H-张量的新判定准则及其应用
New Criterions for H-Tensors and Its Applications
DOI: 10.12677/AAM.2022.118604, PDF, HTML, XML, 下载: 187  浏览: 264  科研立项经费支持
作者: 赵鹏程:贵州民族大学数据科学与信息工程学院,贵州 贵阳
关键词: H-张量齐次多项式正定性不可约非零元素链H-Tensors Homogeneous Multivariate Forms Positive Definiteness Irreducible Nonzero Elements Chain
摘要: H-张量在科学与工程实践等领域中有着重要的应用,但在实际中要判定H-张量是比较困难的。本文通过构造不同的正对角阵,结合不等式的放缩技巧,给出了H-张量比较实用的新判别条件。作为应用,给出了判定偶次齐次多项式正定性的新方法,并给出相应的数值算例,表明了新结论的有效性。
Abstract: H-tensors have important applications in science and engineering, but it is difficult to determine whether a given tensor is an H-tensor or not in practice. In this paper, by constructing different pos-itive diagonal matrices and combining the technique of inequality reduction, new practical condi-tions for H-tensors are given. As applications, new methods for determining the positive definite-ness of even homogeneous polynomials are presented, and the validity of new results is verified by some numerical examples.
文章引用:赵鹏程. H-张量的新判定准则及其应用[J]. 应用数学进展, 2022, 11(8): 5727-5736. https://doi.org/10.12677/AAM.2022.118604

1. 引言

张量是高阶广义矩阵,广泛应用于信号和图像处理、高阶统计学、自动控制、医学成像、超图理论、弹性材料科学和工程研究与数据分析等领域中。近年来,许多专家学者对一般张量 [1] - [6] 或特殊结构张量的理论、性质及应用进行了广泛探讨 [7] - [18]。本文继续讨论H-张量的判定问题,得到了只与张量元素有关的新判别不等式,拓广了文献 [11] [14] [15] [16] 的结果。同时,获得了偶数阶实对称张量,即偶数阶齐次多项式正定性的新判定条件。最后,利用数值算例说明了新条件的有效性。

2. 预备知识

C ( R ) 为复(实)数集, N = [ n ] = { 1 , 2 , , n } 。一个m阶n维张量 A = ( a i 1 i 2 i m ) n m 个元素构成,其中 a i 1 i 2 i m C i j N j [ m ] [3] [4]。若 a i 1 i 2 i m = a π ( i 1 i 2 i m ) π Π m ,则称 A = ( a i 1 i 2 i m ) 为对称张量 [5],其中 Π m 为m个指标的置换群。称张量 I = ( δ i 1 i 2 i m ) 为单位张量 [5],若

δ i 1 i 2 i m = { 1 , i 1 = i 2 = = i m , 0 , .

f ( x ) = i 1 , , i m [ n ] a i 1 i 2 i m x i 1 x i m > 0 x = ( x 1 , x 2 , , x n ) T R n x 0

则称m阶n次齐次多项式 f ( x ) 是正定的 [3]。 f ( x ) 也可以表示为m阶n维对称张量 A x m 的乘积,如下

f ( x ) = A x m = i 1 , , i m [ n ] a i 1 i 2 i m x i 1 x i m .

f ( x ) 是正定的,则对称张量 A 也是正定的 [3]。

定义1 [8] 设 A = ( a i 1 i 2 i m ) 是m阶n维张量,若存在正向量 x = ( x 1 , x 2 , , x n ) T R n ,满足

| a i i i | x i m 1 > i 2 , i 3 , , i m [ n ] δ i i 2 i m = 0 | a i i 2 i m | x i 2 x i m i N

则称 A 为H-张量。

定义2 [5] 设 A = ( a i 1 i 2 i m ) 是m阶n维张量,若存在一个非空子集 I N ,满足

a i 1 i 2 i m = 0 i 1 I i 2 , , i m I

则称 A 是可约张量。否则,称 A 是不可约张量。

定义3 [9] 设 A = ( a i 1 i 2 i m ) 是m阶n维张量,若存在指标 k 1 , k 2 , , k r ,满足

i 2 , i 3 , , i m [ n ] δ k s i 2 i m = 0 k s + 1 { i 2 , i 3 , , i m } | a k s i 2 i m | 0 s = 0 , 1 , , r i , j N ( i j )

其中 k 0 = i k r + 1 = j ,则称张量 A 中有一条从指标i到指标j的非零元素链。

3. 主要结果

为讨论方便,给出如下记号:设 A = ( a i 1 i 2 i m ) 是m阶n维张量,令

S m 1 = { i 2 i 3 i m : i j S , j = 2 , 3 , , m }

N m 1 \ S m 1 = { i 2 i 3 i m : i 2 i 3 i m N m 1 i 2 i 3 i m S m 1 }

r i ( A ) = i 2 , , i m [ n ] δ i i 2 i m = 0 | a i i 2 i m | = i 2 , , i m [ n ] | a i i 2 i m | | a i i i |

N 1 = { i N : 0 < | a i i i | = r i ( A ) } N 2 = { i N : 0 < | a i i i | < r i ( A ) }

N 3 = { i N : | a i i i | > r i ( A ) } N 0 m 1 = N m 1 / ( N 2 m 1 N 3 m 1 )

β i = r i ( A ) | a i i i | r i ( A ) M = max i N 2 j N 3 { β i , r j ( A ) | a j j j | }

K = max i N 3 M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i m N 2 m 1 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | r i ( A ) i 2 i m N 3 m 1 δ i i 2 i m = 0 | a i i 2 i m |

R i ( A ) = M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i m N 2 m 1 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + K i 2 i m N 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | ( i N 3 ) .

引理1 [6] 若 A 是严格对角占优的张量,则 A 是H-张量。

引理2 [10] 设 A = ( a i 1 i 2 i m ) 是m阶n维张量。若存在正对角阵 X ,满足 A X m 1 是H-张量,则 A 是H-张量。

引理3 [6] 设 A = ( a i 1 i 2 i m ) 是m阶n维张量且不可约。若

| a i i i | r i ( A ) i N

且上式中至少有一个严格不等式成立,则 A 是H-张量。

引理4 [9] 设 A = ( a i 1 i 2 i m ) 是m阶n维张量。若

1) | a i i i | r i ( A ) i N

2) J ( A ) = { i N : | a i i i | > r i ( A ) }

3) i J ( A ) ,从指标i到指标j有一条非零元素链,满足 j J ( A )

A 是H-张量。

定理1 设 A = ( a i 1 i 2 i m ) 是m阶n维张量。若 A 满足

| a i i i | β i > M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i m N 2 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } { R j ( A ) | a j j j | } | a i i 2 i m | i N 2 (1)

| a i i i | i 2 i m N 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | ( i N 1 ),则 A 是H-张量。

证明:由K的定义知

K | a i i i | M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i m N 2 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 | a i i 2 i m | = R i ( A ) .

因此

K R i ( A ) | a i i i | i N 3 . (2)

由式(1)得,

| a i i i | β i M i 2 i m N 0 m 1 | a i i 2 i m | i 2 i m N 2 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } { R j ( A ) | a j j j | } | a i i 2 i m | > 0 . (3)

R i ( A ) < r i ( A ) M r i ( A ) | a i i i | ( i N 3 ) ,所以

M > R i ( A ) | a i i i | i N 3 . (4)

由(3)式和(4)式得,一定存在足够小的正数 ε ,使得

M > R i ( A ) | a i i i | + ε i N 3 (5)

| a i i i | β i M i 2 i m N 0 m 1 | a i i 2 i m | i 2 i m N 2 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } { R j ( A ) | a j j j | } | a i i 2 i m | > ε i 2 i m N 3 m 1 | a i i 2 i m | i N 2 . (6)

构造正对角阵 X = d i a g ( x 1 , x 2 , , x n ) ,记,其中

x i = M i N 1 x i = β i 1 m 1 i N 2 x i = ( R i ( A ) | a i i i | + ε ) 1 m 1 i N 3 .

M r i ( A ) | a i i i | r i ( A ) ( i N 2 ) M > r i ( A ) | a i i i | + ε ( i N 3 ) ,故对 i N 1

r i ( B ) = i 2 i m N 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | x i 2 x i m + i 2 i 3 i m N 2 m 1 | a i i 2 i m | β i 2 1 m 1 β i m 1 m 1 + i 2 i 3 i m N 3 m 1 | a i i 2 i m | ( R i 2 ( A ) | a i 2 i 2 i 2 | + ε ) 1 m 1 ( R i m ( A ) a i m i m i m + ε ) 1 m 1 M i 2 i m N 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | + i 2 i m N 2 m 1 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } { R j ( A ) | a j j j | + ε } | a i i 2 i m | M i 2 i m N 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | + M i 2 i m N 2 m 1 | a i i 2 i m | + M i 2 i m N 3 m 1 | a i i 2 i m | = M r j ( A ) = M | a i i i | = | b i i i | .

根据(6)式,对 i N 2

r i ( B ) = i 2 i m N 0 m 1 | a i i 2 i m | x i 2 x i m + i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | β i 2 1 m 1 β i m 1 m 1 + i 2 i 3 i m N 3 m 1 | a i i 2 i m | ( R i 2 ( A ) | a i 2 i 2 i 2 | + ε ) 1 m 1 ( R i m ( A ) a i m i m i m + ε ) 1 m 1 M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } R j ( A ) | a j j j | | a i i 2 i m | + ε i 2 i m N 3 m 1 | a i i 2 i m |

< M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } R j ( A ) | a j j j | | a i i 2 i m | + | a i i i | β i M i 2 i m N 0 m 1 | a i i 2 i m | i 2 i m N 2 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } { R j ( A ) | a j j j | } | a i i 2 i m | = | a i i i | β i = | b i i i | .

i N 3 ,由(2)式得

r i ( B ) = i 2 i m N 0 m 1 | a i i 2 i m | x i 2 x i m + i 2 i 3 i m N 2 m 1 | a i i 2 i m | β i 2 1 m 1 β i m 1 m 1 + i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | ( R i 2 ( A ) | a i 2 i 2 i 2 | + ε ) 1 m 1 ( R i m ( A ) a i m i m i m + ε ) 1 m 1 M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i 3 i m N 2 m 1 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } R j ( A ) | a j j j | | a i i 2 i m | + ε i 2 i m N 3 m 1 δ i i 2 i m = 0 | a i i 2 i m |

M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i 3 i m N 2 m 1 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 δ i i 2 i m = 0 K | a i i 2 i m | + ε i 2 i m N 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | = R i ( A ) + ε i 2 i m N 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | < R i ( A ) + ε i 2 i m N 3 m 1 | a i i i | = | a i i i | ( R i ( A ) | a i i i | + ε ) = | b i i i | .

综上可得 | b i i i | > r i ( B ) ( i N ) 。由引理1知 B 是H-张量,故由引理2知 A 是H-张量。

定理2 设 A = ( a i 1 i 2 i m ) 是m阶n维张量且不可约。若 A 满足

| a i i i | β i M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i m N 2 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } { R j ( A ) | a j j j | } | a i i 2 i m | i N 2 (7)

且(7)式中至少有一个严格不等式成立,则 A 是H-张量。

证明:构造正对角阵 X = d i a g ( x 1 , x 2 , , x n ) ,记 B = A X m 1 = ( b i 1 i 2 i m ) ,其中

x i = M i N 1 x i = β i 1 m 1 i N 2 x i = ( R i ( A ) | a i i i | ) 1 m 1 i N 3 .

由M的定义得,对 i N 1

r i ( B ) = i 2 i m N 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | x i 2 x i m + i 2 i 3 i m N 2 m 1 | a i i 2 i m | β i 2 1 m 1 β i m 1 m 1 + i 2 i 3 i m N 3 m 1 | a i i 2 i m | ( R i 2 ( A ) | a i 2 i 2 i 2 | ) 1 m 1 ( R i m ( A ) a i m i m i m ) 1 m 1 M i 2 i m N 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | + i 2 i m N 2 m 1 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } { R j ( A ) | a j j j | } | a i i 2 i m | M i 2 i m N 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | + M i 2 i m N 2 m 1 | a i i 2 i m | + M i 2 i m N 3 m 1 | a i i 2 i m | = M r j ( A ) = M | a i i i | = | b i i i | .

根据(7)式知,对 i N 2

r i ( B ) = i 2 i m N 0 m 1 | a i i 2 i m | x i 2 x i m + i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | β i 2 1 m 1 β i m 1 m 1 + i 2 i 3 i m N 3 m 1 | a i i 2 i m | ( R i 2 ( A ) | a i 2 i 2 i 2 | ) 1 m 1 ( R i m ( A ) a i m i m i m ) 1 m 1 M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i 3 i m N 2 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } R j ( A ) | a j j j | | a i i 2 i m | | a i i i | β i = | b i i i | .

又对 i N 3 ,由K的定义知

r i ( B ) = i 2 i m N 0 m 1 | a i i 2 i m | x i 2 x i m + i 2 i 3 i m N 2 m 1 | a i i 2 i m | β i 2 1 m 1 β i m 1 m 1 + i 2 i 3 i m N 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | ( R i 2 ( A ) | a i 2 i 2 i 2 | ) 1 m 1 ( R i m ( A ) a i m i m i m ) 1 m 1 M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i 3 i m N 2 m 1 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } R j ( A ) | a j j j | | a i i 2 i m |

+ i 2 i m N 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } R j ( A ) | a j j j | | a i i 2 i m | M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i 3 i m N 2 m 1 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 δ i i 2 i m = 0 K | a i i 2 i m | + ε i 2 i m N 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | = R i ( A ) = | a i i i | R i ( A ) | a i i i | = | b i i i | .

因此, | b i i i | r i ( B ) ( i N ) 。因(7)式中至少有一个严格不等式成立,所以存在指标 i 0 满足 | b i 0 i 0 i 0 | > r i 0 ( B ) ,且由 A 不可约知 B 不可约,于是由引理3知 B 是H-张量。从而,由引理2知 A 是H-张量。

Ω ( A ) = { i N 1 : | a i i i | β i M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i m N 2 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } { R j ( A ) | a j j j | } | a i i 2 i m | } .

定理3 设 A = ( a i 1 i 2 i m ) 是m阶n维张量。若 A 满足

| a i i i | β i M i 2 i m N 0 m 1 | a i i 2 i m | + i 2 i m N 2 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } { β j } | a i i 2 i m | + i 2 i m N 3 m 1 max j { i 2 , i 3 , , i m } { R j ( A ) | a j j j | } | a i i 2 i m | i N 2 (8)

且对 i N / Ω ( A ) A 中存在从i到j的非零元素链,满足 j Ω ( A ) ,则 A 为H-张量。

证明:构造正对角阵 X = d i a g ( x 1 , x 2 , , x n ) ,记,其中

x i = M i N 1 x i = β i 1 m 1 i N 2 x i = ( R i ( A ) | a i i i | ) 1 m 1 i N 3 .

类似于定理2的证明,对任意的 i N ,有 | b i i i | r i ( B ) ,且至少有一个严格不等式成立。

另一方面,若 | b i i i | = r i ( B ) ,则 i N / Ω ( A ) 。设 A 中有从i到j的一条非零元素链,满足 j Ω ( A ) ,则 B 中也有从i到j一条非零元素链,满足 | b j j j | > r j ( B ) 。于是,由引理4知 B 是H-张量,再由引理2知 A 是H-张量。

例1 设是一个3阶3维张量,其中

A ( 1 , : , : ) = ( 12 1 0 0 6 0 1 0 16 ) A ( 2 , : , : ) = ( 1 0 0 0 6 0 0 0 3 ) A ( 3 , : , : ) = ( 1 0 0 0 2 0 1 0 20 ) .

| a 111 | = 12 r 1 ( A ) = 24 | a 222 | = 6 r 2 ( A ) = 4 | a 333 | = 20 r 3 ( A ) = 4 .

所以 N 1 = , N 2 = { 1 } , N 2 = { 2 , 3 } 。计算得

β 1 = 1 2 M = 1 2 K = 1 6 R 2 ( A ) = 1 R 3 ( A ) = 4 3 .

因为

j k N 0 2 | a 1 j k | + j k N 2 2 δ 1 j k = 0 max l { j , k } { β l } | a 1 j k | + j k N 3 2 max l { j , k } R l ( A ) | a l l | | a 1 j k | = 1 2 × 2 + 0 + 22 × 1 6 = 14 3 < 6 = a 111 β 1

所以张量 A 满足本文定理1的条件,故张量 A 为H-张量。但

j k N 2 / N 3 2 δ 1 j k = 0 | a 1 j k | + j k N 3 2 max l { j , k } r l ( A ) | a l l | | a 1 j k | = 2 + 1 2 × 22 = 13 > 12 = | a 111 |

r 1 ( A ) r 1 ( A ) | a 111 | [ q ( i 2 i 3 i m N 0 2 | a 1 i 2 i 3 | + i 2 i 3 i m N 2 2 δ 1 i 2 i 3 = 0 | a 1 i 2 i 3 | ) + i 2 i 3 N 3 2 max j { i 2 , i 3 } t P j ( A ) | a j j j | | a 1 i 2 i 3 | ] = 24 24 12 [ 1 2 ( 1 + 0 + 1 + 0 ) + 1 4 ( 16 + 6 ) ] = 26 2 > 12 = | a 111 | .

因此 A 不满足文献 [11] 中定理1的条件且 A 不满足文献 [14] 中定理2的条件。

4. 应用

基于H-张量的新判定条件,下面给出判定高次多元偶次齐次多项式正定性的新结论。

引理5 [6] 设 A = ( a i 1 i 2 i m ) 是m阶n维的实对称张量,m是偶数, a i i i > 0 ( i N ) 。若 A 是H-张量,则 A 是正定的。

根据引理5,定理1,定理2和定理3,可得到以下结论。

定理4设m阶n维张量 A = ( a i 1 i 2 i m ) 为偶数阶实对称张量, a i i i > 0 ( i N ) 。若 A 满足下列条件之一:定理1的条件;或定理2的条件;或定理3的条件,则 A 是正定的。

例2 设6次齐次多项式

f ( x ) = A x 6 = 8 x 1 6 + 17 x 2 6 + 1 6 4 x 3 6 + 93 x 4 6 + 10 x 5 6 + 15 x 6 6 6 x 1 x 2 5 30 x 1 x 3 5 6 x 1 x 4 5 6 x 2 x 3 5 6 x 2 x 4 5 24 x 3 x 4 5 20 x 2 3 x 3 3 + 6 x 1 5 x 4 ,

其中 A = ( a i 1 i 2 i 3 i 4 i 5 i 6 ) 是一个6阶6维实对称张量,且

a 111111 = 8 , a 222222 = 17 , a 333333 = 164 , a 444444 = 93 , a 555555 = 10 , a 666666 = 15 , a 122222 = a 212222 = a 221222 = a 222122 = a 222212 = a 222221 = 1 , a 133333 = a 313333 = a 331333 = a 333133 = a 333313 = a 333331 = 5 , a 144444 = a 414444 = a 441444 = a 444144 = a 444414 = a 444441 = 1 ,

a 233333 = a 323333 = a 332333 = a 333233 = a 333323 = a 3333332 = 1 , a 244444 = a 424444 = a 442444 = a 444244 = a 444424 = a 444442 = 1 , a 344444 = a 434444 = a 444344 = a 444344 = a 444434 = a 444443 = 4 , a 222333 = a 223233 = a 223323 = a 223332 = a 232233 = a 232323 = a 232332 = 1 ,

a 233223 = a 233232 = a 233322 = a 333222 = a 332322 = a 332232 = a 332223 = 1 , a 323322 = a 323232 = a 323223 = a 322332 = a 322323 = a 322233 = 1 , a 411111 = a 141111 = a 114111 = a 111411 = a 111141 = a 111141 = 1.

其余的 a i 1 i 2 i 3 i 4 i 5 i 6 = 0 。则

r 1 ( A ) = 12 r 2 ( A ) = 17 r 3 ( A ) = 44 r 4 ( A ) = 31 r 5 ( A ) = 0 r 6 ( A ) = 0

N 1 = { 2 } , N 2 = { 1 } , N 3 = { 3 , 4 , 5 , 6 } 。计算得

β 1 = 1 3 M = 1 3 K = 1 12 R 3 ( A ) = 41 3 R 4 ( A ) = 16 3 .

i = 1 时,计算得

M i 2 i 3 i 4 i 5 i 6 N 0 5 δ 1 i 2 i 3 i 4 i 5 i 6 = 0 | a 1 i 2 i 3 i 4 i 5 i 6 | + i 2 i 3 i 4 i 5 i 6 N 2 5 max j { i 2 , i 3 , i 4 , i 5 , i 6 } { β j } | a 1 i 2 i 3 i 4 i 5 i 6 | + i 2 i 3 i 4 i 5 i 6 N 3 5 max j { i 2 , i 3 , i 4 , i 5 , i 6 } R j ( A ) | a j j j j j j | | a 1 i 2 i 3 i 4 i 5 i 6 | = 1 3 × 6 + 0 + 1 12 × 6 = 5 2 < 8 3 = | a 111111 | β 1 ,

因此 A 满足本文定理1的条件,由定理4知 A 是正定的,即 f ( x ) 是正定的。但

a 111111 = 8 < 12 = r 1 ( A )

a 444444 ( a 111111 r 1 ( A ) + | a 144444 | ) = 465 < 31 = r 4 ( A ) | a 144444 |

| a 111111 | = 8 = 8 = i 2 i 3 i 4 i 5 i 6 N 5 / N 1 5 δ 1 i 2 i 3 i 4 i 5 i 6 = 0 | a 1 i 2 i 3 i 4 i 5 i 6 | + i 2 i 3 i 4 i 5 i 6 N 1 5 max j { i 2 , i 3 , i 4 , i 5 , i 6 } R j ( A ) | a j j j j j j | | a 1 i 2 i 3 i 4 i 5 i 6 |

因此不能用 [15] 中的定理3, [16] 中的定理4和 [11] 中的定理1判断 A 的正定性。

5. 结论

本文通过构建不同的正对角矩阵,结合不等式的放缩技巧,得到了判别H-张量的新不等式,且这些不等式只涉及到张量的元素关系,因此它们是容易计算的。作为应用,给出了偶数阶实对称张量,即高次多元偶次齐次多项式正定性的判定新方法,数值例子表明了新结论的有效性。下一步,H-张量的高效数值迭代判定算法将是研究的重点。

致谢

感谢编辑老师和审稿老师提出了宝贵修改意见。

基金项目

贵州省科学技术基金(20181079,20191161),贵州民族大学自然科学基金(GZMU[2019]YB08)。

参考文献

[1] Chang, K.C., Pearson, K. and Zhang, T. (2008) Perron-Frobenius Theorem for Nonnegative Tensors. Communications in Mathematical Sciences, 6, 507-520.
https://doi.org/10.4310/CMS.2008.v6.n2.a12
[2] Liu, Y.J., Zhou, G.L. and Ibrahim, N.F. (2010) An Always Convergent Algorithm for the Largest Eigenvalue of an Irreducible Nonnegative Tensor. Journal of Computational and Applied Mathematics, 235, 286-292.
https://doi.org/10.1016/j.cam.2010.06.002
[3] Qi, L. (2005) Eigenvalues of a Real Supersymetric Tensor. Journal of Symbolic Computation, 40, 1302-1324.
https://doi.org/10.1016/j.jsc.2005.05.007
[4] Lim, L.H. (2005) Singular Values and Eigenvalues of Tensors: A Variational Approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Vol. 1, 129-132.
[5] Yang, Y.N. and Yang, Q.Z. (2011) Further Results for Perron-Frobenius Theorem for Nonnegative Tensors II. SIAM Journal on Matrix Analysis and Applications, 32, 1236-1250.
https://doi.org/10.1137/100813671
[6] Li, C.Q., Wang, F., Zhao, J.X., et al. (2014) Criterions for the Positive Definiteness of Real Supersymmetric Tensors. Journal of Computational and Applied Mathematics, 255, 1-14.
https://doi.org/10.1016/j.cam.2013.04.022
[7] Kannana, M.R., Mondererb, N.S. and Bermana, A. (2015) Some Properties of Strong H-Tensors and General H-Tensors. Linear Algebra and Its Applications, 476, 42-55.
https://doi.org/10.1016/j.laa.2015.02.034
[8] Ding, W., Qi, L. and Wei, Y. (2013) M-Tensors and Nonsingular M-Tensors. Linear Algebra and Its Applications, 439, 3264-3278.
https://doi.org/10.1016/j.laa.2013.08.038
[9] Wang, F. and Sun, D.S. (2016) New Criteria for H-Tensors and an Application. Journal of Inequalities and Applications, 96, 1-12.
https://doi.org/10.1186/s13660-016-1041-0
[10] Wang, F., Sun, D.S., Zhao, J.X., et al. (2017) New Practical Cri-teria for H-Tensors and Its Application. Linear and Multilinear Algebra, 65, 269-283.
https://doi.org/10.1080/03081087.2016.1183558
[11] Li, Y.T., Liu, Q.L. and Qi, L. (2017) Programmable Criteria for Strong H-Tensors. Numerical Algorithms, 74, 199-221.
https://doi.org/10.1007/s11075-016-0145-4
[12] Zhang, L.P., Qi, L. and Zhou, G.L. (2014) M-Tensors and Some Applications. SIAM Journal on Matrix Analysis and Applications, 35, 437-542.
https://doi.org/10.1137/130915339
[13] Zhang, K.L. and Wang, Y.J. (2016) An H-Tensor Based Iterative Scheme for Identifying the Positive Definiteness of Multivariate Homogeneous Forms. Journal of Computational and Applied Mathematics, 305, 1-10.
https://doi.org/10.1016/j.cam.2016.03.025
[14] Bai, D.J. and Wang, F. (2021) New Methods Based H-Tensors for Identifying the Positive Definiteness of Multivariate Homogeneous Forms. AIMS Mathematics, 6, 10281-10295.
https://doi.org/10.3934/math.2021595
[15] Qi, L. and Song, Y.S. (2014) An Even Order Symmetric B-Tensor Is Positive Definite. Linear Algebra and Its Applications, 457, 303-312.
https://doi.org/10.1016/j.laa.2014.05.026
[16] Li, C.Q. and Li, Y.T. (2015) Double B-Tensors and Quasi-Double B-Tensors. Linear Algebra and Its Applications, 466, 343-356.
https://doi.org/10.1016/j.laa.2014.10.027
[17] Bai, D.J. and Wang, F. (2022) New Criterions-Based H-Tensors for Testing the Positive Definiteness of Multivariate Homo-geneous Forms. Mathematics, 10, Article No. 2416.
https://doi.org/10.3390/math10142416
[18] Lv, C.Q. and Ma, C.F. (2021) An Iterative Scheme for Identifying the Positive Semi-Definiteness of Even-Order Real Symmetric H-Tensor. Journal of Computational and Applied Mathematics, 392, Article ID: 113498.
https://doi.org/10.1016/j.cam.2021.113498