益生菌治疗非酒精性脂肪性肝病的相关进展研究
Research Progress of Probiotics in the Treatment of Nonalcoholic Fatty Liver Disease
DOI: 10.12677/ACM.2022.1281047, PDF, HTML, XML, 下载: 228  浏览: 423 
作者: 周厚法*, 孙 琦:青海大学研究生院,青海 西宁;马颖才:青海省人民医院消化科,青海 西宁
关键词: 非酒精性脂肪性肝病益生菌抗生素Nonalcoholic Fatty Liver Disease Probiotics Antibiotic
摘要: 非酒精性脂肪肝(NAFLD)是一种代谢相关性,以肝细胞脂肪变性为主要特征的疾病。随着近几十年来人民生活水平的提高,在我国NAFLD的患病率达到了6%~27%,已取代慢性乙型肝炎成为我国第一大慢性肝病,且目前正朝着低龄化和迅速上升的态势发展,严重威胁人类健康。至今为止,除了控制血糖和血脂以及减肥等针对原发病和危险因素的治疗方式外,暂无明确的药物治疗方法。而近年来由于对肠–肝轴的认识越来越深,以及对肠道菌群在NAFLD发生机理中的作用了解越来越多,益生菌防治NAFLD的研究也随之增多。本综述重点对肠道益生菌的新疗法在NAFLD治疗中的研究进展进行总结。
Abstract: Nonalcoholic fatty liver disease (NAFLD) is a metabolic related disease characterized by hepatocyte steatosis. With the improvement of people’s living standards in recent decades, the prevalence of NAFLD in China has reached 6%~27%, which has replaced chronic hepatitis B and become the largest chronic liver disease in China. At present, it is developing towards younger age and rising rapidly, which has seriously threatened human health. So far, there is no clear drug treatment ex-cept for the treatment of primary disease and risk factors such as blood glucose and blood lipid control and weight loss. In recent years, due to the deeper understanding of the gut liver axis and the role of intestinal flora in the pathogenesis of NAFLD, the research on the prevention and treat-ment of NAFLD by probiotics has also increased. This review focuses on the research progress of new therapies of intestinal probiotics in the treatment of NAFLD.
文章引用:周厚法, 马颖才, 孙琦. 益生菌治疗非酒精性脂肪性肝病的相关进展研究[J]. 临床医学进展, 2022, 12(8): 7249-7255. https://doi.org/10.12677/ACM.2022.1281047

1. 引言

非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)是指除外过量摄入酒精(男性少于30 g/天、女性少于20 g/天)、病毒感染、自身免疫或药物性肝病病史的情况下,肝活检组织中脂肪浸润 > 5% [1] [2] ,包括非酒精性脂肪肝(non-alcoholic fatty liver, NAFL)、脂肪性肝炎(non-alcoholic steatohepatitis, NASH),以及脂肪性肝纤维化、肝硬化甚至最终演变为肝癌 [3] ,现已成为我国第一大慢性肝病 [4] 。目前能够被学术界接受的“多重打击”学说可以解释NAFLD部分发病机制,这些打击涉及遗传、代谢和环境等因素 [5] 。在这些危险因素中,除了胰岛素抵抗、代谢应激和炎症外,肠道菌群对NAFLD的病情发展也起着重要作用 [6] 。本文主要阐述了肠道菌群影响疾病的机制,并对肠道益生菌在NAFLD治疗中的研究进展进行总结。

2. 肠道菌群

肠道微生物群是由定居在人体肠道中的细菌、古细菌、原生生物、真菌和病毒组成的生态系统,是人体不可或缺的一部分 [7] 。其组成和功能会受多种因素的影响,包括宿主和环境因素,如饮食、身体活动、药物、昼夜节律活动等。在胃肠道的不同部位,菌群的数量和组成也各不相同 [8] ,胃部主要定居的为嗜酸菌,十二指肠主要菌群为乳杆菌、链球菌和拟杆菌,在回肠和结肠中类杆菌属、双歧杆菌属和梭状芽胞杆菌属等厌氧菌为绝对优势菌 [9] 。在健康条件下人体是和肠道菌群相互受益的。相反,由于不同的病理状态可能会导致患者肠道菌群组成和功能的紊乱,而相关证据显示肠道菌群失调与炎症性和代谢性疾病之间可能存在直接联系,包括心血管疾病 [10] 、肥胖 [11] 、糖尿病 [12] 、代谢综合征 [13] 和NAFLD等肝脏疾病 [14] [15] 。

3. 肠道菌群与肠–肝轴

肠道菌群能够影响肝脏的解剖学基础源于胃肠道和肝脏之间密切的联系,通过胆道和门静脉紧密相连,即“肠–肝轴”。门静脉供应了肝脏约70%血液,门静脉血除了向肝脏输送营养成分外还有一些其他物质,这些物质通过门静脉从肠道进入血液,因此肝脏成为最容易接触肠道菌群及其代谢产物的器官之一 [16] ,所以肠-肝轴的影响在非酒精性脂肪肝的发病机制中起重要作用。

4. NAFLD患者肠道菌群特征

健康人群的胃肠道通常有多种微生物定居,两者处于动态平衡中。肠道菌群若因某些疾病导致受到影响,此种平衡就会被打破,与疾病相关的细菌含量或其代谢功能的变化,或肠道内分布的变化,都被描述为肠道菌群失调 [17] 。相较于健康人群,NAFLD患者的肠道菌群丰度及多样性都会降低,但其具体比例在不同条件下存在着差异。首先,肥胖和年龄可能导致NAFLD患者肠道细菌的不同特征 [18] ,如在肥胖患者体内发现拟杆菌门数量减少,而厚壁菌门数量增多;高龄长寿老人与年轻成人相比,存在肠道菌群多样性的显著减低。其次,不同发展程度的NAFLD肠道菌群特征也不同,其中厚壁菌在轻、中度NAFLD中更为常见,而变形菌在晚期肝纤维化中更为常见 [19] 。然而,微生物群在NAFLD中的作用所涉及的潜在机制仍存在争议,有必要再进一步研究中明确上述细菌对NAFLD的具体机制和治疗作用。

5. 肠道菌群与NAFLD发病机制的关系

越来越多的研究结果表明通过肠道菌群与NAFLD密切相关,如通过对肠道屏障功能的影响、对肠道吸收能量能力的影响、对脂肪吸收的影响、对胆碱和胆汁酸代谢信号通路的影响、发酵食物产生乙醇等机制影响疾病的进展。

5.1. 肠道通透性的改变

肠道通透性的改变是影响NAFLD的重要原因之一,这可能与肠道微生物密切相关 [20] 。肠道屏障功能主要通过包括粘液层、抗菌肽和紧密连接(TJ)蛋白在内的多种因素共同作用来维持的,而肠道通透性的改变可能与TJ蛋白的表达有关。因为发现一种属于TJ蛋白的闭锁小带蛋白1 (ZO-1)在NAFLD患者的肠粘膜中的表达量下降,并且肠道通透性的改变也许会导致促炎因子的通过,这可能会导致肝损伤甚至全身炎症 [21] 。

5.2. 能量吸收的提高

肠道菌群是肠道从食物中获取能量的关键调节剂,并且可以通过多种途径导致脂肪沉积,如改变小肠绒毛的密度并通过产生与G蛋白偶联受体(GPCRs)相互作用的SCFAs来影响肠道生理和运动 [22] 。相关动物实验也表明,通过粪菌移植,将野生型小鼠的肠道菌群移植给无菌小鼠后,无菌小鼠在14天内的增加了60%的体脂含量和胰岛素抵抗增加60%。通过本实验可得知肠道菌群通过提高机体从食物中吸收能量的能力来影响NAFLD [23] 。

5.3. 短链脂肪酸(Short-Chain Fatty Acids, SCFA)合成途径的改变

短链脂肪酸(SCFA)主要包括:乙酸、丙酸及丁酸,主要由肠道微生物发酵产生。大部分SCFAs可在肠道中被利用,但小部分可以转运到血液中,并通过门静脉到达肝脏,进入三羧酸循环并成为能量来源。另外SCFAs也是G蛋白进行偶联因子受体GPR41、GPR43的配体。SCFAs通过激活GPR43调节胰岛素敏感性,抑制脂肪的分解和脂肪细胞分化,从而导致脂肪堆积 [24] 。

5.4. 改变胆汁酸代谢信号通路

在肝细胞中,以胆固醇作为原料直接合成而来的称为初级胆汁酸,储存在胆囊并随胆汁进入肠道,后经肠道微生物将其代谢为次级胆汁酸,然后经门静脉被重新吸收进入肝脏再循环。初级胆汁酸在体内的主要作用包括促进脂质溶解、消化和吸收、维持肠道屏障,防止细菌易位 [25] [26] ;通过与不同受体相结合如TGR5和FXR等充当信号分子,从而调控人体糖脂代谢以及能量消耗 [27] 。

5.5. 改变胆碱代谢过程

人体大概70%的胆碱是由日常饮食中提供的,而剩余部分则在体内合成。在肝脏中,胆碱通过促进脂质运输防止脂质的异常沉积 [28] 。胆碱量的多少是由日常饮食中的含量以及通过肠道菌群的代谢产生的量,缺乏胆碱的饮食会降低极低密度脂蛋白(VLDL)和β-氧化水平,从而导致脂肪酸和胆固醇的沉积、氧化应激以及肝脏的轻微炎症和纤维化。另外,胆碱在肠道中可经菌群作用转化为三甲胺氧化物,这会导致体内胆碱缺乏,进而影响NAFLD [10] 。

5.6. 产生内源性乙醇

NAFLD的诊断标准需除外过量酒精的摄入,但在一项临床实验中发现,NASH患者在没有摄入酒精及含酒精的食物和饮料时,其血清中酒精浓度升高并且相关菌群丰度(如大肠杆菌)也有显著增加,这表明内源性乙醇的生成可能会加剧肝脏的氧化应激和炎症的发生 [29] 。而且乙醇在肝脏中会经乙醇脱氢酶作用代谢为乙醛,导致肝细胞结构和功能丧失。另外大剂量的酒精会通过诱发肠道炎症,导致肠道通透性受损,进一步导致肝损伤 [30] 。

6. 肠道菌群作为治疗靶点在NAFLD中的作用

目前大量实验研究通过使用肠道菌群来治疗NAFLD,包括通过使用抗生素、益生元、益生菌、合生元和粪菌移植进行治疗,这些治疗手段通过抑制或清除入侵细菌及其代谢产物,减少从食物中吸收能量,改善肠道屏障功能,减少内源性乙醇的产生,调节胆汁酸和胆碱代谢来影响NAFLD的易感性 [31] [32] 。

6.1. 抗生素

相关研究评估了使用抗生素治疗NAFLD的效果,在给患者交替使用诺氟沙星和新霉素治疗半年后,改善了肝硬化患者的肝功和肠道细菌过度生长的情况 [33] 。在动物实验中,给予NAFLD小鼠长期口服抗生素治疗后可明显抑制肠道菌群生长并减轻肝脏炎症和纤维化 [34] 。虽然通过使用抗生素治疗NAFLD引起的肠道微生物群的改变可能会减少肝病的进展,但是抗生素耐药性的风险限制了其使用,所以,抗生素的治疗方案还需要进一步的探索和讨论。

6.2. 益生元与合生元

益生元和合生元两者都属于微生态制剂,益生元是一种膳食补充剂,不被宿主消化吸收却能够选择性地促进体内有益菌的代谢和增殖,从而改善宿主健康的有机物质。合生元则是益生菌和益生元的混合制剂。菌群可在益生元刺激下产生短链脂肪酸,这对肠道内的有益菌群(如双歧杆菌、乳酸杆菌)的生长有益并通过降低管腔pH值,从而防止病原菌的生长 [35] 。还可通过刺激胰高血糖素样肽-2 (GLP-2)增加上皮紧密连接蛋白(TJ蛋白)的表达和改善肠道屏障功能来控制内毒素移位 [36] 。相关研究表明,通过益生元与合生元的补充以及生活方式的改变更有益于NAFLD治疗,此外还观察到合生元可减少炎症反应并使腰臀比以及BMI下降 [37] 。总之,上述研究表明益生元和合生元在治疗NAFLD中的有益作用,主要机制之一就是改善了肠道屏障功能。

6.3. 益生菌

益生菌是指活的微生物,在足量使用时有利于宿主。目前常用的益生菌主要包括:双歧杆菌属和乳酸杆菌属。虽然目前其发挥作用的机制还未完全被揭示,但大量的动物实验以及临床试验表明,服用益生菌后NAFLD得到了改善。研究发现与安慰剂组相比,NAFLD儿童患者在使用益生菌治疗12周后,患儿的肝酶、甘油三酯和胆固醇都有了显著降低 [38] 。在给NAFLD小鼠使用干酪乳杆菌菌株(LcS)治疗后可以发现小鼠的血清脂肪酶(LPS)浓度明显下降,从而抑制了NASH发展 [39] 。因此,使用LcS可以调节肠道微生物群,从而改善肝脏炎症。此外降低炎症反应对减缓NAFLD病情进展具有重要意义。一种基于约氏杆菌BS15的益生菌制剂已经被证明可以通过下调肝脏炎症因子(如TNF-α),减少肝脏脂肪变性和肝细胞凋亡的风险 [40] 。SCFA中的丁酸被认为具有抗肥胖作用,乳酸菌和双歧杆菌的联合使用可提高丁酸的水平,从而减少肥胖和炎症反应,借此改善NAFLD [41] [42] 。综上研究都证实了相关益生菌可以对NAFLD产生有益的影响。

6.4. 粪菌移植

粪菌移植(FMT)是指将含有肠道细菌的粪便从健康供体转移到患者体内,以重新建立平衡的肠道菌群组成。粪菌移植目前已被证明可有效治愈艰难梭菌感染,并在包括代谢功能紊乱在内的非胃肠道疾病中有着广泛应用。有研究表明,经过FMT治疗后的HFD小鼠,可发现其肝内的脂质堆积及血清转氨酶的水平都有了明显的下降,并且肝细胞的炎症反应也有显著的降低。此实验说明通过FMT治疗对HFD导致的代谢功能紊乱有着显著的改善作用 [43] 。但是还未有与NAFLD相关的FMT治疗的临床试验,因此FMT在治疗NAFLD中潜力还有待验证。

7. 总结与展望

随着近些年来NAFLD发病率的快速增长,严重影响着我国国民经济与人民生活水平,所以迫切需要针对NAFLD有效的预防和治疗方法。大量动物试验以及临床试验研究表明益生菌可通过调节脂质代谢、维持肠道屏障功能、减少肝细胞内脂质异常堆积以及减缓炎症反应来改善NAFLD的病情进展。将来应在肠道菌群方面研发新的治疗方案,以改善NAFLD的管理。

NOTES

*通讯作者。

参考文献

[1] 施军平, 范建高. 脂肪性肝病诊疗规范化的专家建议(2019年修订版) [J]. 实用肝脏病杂志, 2019, 22(6): 787-792.
[2] Roychowdhury, S., Selvakumar, P.C. and Cresci, G.A.M. (2018) The Role of the Gut Microbiome in Nonalcoholic Fatty Liver Disease. Medical Sciences (Basel, Switzerland), 6, Article No. 47.
https://doi.org/10.3390/medsci6020047
[3] Ma, J., et al. (2017) Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy. Nutrients, 9, Article No. 1124.
https://doi.org/10.3390/nu9101124
[4] 中华医学会内分泌学分会. 非酒精性脂肪性肝病与相关代谢紊乱诊疗共识(第二版) [J]. 临床肝胆病杂志, 2018, 34(10): 2103-2108.
[5] Kefala, G. and Tziomalos, K. (2019) Apoptosis Signal-Regulating Kinase-1 as a Therapeutic Target in Nonalcoholic Fatty Liver Disease. Expert Review of Gastroenter-ology & Hepatology, 13, 189-191.
https://doi.org/10.1080/17474124.2019.1570136
[6] Safari, Z. and Gérard, P. (2019) The Links between the Gut Microbiome and Non-Alcoholic Fatty Liver Disease (NAFLD). Cellular and Molecular Life Sciences: CMLS, 76, 1541-1558.
https://doi.org/10.1007/s00018-019-03011-w
[7] Jasirwan, C.O.M., et al. (2016) The Role of the Gut Microbiota in NAFLD. Nature Reviews Gastroenterology & Hepatology, 13, 412-425.
https://doi.org/10.1038/nrgastro.2016.85
[8] Jandhyala, S.M., Talukdar, R., Subramanyam, C., et al. (2015) Role of the Normal Gut Microbiota. World Journal of Gastroenterology, 21, 8787-8803.
https://doi.org/10.3748/wjg.v21.i29.8787
[9] Ley, R.E., Turnbaugh, P.J., Klein, S., et al. (2006) Microbial Ecolo-gy: Human Gut Microbes Associated with Obesity. Nature, 444, 1022-1023.
https://doi.org/10.1038/4441022a
[10] Wang, Z., Klipfell, E., Bennett, B.J., et al. (2011) Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature, 472, 57-63.
https://doi.org/10.1038/nature09922
[11] Ley, R.E. (2010) Obesity and the Human Microbiome. Current Opinion in Gastroenterology, 26, 5-11.
https://doi.org/10.1097/MOG.0b013e328333d751
[12] Qin, J., Li, Y., Cai, Z., et al. (2012) A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature, 490, 55-60.
https://doi.org/10.1038/nature11450
[13] Murphy, E.F., Cotter, P.D., Hogan, A., et al. (2013) Divergent Metabolic Outcomes Arising from Targeted Manipulation of the Gut Microbiota in Diet-Induced Obesity. Gut, 62, 220-226.
https://doi.org/10.1136/gutjnl-2011-300705
[14] De Minicis, S., Rychlicki, C., Agostinelli, L., et al. (2014) Dysbiosis Contributes to Fibrogenesis in the Course of Chronic Liver Injury in Mice. Hepatology, 59, 1738-1749.
https://doi.org/10.1002/hep.26695
[15] Le Roy, T., Llopis, M., Lepage, P., et al. (2013) Intestinal Microbiota De-termines Development of Non-Alcoholic Fatty Liver Disease in Mice. Gut, 62, 1787-1794.
https://doi.org/10.1136/gutjnl-2012-303816
[16] Macpherson, A.J., et al. (2016) The Liver at the Nexus of Host-Microbial Interactions. Cell Host & Microbe, 20, 561-571.
https://doi.org/10.1016/j.chom.2016.10.016
[17] Li, F., Duan, K., Wang, C., et al. (2016) Probiotics and Alcoholic Liver Disease: Treatment and Potential Mechanisms. Gastroenterology Research and Practice, 2016, Article ID: 5491465.
https://doi.org/10.1155/2016/5491465
[18] Brown, C.T., Sharon, I., Thomas, B.C., et al. (2013) Genome Resolved Analysis of a Premature Infant Gut Microbial Community Reveals a Varibaculum Cambriense Genome and a Shift towards Fermentation-Based Metabolism during the Third Week of Life. Microbiome, 1, 30.
https://doi.org/10.1186/2049-2618-1-30
[19] The Human Microbiome Project Consortium (2012) Structure, Func-tion and Diversity of the Healthy Human Microbiome. Nature, 486, 207-214.
https://doi.org/10.1038/nature11234
[20] Paolella, G., Mandato, C., Pierri, L., et al. (2014) Gut-Liver Axis and Probiotics: Their Role in Non-Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 15518-15531.
https://doi.org/10.3748/wjg.v20.i42.15518
[21] Miura, K., Kodama, Y., Inokuchi, S., et al. (2010) Toll-Like Re-ceptor 9 Promotes Steatohepatitis by Induction of Interleukin-1beta in Mice. Gastroenterology, 139, 323-234.e7.
https://doi.org/10.1053/j.gastro.2010.03.052
[22] Krajmalnik-Brown, R., et al. (2012) Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutrition in Clinical Practice: Official Publication of the American Society for Parenteral and Enteral Nutrition, 27, 201-214.
https://doi.org/10.1177/0884533611436116
[23] Bäckhed, F., et al. (2004) The Gut Microbiota as an Environmen-tal Factor That Regulates Fat Storage. Proceedings of the National Academy of Sciences of the United States of America, 101, 15718-15723.
https://doi.org/10.1073/pnas.0407076101
[24] Ge, H., et al. (2008) Activation of G Protein-Coupled Receptor 43 in Adipocytes Leads to Inhibition of Lipolysis and Suppression of Plasma Free Fatty Acids. Endocrinology, 149, 4519-4526.
https://doi.org/10.1210/en.2008-0059
[25] Lorenzo-Zúñiga, V., et al. (2003) Oral Bile Acids Reduce Bacterial Overgrowth, Bacterial Translocation, and Endotoxemia in Cirrhotic Rats. Hepatology (Baltimore, Md), 37, 551-557.
https://doi.org/10.1053/jhep.2003.50116
[26] Ogata, Y., Nishi, M., Nakayama, H., et al. (2003) Role of Bile in Intestinal Barrier Function and Its Inhibitory Effect on Bacterial Translocation in Obstructive Jaundice in Rats. Journal of Surgical Research, 115, 18-23.
https://doi.org/10.1016/S0022-4804(03)00308-1
[27] Kazankov, K., Jørgensen, S.M.D., Thomsen, K.L., et al. (2019) The Role of Macrophages in Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Nature Reviews Gastroenterology & Hepatology, 16, 145-159.
https://doi.org/10.1038/s41575-018-0082-x
[28] Corbin, K.D. and Zeisel, S.H. (2012) Choline Metabolism Pro-vides Novel Insights into Nonalcoholic Fatty Liver Disease and Its Progression. Current Opinion in Gastroenterology, 28, 159-165.
https://doi.org/10.1097/MOG.0b013e32834e7b4b
[29] Zhu, L., Baker, S.S., Gill, C., et al. (2013) Characterization of Gut Microbiomes in Nonalcoholic Steatohepatitis (NASH) Patients: A Connection between Endogenous Alcohol and NASH. Hepatology, 57, 601-609.
https://doi.org/10.1002/hep.26093
[30] Rao, R.K., Seth, A. and Sheth, P. (2004) Recent Advances in Alcoholic Liver Disease I. Role of Intestinal Permeability and Endotoxemia in Alcoholic Liver Disease. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 286, G881-G884.
https://doi.org/10.1152/ajpgi.00006.2004
[31] Ferolla, S.M., Armiliato, G.N., Couto, C.A., et al. (2015) Probiotics as a Complementary Therapeutic Approach in Nonalcoholic Fatty Liver Disease. World Journal of Hepatology, 7, 559-565.
https://doi.org/10.4254/wjh.v7.i3.559
[32] Tarantino, G. and Finelli, C. (2015) Systematic Review on In-tervention with Prebiotics/Probiotics in Patients with Obesity-Related Nonalcoholic Fatty Liver Disease. Future Microbi-ology, 10, 889-902.
https://doi.org/10.2217/fmb.15.13
[33] Madrid, A.M., Hurtado, C., Venegas, M., et al. (2001) Long-Term Treatment with Cisapride and Antibiotics in Liver Cirrhosis: Effect on Small Intestinal Motility, Bacterial Overgrowth, and Liver Function. American Journal of Gastroenterology, 96, 1251-1255.
https://doi.org/10.1111/j.1572-0241.2001.03636.x
[34] Janssen, A.W.F., Houben, T., Katiraei, S., et al. (2017) Modulation of the Gut Microbiota Impacts Nonalcoholic Fatty Liver Disease: A Potential Role for Bile Acids. Journal of Lipid Research, 58, 1399-1416.
https://doi.org/10.1194/jlr.M075713
[35] Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., et al. (2019) Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8, 92.
https://doi.org/10.3390/foods8030092
[36] Pachikian, B.D., Essaghir, A., Demoulin, J.B., et al. (2013) Prebiotic Approach Alleviates Hepatic Steatosis: Implication of Fatty Acid Oxidative and Cholesterol Synthesis Pathways. Molec-ular Nutrition & Food Research, 57, 347-359.
https://doi.org/10.1002/mnfr.201200364
[37] Ferolla, S.M., Couto, C.A., Costa-Silva, L., et al. (2016) Beneficial Effect of Synbiotic Supplementation on Hepatic Steatosis and Anthropometric Parameters, But Not on Gut Permeability in a Population with Nonalcoholic Steatohepatitis. Nutrients, 8, 397.
https://doi.org/10.3390/nu8070397
[38] Famouri, F., Shariat, Z., Hashemipour, M., et al. (2017) Effects of Probi-otics on Nonalcoholic Fatty Liver Disease in Obese Children and Adolescents. Journal of Pediatric Gastroenterology and Nutrition, 64, 413-417.
https://doi.org/10.1097/MPG.0000000000001422
[39] Okubo, H., Sakoda, H., Kushiyama, A., et al. (2013) Lac-tobacillus casei Strain Shirota Protects against Nonalcoholic Steatohepatitis Development in a Rodent Model. The Amer-ican Journal of Physiology-Gastrointestinal and Liver Physiology, 305, G911-G918.
https://doi.org/10.1152/ajpgi.00225.2013
[40] Xin, J., Zeng, D., Wang, H., et al. (2014) Preventing Non-Alcoholic Fatty Liver Disease through Lactobacillus johnsonii BS15 by Attenuating Inflammation and Mitochondrial Injury and Improving Gut Environment in Obese Mice. Applied Microbiology and Biotechnology, 98, 6817-6829.
https://doi.org/10.1007/s00253-014-5752-1
[41] Nobili, V., Mosca, A., Alterio, T., et al. (2019) Fighting Fatty Liver Diseases with Nutritional Interventions, Probiotics, Symbiotics, and Fecal Microbiota Transplantation (FMT). Ad-vances in Experimental Medicine and Biology, 1125, 85-100.
https://doi.org/10.1007/5584_2018_318
[42] Liang, Y., Lin, C., Zhang, Y., et al. (2018) Probiotic Mixture of Lactobacillus and Bifidobacterium Alleviates Systemic Adipos-ity and Inflammation in Non-Alcoholic Fatty Liver Disease Rats through Gpr109a and the Commensal Metabolite Butyr-ate. Inflammopharmacology, 26, 1051-1055.
https://doi.org/10.1007/s10787-018-0479-8
[43] Zhou, D., Pan, Q., Shen, F., et al. (2017) Total Fecal Microbiota Transplantation Alleviates High-Fat Diet-Induced Steatohepatitis in Mice via Beneficial Regulation of Gut Microbiota. Scientific Reports, 7, Article No. 1529.
https://doi.org/10.1038/s41598-017-01751-y