发酵过程中的分类和主要功能,如图2所示。在产甲烷阶段,抗生素通过影响嗜酸(Acetogenotrophic methanogenesis)、嗜甲基化合物(Methylotrophic methanogenesis)和嗜氢产甲烷菌(Hydrogentrophic methanogenesis)3种类型的产甲烷菌群结构,影响整个产甲烷过程。

Figure 2. Classification and main functions of Archaea in anaerobic fermentation

图2. 古菌在厌氧发酵中分类与主要功能

抗生素的种类和浓度是引起古菌微生物种群丰度发生变化的因素。厌氧反应器中抗生素会抑制嗜酸产甲烷菌的生长繁殖,但却能促进嗜氢产甲烷菌的生长繁殖,使其丰度增加。当系统中存在40 mg/L的磺胺甲恶唑时,嗜氢产甲烷菌占主导地位,MethanobacteriumMethanogenic archeons的丰度增加,但会引起嗜酸产甲烷菌的丰度降低 [11]。

但根据大量文献报道 [11] [13] [16],在长期接触高浓度混合抗生素的厌氧系统中,产甲烷菌的总量不受影响。因为嗜氢产甲烷菌对高浓度抗生素有较高的耐受性,具有更高的底物利用率、生长率和细胞繁殖能力,所以大部分产甲烷菌以嗜氢产甲烷菌的形式存在,即使嗜酸产甲烷菌丰度降低,但却不会引起产甲烷菌总量的降低 [17]。厌氧系统中嗜氢产甲烷菌活性增大,能快速将乙酸转化为氢气和二氧化碳,为嗜氢产甲烷菌产甲烷提供了底物。因此,嗜氢产甲烷菌和嗜酸产甲烷菌互补的存在使系统保持稳定 [13]。

3. 磺胺类抗生素的生物降解

3.1. 磺胺类抗生素的降解菌

3.1.1. 降解菌株

环境中存在大量能降解磺胺类抗生素的微生物,前人从长期驯化后的活性污泥、受抗生素污染的土壤和粪便中分离出大量可降解磺胺类抗生素的菌株(如表1所示)。一些菌株能利用磺胺类抗生素作为唯一碳源进行生长繁殖,并达到降解的目的,一些菌株经驯化后对磺胺类抗生素有一定的降解作用 [18] [19]。

生物降解磺胺类抗生素的效果与环境中营养物质的组成与含量有关,环境中存在易降解的碳源和氮源,能促进微生物对磺胺类抗生素的降解。研究证明,从长期处理含磺胺类抗生素废水的生物膜反应器中分离出的Microbacterium sp. BR1菌株,能利用磺胺甲恶唑作为唯一碳源进行生长繁殖 [20]。通过改变碳源和氮源(维生素和酵母提取物)的含量,能进一步提高磺胺甲恶唑的降解速率,说明生物降解磺胺甲恶唑可与其他有机物存在共代谢的机制。另外,磺胺嘧啶和磺胺甲恶唑在接种Microbacterium sp. BR1的环境下培养24.5 h可以完全被降解,故Microbacterium sp. BR1是一种磺胺类抗生素的高效降解菌株 [21]。

从驯化后的活性污泥和废水中可分离出降解磺胺类抗生素的菌株,磺胺甲恶唑的降解率可达100%,并且能以磺胺类抗生素作为单一碳源进行生长繁殖 [30]。当环境中存在琥珀酸盐和乙酸盐时,菌株利用共代谢机制可提高磺胺甲恶唑的降解效果,并且高浓度(mg/L)磺胺类抗生素也可被完全降解 [30]。从含磺胺类抗生素的土壤中分离出的微生物菌株(SDZm4和sp.C448)可以完全降解磺胺嘧啶和磺胺甲恶唑,且其降解效率随外加碳源的增加而增大 [4] [31]。Islas等 [32] 分离出一种Pseudomonas菌属,能以磺胺甲恶唑为唯一碳源,降解率为0.2%~1.5%。Acinetobacter菌属被证明是磺胺类抗生素降解菌,其中Acinetobacter sp. HS51在2 d内可降解67%的磺胺噻唑;Acinetobacter W1在24 h内可降解95%~100%的磺胺甲恶唑,且在pH为7.0,温度25℃时降解效果最佳 [25]。Rhodococcus equi不能以磺胺类抗生素为单一碳源,存在葡萄糖等有机物时,磺胺甲恶唑的降解率可达29%,存在其他微生物时降解效果降低 [33],说明降解菌之间存在竞争。另外,由于磺胺类抗生素具有抑菌作用,随着初始浓度的增加其生物降解效果存在降低情况 [34]。

Table 1. Degradation strains of some sulfonamide antibiotics and their degradation effects

表1. 部分磺胺类抗生素的降解菌株及其降解效果

注:MSM为无机盐培养基。

3.1.2. 降解菌群

磺胺类抗生素的存在会影响微生物的群落结构,但微生物也会降解部分磺胺类抗生素。研究证明从水、土壤和沉积物等多种自然环境中发现能降解磺胺类抗生素的菌群,如表2所示。

Table 2. Degradation bacteria and degradation effects of some sulfonamide antibiotics

表2. 部分SAs的降解菌群及其降解效果

注:MSM为无机盐培养基。

土壤中筛选出可降解磺胺类抗生素的菌群有FirmicutesProteobacteriaBacteroidetesAcidobacteriaFirmicutesBacteroidetes菌门中的BacillusChryseobacterium菌属被证明是降解磺胺甲氧嘧啶的主要菌群 [32]。活性污泥中发现大量可降解磺胺类抗生素的优势菌群,包括Micrococcus luteusRhodopirellula balticaOligotropha carboxidovoransMethylibium petroleiphilumDelftia acidovoransPseudomonasAcinetobacter [35] 。另外,利用微生物燃料电池降解磺胺类抗生素的反应器,从其阳极室筛出两种降解磺胺甲恶唑的优势菌群,分别为PseudomonasAchromobacter,其对磺胺甲恶唑的降解能力较强 [39]。在自然和人为环境中,不是所有磺胺类抗生素的降解菌株都能被分离鉴定,大部分以菌群形式被鉴定。

3.2. 磺胺类抗生素的生物降解效果

微生物降解磺胺类抗生素的效果与细菌种类、底物初始浓度、pH和温度等因素有关 [40] [41]。通过大量文献总结,厌氧微生物比好氧微生物对磺胺类抗生素有更高的降解效果,其降解效果如表3表4所示。Cao等 [42] 研究底物初始浓度、外加碳源、pH和温度对磺胺甲恶唑降解的影响,发现中性pH,温度25℃和0.2 g/L乙酸钠的环境下,磺胺甲恶唑降解效果最佳。大型污水处理厂在运行过程中也能去除部分磺胺类抗生素,其去除效果与处理工艺和废水成分有关,去除效果从0~100%不等 [43] - [48]。常红等 [43] 研究北京市6家污水处理厂对磺胺类抗生素的降解,其中磺胺甲恶唑、磺胺吡啶、磺胺嘧啶在好氧区和缺氧区被部分降解,在厌氧区被进一步去除,故厌氧去除率较高。

Table 3. Aerobic biodegradation and degradation effects of sulfonamide antibiotics

表3. 磺胺类抗生素的好氧生物降解及其效果

通过研究实验室规模的磺胺类抗生素厌氧生物降解,发现厌氧间歇反应器中磺胺类抗生素的降解率为22%~100% [26] [58]。磺胺甲恶唑的降解发生在缺氧和好氧区,而磺胺嘧啶主要在厌氧或缺氧区被消除 [43],所以厌氧降解表现出优越性。其降解效果与其初始浓度有关,在厌氧硫酸盐还原菌污泥系统中,磺胺类抗生素浓度在μg/L以下时,降解效果遵循拟零级动力学模型,降解速率可达13.2 ± 0.1 mg/L∙d [58],浓度增大降解速率明显降低 [59]。

Table 4. Anaerobic biodegradation and degradation effects of sulfonamide antibiotics

表4. 磺胺类抗生素的厌氧生物降解及其效果

大型污水处理厂中的厌氧环节也可以去除磺胺类抗生素。其中,水力停留时间、底物浓度等对降解效果有影响,磺胺甲氧哒嗪的降解效果与COD去除率呈正相关关系,表明厌氧降解磺胺甲氧哒嗪也存在共代谢机制 [61]。Zhang等 [69] 证明水力停留时间是影响磺胺嘧啶去除率的关键,水力停留时间为17 h时,磺胺嘧啶去除率达到23.8%。

厌氧发酵和堆肥也是去除磺胺类抗生素的有效途径 [70]。研究发现,中温厌氧发酵可有效去除磺胺类抗生素,硫酸盐和产甲烷的还原环境有利于磺胺嘧啶的生物转化,而添加电子供体受体对其影响不大 [64]。厌氧发酵底物中存在大量易被降解的有机物,会造成磺胺类抗生素的降解效果降低 [64],而且磺胺噻唑和磺胺邻二甲氧嘧啶在发酵实验中去除效果不明显 [71] [72]。

3.3. 磺胺类抗生素的生物降解途径

目前,关于磺胺类抗生素代谢途径的大量研究已经被发表。其生物降解中间产物主要是通过羟基化、乙酰化及C-N/S-N键断裂生成。常见的磺胺甲恶唑降解产物为对氨基苯磺酰胺、羟基-N-(5-甲基-1,2-恶唑-3-基)苯-1-磺酰胺、苯胺、3-氨基-5-甲基异恶唑、N4-羟基-SMX(HO-SMX)、4-氨基苯硫酚和N4-乙酰基-SMX。对氨基苯磺酰胺是磺胺类抗生素固有的降解产物之一,降解途径有两种:N-C键和S-N键的断裂。N4-乙酰-SMX是磺胺甲恶唑在N4位置发生取代反应所形成,但性质不稳定,易转化回母体化合物 [46]。磺胺嘧啶的主要中间产物为2-氨基嘧啶和4-羟基-2-氨基嘧啶。Microbacterium利用还原态-还原型辅酶I将磺胺嘧啶降解为2-氨基嘧啶 [73]。由于嘧啶环稳性的,大部分磺胺嘧啶能生成等摩尔量的2-氨基嘧啶。然后被ArthrobacterTerrabacter转化为4-羟基-2-氨基嘧啶 [24]。WANG等 [74] 证明磺胺喹噁啉、磺胺对甲氧嘧啶和磺胺噻唑均可发生乙酰化、羟基化和葡萄糖醛酸化反应,其取代反应主要发生在N4或N1氨基部分。

4. 研究展望

目前,对磺胺类抗生素生物降解效果与机理的研究主要以磺胺甲恶唑和磺胺嘧啶为主,且其机理研究主要局限在实验室阶段,以后的研究需在以下方面加强:

1) 磺胺类抗生素的生物降解机理。磺胺抗生素的降解与多种因素有关,而厌氧发酵过程复杂也会影响其降解效果。因此,展开厌氧发酵不同阶段内磺胺类抗生素降解效果的研究,将为厌氧去除抗生素提供更有利的理论依据。

2) 厌氧微生物的作用机理。厌氧发酵过程中涉及多种微生物,磺胺类抗生素的抑菌作用对某些微生物会产生不利影响,但有些微生物却能降解磺胺类抗生素。根据现有研究,明确微生物种类和作用,可提高厌氧发酵效率的同时增大磺胺类抗生素的去除效果。

3) 多种抗生素存在的降解效果。本文主要总结了磺胺类抗生素的降解菌、降解效果和降解机理,但环境中存在其他类抗生素也会产生环境危害。研究并总结四环素类、大环内酯类和喹诺酮类等抗生素对环境的影响及其降解机理也具有重大意义。

NOTES

*通讯作者。

参考文献

[1] Angelidaki, I., Sanders, W., Sanders, W., et al. (2004) Assessment of the Anaerobic Biodegradability of Macropollutants. Reviews in Environmental Science and Biotechnology, 3, 117-129.
https://doi.org/10.1007/s11157-004-2502-3
[2] Hansen, T.L., Schmidt, J.E., Angelidaki, I., et al. (2004) Method for Determination of Methane Potentials of Solid Organic Waste. Waste Management, 24, 393.
https://doi.org/10.1016/j.wasman.2003.09.009
[3] Liu, L., Liu, C., Zheng, J., et al. (2013) Elimination of Veterinary Antibiotics and Antibiotic Resistance Genes from Swine Wastewater in the Vertical Flow Constructed Wetlands. Chemosphere, 91, 1088-1093.
https://doi.org/10.1016/j.chemosphere.2013.01.007
[4] Tappe, W., Herbst, M., Hofmann, D., et al. (2013) Degradation of Sulfadiazine by Microbacterium lacus Strain SDZm4, Isolated from Lysimeters Previously Manured with Slurry from Sulfadiazine-Medicated Pigs. Applied Environmental Microbiology, 79, 2572-2577.
https://doi.org/10.1128/AEM.03636-12
[5] Roose-Amsaleg, C.L.A.M. (2016) Do Antibiotics Have Envi-ronmental Side-Effects? Impact of Synthetic Antibiotics on Biogeochemical Processes. Environmental Science and Pollution Research, 23, 4000-4012.
https://doi.org/10.1007/s11356-015-4943-3
[6] 范超, 王欣, 刘伟, 等. 抗生素对鸡粪厌氧发酵过程影响的实验研究[J]. 黑龙江科学, 2016, 12(22): 1-3.
[7] Loftin, K.A., Henny, C., Adams, C.D., et al. (2005) Inhibition of Microbial Metabolism in Anaerobic Lagoons by Selected Sulfonamides, Tetracyclines, Lincomycin, and Tylosin Tartrate. Environmental Toxicology and Chemistry, 24, 782-788.
https://doi.org/10.1897/04-093R.1
[8] Cetecioglu, Z., Ince, B., Orhon, D., et al. (2012) Acute Inhibitory Impact of Antimicrobials on Acetoclastic Methanogenic Activity. Bioresource Technology, 114, 109-116.
https://doi.org/10.1016/j.biortech.2012.03.020
[9] Mitchell, S.M., Ullman, J.L., Teel, A.L., et al. (2013) The Effects of the Antibiotics Ampicillin, Florfenicol, Sulfamethazine, and Tylosin on Biogas Production and Their Degradation Efficiency during Anaerobic Digestion. Bioresource Technology, 149, 244-252.
https://doi.org/10.1016/j.biortech.2013.09.048
[10] Baran, W., Adamek, E., Ziemianska, J., et al. (2011) Ef-fects of the Presence of Sulfonamides in the Environment and Their Influence on Human Health. Journal of Haz-ardous Materials, 196, 1-15.
https://doi.org/10.1016/j.jhazmat.2011.08.082
[11] Aydin, S., Ince, B. and Ince, O. (2015) Inhibitory Effect of Erythromycin, Tetracycline and Sulfamethoxazole Antibiotics on Anaerobic Treatment of a Pharmaceutical Wastewater. Water Science and Technology, 71, 1620-1628.
https://doi.org/10.2166/wst.2015.126
[12] Aydin, S., Cetecioglu, Z., Arikan, O., et al. (2015) Inhibitory Effects of Antibiotic Combinations on Syntrophic Bacteria, Homoacetogens and Methanogens. Chemosphere, 120, 515-520.
https://doi.org/10.1016/j.chemosphere.2014.09.045
[13] Cetecioglu, Z., Ince, B., Orhon, D., et al. (2016) Anaerobic Sulfamethoxazole Degradation Is Driven by Homoacetogenesis Coupled with Hydrogenotrophic Methanogenesis. Water Research, 90, 79-89.
https://doi.org/10.1016/j.watres.2015.12.013
[14] Bauer, A., Lizasoain, J., Nettmann, E., et al. (2014) Effects of the Antibiotics Chlortetracycline and Enrofloxacin on the Anaerobic Digestion in Continuous Experiments. Bi-oenergy Research, 7, 1244-1252.
https://doi.org/10.1007/s12155-014-9458-0
[15] Wang, S., Yuan, R., Chen, H., et al. (2020) Effect of Sul-fonamides on the Dissolved Organic Matter Fluorescence in Biogas Slurry during Anaerobic Fermentation According to the PARAFAC Analysis. Process Safety and Environmental Protection, 144, 253-262.
https://doi.org/10.1016/j.psep.2020.07.033
[16] Lallai, A., Mura, G. and Onnis, N. (2002) The Effects of Certain Antibiotics on Biogas Production in the Anaerobic Digestion of Pig Waste Slurry. Bioresource Technology, 82, 205-208.
https://doi.org/10.1016/S0960-8524(01)00162-6
[17] Aydin, S., Ince, B. and Ince, O. (2015) Application of Real-Time PCR to Determination of Combined Effect of Antibiotics on Bacteria, Methanogenic Archaea, Archaea in Anaerobic Sequencing Batch Reactors. Water Research, 76, 88-98.
https://doi.org/10.1016/j.watres.2015.02.043
[18] Zhi, D., Yang, D., Zheng, Y., et al. (2019) Current Progress in the Adsorption, Transport and Biodegradation of Antibiotics in Soil. Journal of Environmental Management, 251, Article ID: 109598.
https://doi.org/10.1016/j.jenvman.2019.109598
[19] Zheng, W., Wen, X., Zhang, B., et al. (2019) Selective Effect and Elimination of Antibiotics in Membrane Bioreactor of Urban Wastewater Treatment Plant. Science of the Total Environment, 646, 1293-1303.
https://doi.org/10.1016/j.scitotenv.2018.07.400
[20] Bouju, H., Ricken, B., Beffa, T., et al. (2012) Isolation of Bacterial Strains Capable of Sulfamethoxazole Mineralization from an Acclimated Membrane Bioreactor. Applied Environmental Microbiology, 78, 277-279.
https://doi.org/10.1128/AEM.05888-11
[21] Birkigt, J., Gilevska, T., Ricken, B., et al. (2015) Carbon Stable Isotope Fractionation of Sulfamethoxazole during Biodegradation by Microbacterium sp. Strain BR1 and upon Direct Photolysis. Environmental Science Technology, 49, 6029-6036.
https://doi.org/10.1021/acs.est.5b00367
[22] Herzog, B., Lemmer, H., Horn, H., et al. (2013) Characterization of Pure Cultures Isolated from Sulfamethoxazole-Acclimated Activated Sludge with Respect to Taxonomic Identi-fication and Sulfamethoxazole Biodegradation Potential. BMC Microbiology, 13, 276-286.
https://doi.org/10.1186/1471-2180-13-276
[23] Reis, P.J., Reis, A.C., Ricken, B., et al. (2014) Biodegradation of Sulfamethoxazole and Other Sulfonamides by Achromobacter denitrificans PR1. Journal of Hazardous Materials, 280, 741-749.
https://doi.org/10.1016/j.jhazmat.2014.08.039
[24] Deng, Y., Mao, Y., Li, B., et al. (2016) Aerobic Degrada-tion of Sulfadiazine by Arthrobacter spp.: Kinetics, Pathways, and Genomic Characterization. Environmental Sci-ence Technology, 50, 9566-9575.
https://doi.org/10.1021/acs.est.6b02231
[25] Wang, S. and Wang, J. (2018) Biodegradation and Metabolic Pathway of Sulfamethoxazole by a Novel Strain Acinetobacter sp. Applied Microbiology and Biotechnology, 102, 425-432.
https://doi.org/10.1007/s00253-017-8562-4
[26] Oliveira, G.H.D., Santos-Neto, A.J. and Zaiat, M. (2017) Removal of the Veterinary Antimicrobial Sulfamethazine in a Horizontal-Flow Anaerobic Immobilized Biomass (HAIB) Reactor Subjected to Step Changes in the Applied Organic Loading Rate. Journal of Environmental Management, 204, 674-683.
https://doi.org/10.1016/j.jenvman.2017.09.048
[27] Mulla, S.I., Sun, Q., Hu, A., et al. (2016) Evaluation of Sulfadiazine Degradation in Three Newly Isolated Pure Bacterial Cultures. PLOS ONE, 11, 13-27.
https://doi.org/10.1371/journal.pone.0165013
[28] Zhang, W., Xu, D., Niu, Z., et al. (2012) Isolation and Characterization of Pseudomonas sp. DX7 Capable of Degrading Sulfadoxine. Biodegradation, 23, 431-439.
https://doi.org/10.1007/s10532-011-9522-9
[29] Zhang, W.W., Wen, Y.Y., Niu, Z.L., et al. (2012) Isolation and Characterization of Sulfonamide-Degrading Bacteria Escherichia sp. HS21 and Acinetobacter sp. HS51. World Journal of Microbiology and Biotechnology, 28, 447-452.
https://doi.org/10.1007/s11274-011-0834-z
[30] Nguyen, P.Y., Carvalho, G., Polesel, F., et al. (2018) Bio-augmentation of Activated Sludge with Achromobacter denitrificans PR1 for Enhancing the Biotransformation of Sulfamethoxazole and Its Human Conjugates in Real Wastewater: Kinetic Tests and Modelling. Chemical Engi-neering Journal, 352, 79-89.
https://doi.org/10.1016/j.cej.2018.07.011
[31] Topp, E., Chapman, R., Devers-Lamrani, M., et al. (2013) Accelerated Biodegradation of Veterinary Antibiotics in Agricultural Soil Fol-lowing Long-Term Exposure, and Isolation of a Sulfamethazine-Degrading Microbacterium sp. Journal of Envi-ronmental Quality, 42, 173-178.
https://doi.org/10.2134/jeq2012.0162
[32] Islas-Espinoza, M., Reid, B.J., Wexler, M., et al. (2012) Soil Bacterial Consortia and Previous Exposure Enhance the Biodegradation of Sulfona-mides from Pig Manure. Microbial Ecology, 64, 140-151.
https://doi.org/10.1007/s00248-012-0010-5
[33] Larcher, S. and Yargeau, V. (2011) Biodegradation of Sul-famethoxazole by Individual and Mixed Bacteria. Applied Microbiology and Biotechnology, 91, 211-218.
https://doi.org/10.1007/s00253-011-3257-8
[34] Mao, F., Liu, X., Wu, K., et al. (2018) Biodegradation of Sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp. Strain MR-4. Biodegradation, 29, 129-140.
https://doi.org/10.1007/s10532-017-9818-5
[35] Yang, C.W., Hsiao, W.C. and Chang, B.V. (2016) Biodeg-radation of Sulfonamide Antibiotics in Sludge. Chemosphere, 150, 559-565.
https://doi.org/10.1016/j.chemosphere.2016.02.064
[36] Liao, X., Li, B., Zou, R., et al. (2016) Antibiotic Sulfanilamide Biodegradation by Acclimated Microbial Populations. Applied Microbiology and Biotechnology, 100, 2439-2447.
https://doi.org/10.1007/s00253-015-7133-9
[37] Miran, W., Jang, J., Nawaz, M., et al. (2018) Biodegradation of the Sulfonamide Antibiotic Sulfamethoxazole by Sulfamethoxazole Acclimatized Cultures in Microbial Fuel Cells. Science of the Total Environment, 627, 1058-1065.
https://doi.org/10.1016/j.scitotenv.2018.01.326
[38] Xu, B., Mao, D., Luo, Y., et al. (2011) Sulfamethoxazole Biodegradation and Biotransformation in the Water-Sediment System of a Natural River. Bioresource Technology, 102, 7069-7076.
https://doi.org/10.1016/j.biortech.2011.04.086
[39] Wang, L., Wu, Y., Zheng, Y., et al. (2015) Efficient Degradation of Sulfamethoxazole and the Response of Microbial Communities in Microbial Fuel Cells. RSC Ad-vances, 5, 56430-56437.
https://doi.org/10.1039/C5RA08438E
[40] Wang, B., Ni, B.J., Yuan, Z., et al. (2019) Insight into the Nitrification Kinetics and Microbial Response of an Enriched Nitrifying Sludge in the Biodegradation of Sulfadiazine. Environmental Pollution, 255, Article ID: 113160.
https://doi.org/10.1016/j.envpol.2019.113160
[41] Peng, J., Wu, E., Wang, N., et al. (2019) Removal of Sul-fonamide Antibiotics from Water by Adsorption and Persulfate Oxidation Process. Journal of Molecular Liquids, 274, 632-638.
https://doi.org/10.1016/j.molliq.2018.11.034
[42] Cao, L., Zhang, J., Zhao, R., et al. (2019) Genomic Characterization, Kinetics, and Pathways of Sulfamethazine Biodegradation by Paenarthrobacter sp. A01. Environment International, 131, 104961-104973.
https://doi.org/10.1016/j.envint.2019.104961
[43] Chang, H., Hu, J., Wang, L., et al. (2008) Occurrence of Sulfonamide Antibiotics in Sewage Treatment Plants. Chinese Science Bulletin, 53, 514-520.
https://doi.org/10.1007/s11434-008-0123-x
[44] Gobel, A., McArdell, C.S., Joss, A., et al. (2007) Fate of Sulfonamides, Macrolides, and Trimethoprim in Different Wastewater Treatment Technologies. Science of the Total Environment, 372, 361-371.
https://doi.org/10.1016/j.scitotenv.2006.07.039
[45] Torresi, E., Escola Casas, M., Polesel, F., et al. (2017) Impact of External Carbon Dose on the Removal of Micropollutants Using Methanol and Ethanol in Post-Denitrifying Moving Bed Biofilm Reactors. Water Research, 108, 95-105.
https://doi.org/10.1016/j.watres.2016.10.068
[46] Wu, M.H., Que, C.J., Xu, G., et al. (2016) Occurrence, Fate and Interrelation of Selected Antibiotics in Sewage Treatment Plants and Their Receiving Surface Water. Ecotoxi-cology and Environmental Safety, 132, 132-139.
https://doi.org/10.1016/j.ecoenv.2016.06.006
[47] Xu, W., Zhang, G., Li, X., et al. (2007) Occurrence and Elimination of Antibiotics at Four Sewage Treatment Plants in the Pearl River Delta (PRD), South China. Water Research, 41, 4526-4534.
https://doi.org/10.1016/j.watres.2007.06.023
[48] Yuan, X., Qiang, Z., Ben, W., et al. (2014) Rapid Detection of Multiple Class Pharmaceuticals in Both Municipal Wastewater and Sludge with Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry. Journal of Environmental Sciences—China, 26, 1949-1959.
https://doi.org/10.1016/j.jes.2014.06.022
[49] Alexy, R., Kumpel, T. and Kummerer, K. (2004) Assessment of Degradation of 18 Antibiotics in the Closed Bottle Test. Chemosphere, 57, 505-512.
https://doi.org/10.1016/j.chemosphere.2004.06.024
[50] Li, Y., Liu, B., Zhang, X., et al. (2016) The Distri-bution of Veterinary Antibiotics in the River System in a Livestock-Producing Region and Interactions between Different Phases. Environmental Science Pollution Research, 23, 16542-16551.
https://doi.org/10.1007/s11356-016-6677-2
[51] Yang, S.F., Lin, C.F., Wu, C.J., et al. (2012) Fate of Sul-fonamide Antibiotics in Contact with Activated Sludge-Sorption and Biodegradation. Water Research, 46, 1301-1308.
https://doi.org/10.1016/j.watres.2011.12.035
[52] Yang, N., Wan, J., Zhao, S., et al. (2015) Re-moval of Concentrated Sulfamethazine by Acclimatized Aerobic Sludge and Possible Metabolic Products. PeerJ, 3, 1359-1374.
https://doi.org/10.7717/peerj.1359
[53] Accinelli, C., Koskinen, W.C., Becker, J.M., et al. (2007) Environmental Fate of Two Sulfonamide Antimicrobial Agents in Soil. Journal of Agricultural and Food Chemistry, 55, 2677-2682.
https://doi.org/10.1021/jf063709j
[54] Yang, J.F., Ying, G.G., Yang, L.H., et al. (2009) Deg-radation Behavior of Sulfadiazine in Soils under Different Conditions. Journal of Environmental Science and Health Part B, 44, 241-248.
https://doi.org/10.1080/03601230902728245
[55] Engelhardt, I., Sittig, S., Simunek, J., et al. (2015) Fate of the Antibiotic Sulfadiazine in Natural Soils: Experimental and Numerical Investigations. Journal of Contaminant Hydrology, 177-178, 30-42.
https://doi.org/10.1016/j.jconhyd.2015.02.006
[56] Richter, D., Massmann, G. and Dunnbier, U. (2008) Be-haviour and Biodegradation of Sulfonamides (p-TSA, o-TSA, BSA) during Drinking Water Treatment. Chemosphere, 71, 1574-1581.
https://doi.org/10.1016/j.chemosphere.2007.11.026
[57] Adamek, E., Baran, W. and Sobczak, A. (2016) As-sessment of the Biodegradability of Selected Sulfa Drugs in Two Polluted Rivers in Poland: Effects of Seasonal Variations, Accidental Contamination, Turbidity and Salinity. Journal of Hazardous Materials, 313, 147-158.
https://doi.org/10.1016/j.jhazmat.2016.03.064
[58] Jia, Y., Khanal, S.K., Zhang, H., et al. (2017) Sulfameth-oxazole Degradation in Anaerobic Sulfate-Reducing Bacteria Sludge System. Water Research, 119, 12-20.
https://doi.org/10.1016/j.watres.2017.04.040
[59] Cetecioglu, Z., Ince, B., Gros, M., et al. (2015) Biodegra-dation and Reversible Inhibitory Impact of Sulfamethoxazole on the Utilization of Volatile Fatty Acids during Anaerobic Treatment of Pharmaceutical Industry Wastewater. Science of the Total Environmental, 536, 667-674.
https://doi.org/10.1016/j.scitotenv.2015.07.139
[60] Alvarino, T., Nastold, P., Suarez, S., et al. (2016) Role of Biotransformation, Sorption and Mineralization of 14C-Labelled Sulfamethoxazole under Different Redox Condi-tions. Science of the Total Environment, 542, 706-715.
https://doi.org/10.1016/j.scitotenv.2015.10.140
[61] Oliveira, G.H., Santos-Neto, A.J. and Zaiat, M. (2016) Evaluation of Sulfamethazine Sorption and Biodegradation by Anaerobic Granular Sludge Using Batch Experiments. Bioprocess and Biosystems Engineering, 39, 115-124.
https://doi.org/10.1007/s00449-015-1495-3
[62] Lai, H.T., Wang, T.S. and Chou, C.C. (2011) Implication of Light Sources and Microbial Activities on Degradation of Sulfonamides in Water and Sediment from a Marine Shrimp Pond. Bioresource Technology, 102, 5017-5023.
https://doi.org/10.1016/j.biortech.2011.01.070
[63] Zhang, Y., Xu, J., Zhong, Z., et al. (2013) Degradation of Sulfonamides Antibiotics in Lake Water and Sediment. Environmental Science and Pollution Research, 20, 2372-2380.
https://doi.org/10.1007/s11356-012-1121-8
[64] Bennett, K.A., Kelly, S.D., Tang, X., et al. (2017) Potential for Natural and Enhanced Attenuation of Sulphanilamide in a Contaminated Chalk Aquifer. Journal of Environmental Sciences—China, 62, 39-48.
https://doi.org/10.1016/j.jes.2017.08.010
[65] Mohring, S.A.I., Strzysch, I., Fernandes, M.R., et al. (2009) Degradation and Elimination of Various Sulfonamides during Anaerobic Fermentation: A Promising Step on the Way to Sustainable Pharmacy? Environmental Science Technology, 43, 2569-2574.
https://doi.org/10.1021/es802042d
[66] Chu, Y.-X., Fang, C.-R., Wang, H., et al. (2017) Degradation of Sul-fonamides during Anaerobic Composting of Swine Manure. Chemistry and Ecology, 33, 339-351.
https://doi.org/10.1080/02757540.2017.1303049
[67] Feng, L., Wahid, R., Ward, A.J., et al. (2017) Anaerobic Co-Digestion of Cattle Manure and Meadow Grass: Effect of Serial Configurations of Continuous Stirred Tank Reactors (CSTRs). Biosystems Engineering, 160, 1-11.
https://doi.org/10.1016/j.biosystemseng.2017.05.002
[68] Jin, H., Xu, C., Du, J., et al. (2017) Distribution of Sulfonamides in Liquid and Solid Anaerobic Digestates: Effects of Hydraulic Retention Time and Swine Manure to Rice Straw Ratio. Bioprocess and Biosystems Engineering, 40, 319-330.
https://doi.org/10.1007/s00449-016-1699-1
[69] Bing, L. and Tong, Z. (2010) Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process. Environmental Science and Technology, 44, 3468-3473.
https://doi.org/10.1021/es903490h
[70] 靳红梅, 许彩云, 黄红英, 等. 猪粪中温厌氧消化中磺胺类抗生素的降解和吸附特征[J]. 农业环境科学学报, 2017, 36(9): 1884-1892.
[71] Feng, L., Casas, M.E., Ottosen, L.D.M., et al. (2017) Removal of Antibiotics during the Anaerobic Digestion of Pig Manure. Science of the Total Environment, 603-604, 219-225.
https://doi.org/10.1016/j.scitotenv.2017.05.280
[72] Spielmeyer, A., Breier, B., Groissmeier, K., et al. (2015) Elimination Patterns of Worldwide Used Sulfonamides and Tetracyclines during Anaerobic Fermentation. Bioresource Technology, 193, 307-314.
https://doi.org/10.1016/j.biortech.2015.06.081
[73] Ricken, B., Corvini, P.F., Cichocka, D., et al. (2013) Ipso-Hydroxylation and Subsequent Fragmentation: A Novel Microbial Strategy to Eliminate Sulfonamide Antibiotics. Applied Environmental Microbiology, 79, 5550-5558.
https://doi.org/10.1128/AEM.00911-13
[74] Wang, S., Yuan, R., Chen, H., et al. (2021) Anaerobic Biodegradation of Four Sulfanilamide Antibiotics: Kinetics, Pathways and Microbiological Studies. Journal of Hazardous Materials, 416, Article ID: 125840.
https://doi.org/10.1016/j.jhazmat.2021.125840