不同金属离子对苯酚降解菌XH-10的生长和苯酚降解的影响
The Affect of Growth and Phenol Degrading on Phenol Degrading Strain XH-10 with Different Metal Ions
摘要: 本文探测了18种金属离子对苯酚降解菌XH-10生长和苯酚降解的影响。结果显示:Al3+、Co2+、Cu2+、Hg2+、Ni2+、Ag+对苯酚降解菌XH-10的生长和苯酚降解有强烈的抑制作用;K+、Zn2+、Cr2+、Mo2+、Pb2+、Sn2+对苯酚降解菌XH-10的生长和苯酚降解有一定的抑制作用,但在低浓度时,XH-10有一定的生长和苯酚降解潜力;Ca2+、Mg2+、Na+、Mn2+在较低浓度时对苯酚降解菌XH-10的生长有促进作用,对苯酚降解的抑制作用较小,在高浓度时对菌体生长和苯酚降解的抑制作用明显;Ba2+对苯酚降解的抑制作用明显,而在较低浓度时对苯酚降解菌XH-10的生长有促进作用;Fe3+对菌体生长的抑制作用明显,而在较低浓度时对苯酚降解菌XH-10的苯酚降解抑制作用较小。其研究结果对菌株XH-10用于含酚废水的处理提供了一定的依据。
Abstract: This article surveyed the influence which 18 metal ions on phenol degrading bacterium XH-10 growth and the phenol degradation. The results showed: Al3+, Co2+, Cu2+, Hg2+, Ni2+, Ag+ have intense inhibitory action to the phenol degrading bacterium XH-10 growth and the phenol degeneration; K+, Zn2+, Cr2+, Mo2+, Pb2+, Sn2+ have certain in-hibitory action to the phenol degrading bacterium XH-10 growth and the phenol degeneration, but at low concentrations, XH-10 has certain growth and the phenol degeneration potential; Ca2+, Mg2+, Na+, Mn2+ at lower concentration to the phenol degrading bacterium XH-10 growth have promoter action, degrades the inhibitory action to be small, at high concentrations to the bacterium growth and the phenol degradation have obvious inhibitory; Ba2+ the inhibitory action which degrades to the phenol is obvious, but at lower concentration have promoter action to the phenol degrading bac-terium XH-10 growth; Fe3+ the inhibitory action which growth to the bacterium is obvious, but at lower concentration have smaller inhibitory action to the phenol degrading bacterium XH-10 phenol degeneration. The results of the phenol degrading bacterium XH-10 for the treatment of wastewater containing phenol provides certain basis.
文章引用:唐赟, 岳黎, 彭超, 宋嫣, 谭洪. 不同金属离子对苯酚降解菌XH-10的生长和苯酚降解的影响[J]. 生物过程, 2012, 2(1): 31-39. http://dx.doi.org/10.12677/bp.2012.21006

参考文献

[1] 吴培诚, 唐莉丽, 武波. 琼氏不动杆菌菌株GXP04的苯酚降解特性[J]. 广西农业生物科学, 2003, 22(4): 293-296, 306.
[2] 杨广花, 蔡志强, 赵希岳, 项静英, 朱孝霖, 李亮. 耐冷苯酚降解菌Phe311的分离和降解特性[J]. 安徽农业科学, 2009, 37(19): 8869-8870.
[3] 岳黎, 唐赟, 杨艳, 宋嫣, 谭洪, 王晓玉. 石油污染土壤中高效苯酚降解菌的分离鉴定及特性研究[J]. 安徽农业科学, 2011, 39(20): 12295-12300.
[4] 雯航, 高勇伟, 田景环. 我国土壤污染概况及危害性[J]. 河南科技, 2008, 5: 7.
[5] R. E. 斯皮思. 李亚新, 译. 工业废水的厌氧生物处理[M]. 北京: 中国建筑工业出版社, 2001.
[6] 沈同, 王镜岩. 生物化学(上册)[M]. 北京: 高等教育出版社, 1990.
[7] J. 莎姆布鲁克, D﹒W﹒拉塞尔. 黄培堂等, 译. 分子克隆实验指南(第三版)[M]. 北京: 科学出版社, 2002: 1595.
[8] A. Mutzel, U. M. Reinscheid, G. Antranikian, et al. Isolation and characterization of a thermophilic bacillus strain that degrades phenol and cresols as sole carbon source at 70˚C. Applied Microbiology and Biotechnology, 1996, 46(5-6): 593-596.
[9] W. E. Balch, G. Fox, L. J. Margrum, et al. Methanogens: Reevaluation of a unique biological group. Microbiology Reviews, 1979, 43(2): 260-296.
[10] 国家环保局《水和废水监测分析方法》编委会. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002: 294-295.
[11] G. Claudia, K. Mark. Identification of the copper regulon in saccharomyces cerevisiae by DNA microarrays. The Journal Biological Chemistry, 2000, 275(41): 32310-32316.
[12] Z. Q. Hao, S. L. Chen. Cloning, expression and characterization of cadmium and manganese uptake genes from lactobacillus plantarum. Applied and Environmental Microbiology, 1999, 65(11): 4746-4752.
[13] A. Cabrero, S. Fernandez, F. Mirada, et al. Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Re- search, 1998, 32(5): 1355-1362.
[14] Y. M. Lin, X. F. Yang and Y. Liu. Kinetic responses of activated sludge microorganisms to individual and joint copper and zinc. Journal of Environmental Science and Health, 2003, 38(2): 353- 360.
[15] 孟雪征, 赖震宏, 龙腾锐. 金属离子对好氧活性污泥活性的影响[J]. 安全与环境学报, 2004, 6: 43-45.
[16] 周崇松, 兰昌云, 范必威等. 金属离子在生命过程中的作用机制[J]. 广州化学, 2005, 30(1): 58-63.
[17] 廖鲜艳, 王蓓, 堵国成等. 金属离子对面包酵母合成ATP的影响机制初探[J]. 过程工程学报, 2005, 5(4): 420-424.
[18] 寇明旭, 刘全阳. 金属离子对活性污泥微生物影响研究进展[J]. 山西建筑, 2007, 2, 33(5): 176-177.
[19] P. Yang, F. Gao. Principles of biological abiochemistry. Beijing: Higher Education Press, 2000, 8: 9-12.
[20] 朱贤英. 论有毒重金属污染对人体健康的危害及饮水安全[J]. 湖北教育学院学报, 2006, 23(2): 72-74.
[21] 刘国生, 李学梅, 李用芳等. 六种金属离子对Bacillus subtilis肌苷产率的影响[J]. 中国医药工业杂志, 2003, 34(8): 385- 387.
[22] 王秀蘅, 任南琪, 王爱杰等. 铁锰离子对硝化反应的影响效应研究[J]. 哈尔滨工业大学学报, 2003, 35(1): 122-125.
[23] R. E. Speece, J. H. Sherrand. Nickel stimulation of anaerobic digestion. WaRes, 1983, 17(6): 677-683.
[24] C. A. Perry. Role of a Candida albicans P12Type AT Pase in resistance to copper and silver ion toxicity. Journal of Bacteriology, 2000, 182(17): 4899-4905.
[25] 叶锦韶, 尹华, 彭辉. 微生物抗重金属毒性研究进展[J]. 环境污染治理技术与设备, 2002, 3(4): 1-4.
[26] 曹相生, 龙腾锐, 孟雪征, 赖震宏. Mn2+、Mo6+和Zn2+对活性污泥内胞外聚合物组分的影响[J]. 环境科学, 2004, 25(4): 70- 73.
[27] 张建民, 王转斌. 重金属离子对酵母影响的研究[J]. 微生物学通报, 1999, 26(1): 18-20.