[1]
|
Madonna, R., Pieragostino, D., Balistreri, C.R., et al. (2018) Diabetic Macroangiopathy: Pathogenetic Insights and Novel Therapeutic Approaches with Focus on High Glucose-Mediated Vascular Damage. Vascular Pharmacology, 107, 27-34.
https://doi.org/10.1016/j.vph.2018.01.009
|
[2]
|
Fang, Z., Hu, X., Chen, Z., et al. (2020) Radix Pseudostellariae of Danzhi Jiangtang Capsule Relieves Oxidative Stress of Vascular Endothelium in Diabetic Macroangiopathy. Saudi Pharmaceutical Journal, 28, 683-691.
https://doi.org/10.1016/j.jsps.2020.04.009
|
[3]
|
Zhang, J.M., Yu, R.Q., Wu, F.Z., et al. (2021) BMP-2 Alleviates Heart Failure with Type 2 Diabetes Mellitus and Doxorubicin-Induced AC16 Cell Injury by Inhibiting NLRP3 Inflam-masome-Mediated Pyroptosis. Experimental and Therapeutic Medicine, 22, Article No. 897. https://doi.org/10.3892/etm.2021.10329
|
[4]
|
Sargazi, S., Ravanbakhsh, M., Nia, M.H., et al. (2022) Association of Polymorphisms within HOX Transcript Antisense RNA (HOTAIR) with Type 2 Diabetes Mellitus and Laboratory Characteristics: A Preliminary Case-Control Study. Disease Markers, 2022, Article ID: 4327342. https://doi.org/10.1155/2022/4327342
|
[5]
|
Fluitt, M.B., Mohit, N., Gambhir, K.K., et al. (2022) To the Future: The Role of Exosome-Derived MicroRNAs as Markers, Mediators, and Therapies for Endothelial Dysfunction in Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2022, Article ID: 5126968. https://doi.org/10.1155/2022/5126968
|
[6]
|
Liu, X., Zhang, Y., Liang, H., et al. (2020) MicroRNA-499-3p Inhibits Proliferation and Promotes Apoptosis of Retinal Cells in Diabetic Retinopathy through Activation of the TLR4 Signaling Pathway by Targeting IFNA2. Gene, 741, Article ID: 144539. https://doi.org/10.1016/j.gene.2020.144539
|
[7]
|
Rai, A.K., Lee, B., Gomez, R., et al. (2020) Current Status and Potential Therapeutic Strategies for Using Non-Coding RNA to Treat Diabetic Cardiomyopathy. Frontiers in Physiology, 11, Article ID: 612722.
https://doi.org/10.3389/fphys.2020.612722
|
[8]
|
Gong, Y.P., Zhang, Y.W., Su, X.Q., et al. (2020) Inhibition of Long Noncoding RNA MALAT1 Suppresses High Glucose-Induced Apoptosis and Inflammation in Human Umbilical Vein Endothelial Cells by Suppressing the NF-κB Signaling Pathway. Biochemistry and Cell Biology, 98, 669-675. https://doi.org/10.1139/bcb-2019-0403
|
[9]
|
Chen, L., Hu, L., Zhu, X., et al. (2020) MALAT1 Overexpression At-tenuates AS by Inhibiting Ox-LDL-Stimulated Dendritic Cell Maturation Via MiR-155-5p/NFIA Axis. Cell Cycle, 19, 2472-2485.
https://doi.org/10.1080/15384101.2020.1807094
|
[10]
|
Hu, Y. and Hu, J. (2019) Diagnostic Value of Circulating LncRNA ANRIL and Its Correlation with Coronary Artery Disease Parameters. Brazilian Journal of Medical and Bio-logical Research, 52, Article No. E8309.
https://doi.org/10.1590/1414-431x20198309
|
[11]
|
Liu, X., Li, S., Yang, Y., et al. (2021) The LncRNA ANRIL Regulates Endothelial Dysfunction by Targeting the Let-7b/TGF-BetaR1 Signalling Pathway. Journal of Cellular Physi-ology, 236, 2058-2069.
https://doi.org/10.1002/jcp.29993
|
[12]
|
Barber, J.L., Zellars, K.N., Barringhaus, K.G., et al. (2019) The Effects of Regular Exercise on Circulating Cardiovascular-Related MicroRNAs. Scientific Reports, 9, Article No. 7527. https://doi.org/10.1038/s41598-019-43978-x
|
[13]
|
Li, Z., Jiang, R., Yue, Q., et al. (2017) MicroRNA-29 Regulates Myocardial Microvascular Endothelial Cells Proliferation and Migration in Association with IGF1 in Type 2 Diabetes. Biochemical and Biophysical Research Communications, 487, 15-21. https://doi.org/10.1016/j.bbrc.2017.03.055
|
[14]
|
王磊, 王红娜, 祖晓麟. 血浆miR-126水平与冠状动脉慢血流现象的关系[J]. 中华医学杂志, 2019, 99(17): 1323-1327.
|
[15]
|
Rawal, S., Munasinghe, P.E., Shindikar, A., et al. (2017) Down-Regulation of Proangiogenic MicroRNA-126 and MicroRNA-132 Are Early Modulators of Diabetic Car-diac Microangiopathy. Cardiovascular Research, 113, 90-101.
https://doi.org/10.1093/cvr/cvw235
|
[16]
|
Seleem, M., Shabayek, M. and Ewida, H.A. (2019) MicroRNAs 342 and 450 Together with NOX-4 Activity and Their Association with Coronary Artery Disease in Diabetes. Diabe-tes/Metabolism Research and Reviews, 35, Article No. E3130. https://doi.org/10.1002/dmrr.3130
|
[17]
|
Zhou, B. and Yu, J.W. (2017) A Novel Identified Circular RNA, CircRNA_010567, Promotes Myocardial Fibrosis Via Suppressing MiR-141 by Targeting TGF-Beta1. Biochemical and Biophysical Research Communications, 487, 769-775.
https://doi.org/10.1016/j.bbrc.2017.04.044
|
[18]
|
Yang, F., Li, A., Qin, Y., et al. (2019) A Novel Circular RNA Mediates Pyroptosis of Diabetic Cardiomyopathy by Functioning as a Competing Endogenous RNA. Molecular Therapy - Nucleic Acids, 17, 636-643.
https://doi.org/10.1016/j.omtn.2019.06.026
|
[19]
|
Tang, C.M., Zhang, M., Huang, L., et al. (2017) CircR-NA_000203 Enhances the Expression of Fibrosis-Associated Genes by Derepressing Targets of MiR-26b-5p, Col1a2 and CTGF, in Cardiac Fibroblasts. Scientific Reports, 7, Article No. 40342. https://doi.org/10.1038/srep40342
|
[20]
|
Xu, H., Guo, S., Li, W., et al. (2015) The Circular RNA Cdr1as, Via MiR-7 and Its Targets, Regulates Insulin Transcription and Secretion in Islet Cells. Scientific Reports, 5, Article No. 12453. https://doi.org/10.1038/srep12453
|
[21]
|
Li, C., Zhao, L., Jiang, W., et al. (2018) Correct Microarray Analy-sis Approaches in ‘Hsa-CircRNA11783-2 in Peripheral Blood Is Correlated with Coronary Artery Disease and Type 2 Diabetes Mellitus’. Diabetes and Vascular Disease Research, 15, 92-93. https://doi.org/10.1177/1479164117739435
|
[22]
|
Kapustin, A.N. and Shanahan, C.M. (2016) Emerging Roles for Vascular Smooth Muscle Cell Exosomes in Calcification and Coagulation. The Journal of Physiology, 594, 2905-2914. https://doi.org/10.1113/JP271340
|
[23]
|
Akbar, N., Azzimato, V., Choudhury, R.P., et al. (2019) Extracellular Vesi-cles in Metabolic Disease. Diabetologia, 62, 2179-2187. https://doi.org/10.1007/s00125-019-05014-5
|
[24]
|
O’Neill, S., Bohl, M., Gregersen, S., et al. (2016) Blood-Based Biomarkers for Metabolic Syndrome. Trends in Endocrinology and Metabolism, 27, 363-374. https://doi.org/10.1016/j.tem.2016.03.012
|
[25]
|
赵敏, 冯柳祥, 陈垚, 等. 低氧环境下外泌体可作为疾病的标志物[J]. 中国组织工程研究, 2021, 25(7): 1104-1108.
|
[26]
|
Wang, F., Chen, F.F., Shang, Y.Y., et al. (2018) Insulin Resistance Adipocyte-Derived Exosomes Aggravate Atherosclerosis by Increasing Vasa Vasorum Angiogenesis in Diabetic ApoE(−/−) Mice. International Journal of Cardiology, 265, 181-187. https://doi.org/10.1016/j.ijcard.2018.04.028
|
[27]
|
Freeman, D.W., Noren, H.N., Eitan, E., et al. (2018) Altered Ex-tracellular Vesicle Concentration, Cargo, and Function in Diabetes. Diabetes, 67, 2377-2388. https://doi.org/10.2337/db17-1308
|
[28]
|
Salimi, L., Akbari, A., Jabbari, N., et al. (2020) Synergies in Exosomes and Autophagy Pathways for Cellular Homeostasis and Metastasis of Tumor Cells. Cell & Bioscience, 10, Article No. 64.
https://doi.org/10.1186/s13578-020-00426-y
|
[29]
|
Guo, H., Chitiprolu, M., Roncevic, L., et al. (2017) Atg5 Disas-sociates the V1V0-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroau-tophagy. Developmental Cell, 43, 716-730.E7.
https://doi.org/10.1016/j.devcel.2017.11.018
|
[30]
|
Martinez, J., Malireddi, R.K., Lu, Q., et al. (2015) Molecular Characterization of LC3-Associated Phagocytosis Reveals Distinct Roles for Rubicon, NOX2 and Autophagy Proteins. Nature Cell Biology, 17, 893-906.
https://doi.org/10.1038/ncb3192
|
[31]
|
Murrow, L., Malhotra, R. and Debnath, J. (2015) ATG12-ATG3 Interacts with Alix to Promote Basal Autophagic Flux and Late Endosome Function. Nature Cell Biology, 17, 300-310. https://doi.org/10.1038/ncb3112
|
[32]
|
Cheng, Z. (2019) The FoxO-Autophagy Axis in Health and Disease. Trends in Endocrinology and Metabolism, 30, 658-671. https://doi.org/10.1016/j.tem.2019.07.009
|
[33]
|
Lim, H., Lim, Y.M., Kim, K.H., et al. (2018) A Novel Autophagy Enhancer as a Therapeutic Agent against Metabolic Syndrome and Diabetes. Nature Communications, 9, Article No. 1438. https://doi.org/10.1038/s41467-018-03939-w
|
[34]
|
Kim, K.H. and Lee, M.S. (2014) Autophagy—A Key Player in Cellular and Body Metabolism. Nature Reviews Endocrinology, 10, 322-337. https://doi.org/10.1038/nrendo.2014.35
|
[35]
|
Zhang, H., Liu, J., Qu, D., et al. (2018) Serum Exo-somes Mediate Delivery of Arginase 1 as a Novel Mechanism for Endothelial Dysfunction in Diabetes. Proceedings of the National Academy of Sciences of the United States of America, 115, E6927-E6936. https://doi.org/10.1073/pnas.1721521115
|
[36]
|
Zhu, J., Liu, B., Wang, Z., et al. (2019) Exosomes from Nico-tine-Stimulated Macrophages Accelerate Atherosclerosis through MiR-21-3p/PTEN-Mediated VSMC Migration and Proliferation. Theranostics, 9, 6901-6919.
https://doi.org/10.7150/thno.37357
|
[37]
|
Bouchareychas, L., Duong, P., Covarrubias, S., et al. (2020) Macrophage Exosomes Resolve Atherosclerosis by Regulating Hematopoiesis and Inflammation Via MicroRNA Cargo. Cell Reports, 32, Article ID: 107881.
https://doi.org/10.1016/j.celrep.2020.107881
|
[38]
|
Xu, F., Zhong, J.Y., Lin, X., et al. (2020) Melatonin Alleviates Vascular Calcification and Ageing through Exosomal MiR-204/miR-211 Cluster in a Paracrine Manner. Journal of Pine-al Research, 68, Article No. E12631.
https://doi.org/10.1111/jpi.12631
|
[39]
|
Komaki, M., Numata, Y., Morioka, C., et al. (2017) Exosomes of Human Placenta-Derived Mesenchymal Stem Cells Stimulate Angiogenesis. Stem Cell Research & Therapy, 8, Article No. 219.
https://doi.org/10.1186/s13287-017-0660-9
|
[40]
|
Zhang, J., Xia, L., Zhang, F., et al. (2017) A Novel Mechanism of Diabetic Vascular Endothelial Dysfunction: Hypoadiponectinemia-Induced NLRP3 Inflammasome Activation. Bio-chimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863, 1556-1567. https://doi.org/10.1016/j.bbadis.2017.02.012
|
[41]
|
Shin, J.J., Lee, E.K., Park, T.J., et al. (2015) Damage-Associated Molecular Patterns and Their Pathological Relevance in Diabetes Mellitus. Ageing Research Reviews, 24, 66-76. https://doi.org/10.1016/j.arr.2015.06.004
|
[42]
|
Chen, Y., Wang, L., Pitzer, A.L., et al. (2016) Contribution of Re-dox-Dependent Activation of Endothelial Nlrp3 Inflammasomes to Hyperglycemia-Induced Endothelial Dysfunction. Journal of Molecular Medicine, 94, 1335-1347.
https://doi.org/10.1007/s00109-016-1481-5
|
[43]
|
Ferreira, N.S., Bruder-Nascimento, T., Pereira, C.A., et al. (2019) NLRP3 Inflammasome and Mineralocorticoid Receptors Are Associated with Vascular Dysfunction in Type 2 Diabetes Mellitus. Cells, 8, Article No. 1595.
https://doi.org/10.3390/cells8121595
|
[44]
|
Kelley, N., Jeltema, D., Duan, Y., et al. (2019) The NLRP3 Inflam-masome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 20, Article No. 3328.
https://doi.org/10.3390/ijms20133328
|
[45]
|
Sun, L., Chen, S., Gao, H., et al. (2017) Visfatin Induces the Apoptosis of Endothelial Progenitor Cells Via the Induction of Pro-Inflammatory Mediators through the NF-KappaB Pathway. In-ternational Journal of Molecular Medicine, 40, 637-646. https://doi.org/10.3892/ijmm.2017.3048
|
[46]
|
Romacho, T., Valencia, I., Ramos-Gonzalez, M., et al. (2020) Visfatin/eNampt Induces Endothelial Dysfunction in Vivo: A Role for Toll-Like Receptor 4 and NLRP3 Inflammasome. Scientific Reports, 10, Article No. 5386.
https://doi.org/10.1038/s41598-020-62190-w
|
[47]
|
Xia, X., Shi, Q., Song, X., et al. (2016) Tetrachlorobenzoqui-none Stimulates NLRP3 Inflammasome-Mediated Post- Translational Activation and Secretion of IL-1beta in the HUVEC Endothelial Cell Line. Chemical Research in Toxicology, 29, 421-429. https://doi.org/10.1021/acs.chemrestox.6b00021
|
[48]
|
Xia, X., Lu, B., Dong, W., et al. (2018) Atypical Gasdermin D and Mixed Lineage Kinase Domain-Like Protein Leakage Aggravates Tetrachlorobenzoquinone-Induced Nod-Like Receptor Protein 3 Inflammasome Activation. Chemical Research in Toxicology, 31, 1418-1425. https://doi.org/10.1021/acs.chemrestox.8b00306
|
[49]
|
Blanco, F., Heinonen, S.E., Gurzeler, E., et al. (2018) in Vivo Inhibition of Nuclear Factor of Activated T-Cells Leads to Atherosclerotic Plaque Regression in IGF-II/LDLR−/− ApoB100/100 Mice. Diabetes and Vascular Disease Research, 15, 302-313. https://doi.org/10.1177/1479164118759220
|
[50]
|
Zetterqvist, A.V., Berglund, L.M., Blanco, F., et al. (2014) Inhi-bition of Nuclear Factor of Activated T-Cells (NFAT) Suppresses Accelerated Atherosclerosis in Diabetic Mice. PLOS ONE, 8, Article ID: e65020.
https://doi.org/10.1371/journal.pone.0065020
|
[51]
|
Liu, Z., Zhu, H., Ma, Y., et al. (2021) AGEs Exacerbates Coro-nary Microvascular Dysfunction in NoCAD by Activating Endoplasmic Reticulum Stress-Mediated PERK Signaling Pathway. Metabolism, 117, Article ID: 154710.
https://doi.org/10.1016/j.metabol.2021.154710
|
[52]
|
Liu, X., Guo, J.W., Lin, X.C., et al. (2021) Macrophage NFATc3 Prevents Foam Cell Formation and Atherosclerosis: Evidence and Mechanisms. European Heart Journal, 42, 4847-4861. https://doi.org/10.1093/eurheartj/ehab660
|
[53]
|
Luo, Y., Jiang, N., May, H.I., et al. (2021) Cooperative Binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy. Cir-culation, 144, 34-51.
https://doi.org/10.1161/CIRCULATIONAHA.120.052384
|
[54]
|
Govatati, S., Pichavaram, P., Janjanam, J., et al. (2019) NFATc1-E2F1-LMCD1-Mediated IL-33 Expression by Thrombin Is Required for Injury-Induced Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 1212-1226. https://doi.org/10.1161/ATVBAHA.119.312729
|
[55]
|
He, X., Liu, J., Gu, F., et al. (2022) Cardiac CIP Protein Regulates Dystrophic Cardiomyopathy. Molecular Therapy, 30, 898-914. https://doi.org/10.1016/j.ymthe.2021.08.022
|
[56]
|
Perera, N., Ritchie, R.H., Tate, M. (2020) The Role of Bone Morphogenetic Proteins in Diabetic Complications. ACS Pharmacology & Translational Science, 3, 11-20. https://doi.org/10.1021/acsptsci.9b00064
|
[57]
|
Yung, L.M., Sanchez-Duffhues, G., Ten, D.P., et al. (2015) Bone Morphogenetic Protein 6 and Oxidized Low-Density Lipoprotein Synergistically Recruit Osteogenic Differentiation in Endothelial Cells. Cardiovascular Research, 108, 278-287. https://doi.org/10.1093/cvr/cvv221
|
[58]
|
Scimeca, M., Anemona, L., Granaglia, A., et al. (2019) Plaque Calcification Is Driven by Different Mechanisms of Mineralization As-sociated with Specific Cardiovascular Risk Factors. Nutrition, Metabolism and Cardiovascular Diseases, 29, 1330-1336. https://doi.org/10.1016/j.numecd.2019.08.009
|
[59]
|
Zhang, M., Sara, J.D., Wang, F.L., et al. (2015) Increased Plasma BMP-2 Levels Are Associated with Atherosclerosis Burden and Coronary Calcification in Type 2 Diabetic Pa-tients. Cardiovascular Diabetology, 14, Article No. 64.
https://doi.org/10.1186/s12933-015-0214-3
|
[60]
|
Sanchez-Duffhues, G., De Vinuesa, A.G., Lindeman, J.H., et al. (2015) SLUG Is Expressed in Endothelial Cells Lacking Primary Cilia to Promote Cellular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 616-627.
https://doi.org/10.1161/ATVBAHA.115.305268
|
[61]
|
Sanchez-Duffhues, G., Garcia, D.V.A., Van De Pol, V., et al. (2019) Inflammation Induces Endothelial-To-Mesenchymal Transition and Promotes Vascular Calcification through Downregulation of BMPR2. The Journal of Pathology, 247, 333-346. https://doi.org/10.1002/path.5193
|