柔性可穿戴电化学传感器在人体汗液检测上的研究进展
Progress of Flexible Wearable Electrochemical Sensors for Human Sweat Detection
摘要: 在用于连续实时监测的不同体液选择中汗液扮演着不可或缺的角色,因为它容易获得,并且可以使用离子电渗疗法或化学刺激等方法进行无创收集。此外,汗液中含有非常丰富的与生理和代谢相关的标志物,这些标志物是人类健康的指标,与血浆水平密切相关,因此可以作为理想的替代诊断液。柔性可穿戴汗液传感器结合了无创汗液采样和可穿戴实时测量的优势,能够很好的贴合人体皮肤,不中断、不限制人体运动,为监测与生理状况相关的大量汗液生化成分提供了一个强大的平台。相较于传统的仪器检测,柔性可穿戴传感器具有持续跟踪健康状况变化的潜力,且具有制作简单,成本低等优点。柔性可穿戴汗液传感器的最新进展归功于材料科学、制造技术和先进电子领域跨学科研究的快速发展。本综述着重于可穿戴汗液传感器的构建,特别是柔性传感接口的设计。最后,我们概述了可穿戴汗液传感器从医疗保健到运动监测的广泛应用。
Abstract: Sweat plays an integral role among the different body fluid options used for continuous real-time monitoring, as it is easily accessible and can be collected non-invasively using methods such as iontophoresis or chemical stimulation. In addition, sweat is very rich in physiologically and metabolically relevant markers that are indicators of human health and closely correlate with plasma levels, thus serving as an ideal alternative diagnostic fluid. The flexible wearable sweat sensor combines the advantages of non-invasive sweat sampling and wearable real-time measurement, fits well on human skin, does not interrupt or restrict human movement, and provides a powerful platform for monitoring the large number of sweat biochemical components associated with physiological conditions. Compared to traditional instrumental testing, flexible wearable sensors have the potential to continuously track changes in health conditions and have the advantages of being simple to fabricate and low cost. Recent advances in flexible wearable sweat sensors are attributed to the rapid development of interdisciplinary research in materials science, manufacturing technology, and advanced electronics. This review focuses on the construction of wearable sweat sensors, particularly the design of flexible sensing interfaces. Finally, we outline the wide range of applications of wearable sweat sensors from healthcare to sports monitoring.
文章引用:曹小清, 苏梦杰, 姜梦媛, 田亮, 朱彩玲, 于春梅. 柔性可穿戴电化学传感器在人体汗液检测上的研究进展[J]. 分析化学进展, 2022, 12(3): 272-280. https://doi.org/10.12677/AAC.2022.123033

1. 引言

目前大多数用于疾病诊断和健康监测的侵入性分析设备都需要采集血液,这会给被检者带来极大的不适,并且可能导致感染。这也解释了如今对汗液、唾液 [1] [2]、泪液 [3] [4] 或尿液 [5] 等其他体液的无创检测设备的巨大需求。其中汗液在无创生物流体中是首选,首先人体皮肤每平方厘米包含10到100个汗腺 [6],这使得汗液在日常生活中很容易获得。而且汗液含有很少的干扰物质,并且可以在不接触粘膜层的情况下收集,从而最大程度地减少了不适。其次人体汗液是与生理状况相关的最重要的体液之一,因为它调节体温并分泌多种生化成分,包括电解质、代谢物和外源性物质 [7]。早期有学者研究探索了不同情况下汗液中的电解质浓度 [8]。在研究中,汗液中的氯化物浓度已被确定为囊性纤维化的临床诊断标准 [9] [10]。汗液中的钠离子浓度可以指示身体的水合状态和电解质失衡 [11]。皮质醇(一种应激激素)可以用于评估情绪压力以及代谢和免疫功能 [12] [13]。汗液中的乳酸已被广泛研究,被认为是压力性缺血的早期预警指标和运动员耐力的评价指标 [14]。此外,汗液分析可能为法医鉴定提供一个创新概念 [15]。

与传统的血液分析相比,汗液分析具有无创采集的独特优势,使其更易于公众获取,可用于预防性监测 [16]。然而,早期对汗液的研究仅限于实验室,通常依赖于光学法和比色法,虽然光学法和比色法已被证实在特定应用中是成功的 [17] [18],但这些测试技术对于即时生物流体分析仍有一些限制(表1)。因此,汗液实时处理和分析技术的缺乏极大地阻碍了汗液研究的发展。近年来,柔性可穿戴生物传感器和生物电子学的出现极大地加速了汗液研究。柔性可穿戴电化学传感器具有小型化、快速响应和适用于现场应用等优点,使汗液分析更适合无创、实时和连续监测。

总体而言,电化学技术在用于生物流体监测的先进设备中表现出突出的优势,因为它响应速度快、灵敏度高、选择性好以及成本低 [19]。虽然需要一些复杂的校准,但电化学汗液传感器可以在低采样量的情况下,提供快速、实时和连续的响应。

本文主要说明基于柔性可穿戴电化学传感器检测人体汗液的应用进展,阐述近五年发展的各类型柔性基底和修饰材料,以及柔性可穿戴电化学传感器在医疗保健和运动监测等方面的广泛应用。

Table 1. Comparison of different sensing techniques for sweat analysis

表1. 用于汗液分析的不同传感技术的比较

2. 可穿戴电化学传感器概述

传统的传感器被集成在不透明的刚性基底上,如金属 [20]、硅片或导电玻璃等 [21] [22],因此限制了它们在可穿戴方向上的应用。但是建立在柔性和可拉伸基底上的传感器使传感设备可穿戴化成为可能 [14]。可穿戴传感器为了实现不同信号的采集,往往需要各种性能特异的材料以及与之相对应的制造工艺。原则上,可穿戴汗液传感器有三个主要部件:1) 用于实时汗液提取和输送的汗液处理模块 [23]。2) 通常具有多层结构的柔性感测接口,包括但不限于柔性基底(例如,纺织品,聚合物膜),用于贴合皮肤和支撑传感界面,用敏感元件(例如酶,离子选择性膜) 对汗液中的特定目标进行功能化的转导层,以及用于限制反应室的保护层 [24] [25]。3) 一种用于信号处理和传输的可穿戴小型化电子设备或电路系统 [26]。以“酶催化法”可穿戴汗液传感器为例,固定在电极表面上的酶(例如葡萄糖氧化酶)催化汗液中特定组分(例如葡萄糖) 的氧化,从而产生电子,该电子在电子介体的帮助下进一步传递到电极 [27]。以这种方式,可以通过检测电信号(例如,电流) 的变化来量化衬底浓度。借助于小型化的电子设备,信号读出将在计算机或智能手机上实现。使用电化学传感技术,根据工作系统的不同,汗液成分可以通过不同种类的电信号 (如电流、电势和阻抗)来测量。受益于材料科学(例如柔性材料,纳米材料),制造技术(例如丝网印刷技术,微流体技术,三维(3D)打印技术)和先进电子学(例如微电子,表皮电子学,无线电子),柔性可穿戴电化学汗液传感器建设取得较大进展。

3. 柔性基底及其修饰材料

3.1. 纸张

纸张主要由纤维素构成,使用纸张作为构建传感器的柔性基底是因为它们易获得、重量轻、成本低、贴合人体曲线、便携性、生物识别分子固定的兼容性以及其多孔性和通过毛细管芯吸和蒸发控制流速的能力,这有助于在不需要外部泵的情况下进行操作,使其非常适合作为运输和管理汗液的介质 [28]。国外学者Whiteside等人是基于纸的酶联免疫吸附测定(ELISA)的先驱 [29],而Henry团队首先将纸基运用于电化学平台 [30]。微流控纸基分析装置利用微流体在纸上创建微通道,并通过毛细力引导流体流向包含捕获生物材料的检测区域,通过毫米尺寸的流体通道可以处理0.1至100 μL的液体。通常,微图案和微通道使用亲水和疏水屏障来限制和引导流体流动,如今常用于制造微流控纸基分析装置的方法包括:光刻、蜡印、喷墨印刷、微绘图、丝网印刷和激光蚀刻 [31] [32]。在这些技术中,蜡印和喷墨印刷是最常见的,早年Jacqui L.将喷墨打印用于生产纸质微流控基板,该基板与丝网印刷电极(SPE)相结合,可制造简单、廉价、一次性的传感器,无需传统的光电探测器即可读取 [33]。而后,Marta Novell提出了一种开发超低成本的一次性电位传感器的新方法。将碳纳米管在水–表面活性剂混合物中的悬浮液(碳纳米管墨水)涂抹在传统的滤纸上,使其变成导电纸,然后将其用作构建离子选择电极的基板。电极是通过在导电纸的小圆形区域上滴铸制成。其中,碳纳米管既充当导电体又充当电位信号的离子–电子换能器。将构建的电极与经典固态离子选择性电极进行比较,这些一次性纸基电极的分析性能(灵敏度、线性范围、检测限、选择性等)与传统的离子选择电极相似,这为用于生成化学信息的低成本平台开辟了新途径 [34]。Andreu将辣根过氧化物酶和乳酸氧化酶液沉积在纸条带上,另外通过添加含有金纳米颗粒的储液器获得汗液乳酸传感器 [24]。纸微流体通道的使用对于长期的汗液采集和处理来说是一种极其简单和有效的方法,尤其适用于需要快速分析、成本低廉且操作简单的需求设置。

3.2. 聚酯薄膜

由酯基联接构成的一类高聚物叫做聚酯。一般是采用二元酸、醇或多元酸、醇缩聚反应得到。聚酯材料凭借其良好的力学、稳定、耐溶等性能,在可穿戴电化学传感器基底构造方面具有举足轻重的地位。目前应用最广的聚酯产品包括聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚氨酯(PU)以及聚对苯二甲酸丁二醇酯(PBT)等。聚酯薄膜本身并不导电,通常通过丝网印刷技术或真空过滤将纳米导电材料如炭黑、碳纳米管、石墨烯等薄膜均匀沉积到膜过滤器上(图1),然后将其转移到聚酯薄膜上,作为柔性可穿戴传感器的传感元件(表2)。这种方法不仅限于传统电极,而且还能够生产用于光谱电化学电池的光学透明电极。Chen等人将氟烷基硅烷官能化 T i 3 C 2 Tx (F- T i 3 C 2 Tx)和聚苯胺(PANI)膜集成,通过简单且低成本的丝网印刷技术在PET基底上制造柔性电极 [35]。 T i 3 C 2 Tx与全氟癸基三氯硅烷的表面功能化可以提供稳定的汗液检测环境。用聚苯胺掺杂功能化的 T i 3 C 2 Tx (F- T i 3 C 2 Tx)可以提高柔性电极的响应性、灵敏度和可逆性。构建的微型、便携以及可穿戴的F- T i 3 C 2 Tx/PANI pH传感器旨在实时监测运动过程中人体汗液的pH值。结果显示,女性和男性的汗液pH监测都表现出较高的准确性和持续稳定性。

Table 2. Comparison of the characteristics between different methods for batch manufacturing of conductive flexible substrates

表2. 批量制造导电柔性基底不同方法之间的特征比较

Figure 1. PET film screen printing technology diagram

图1. PET薄膜丝网印刷技术图

3.3. 水凝胶

水凝胶基(例如PDMS、壳聚糖等)具有交联分子链,分子相互作用相对较弱,因此能提供更大的拉伸性。这些材料具有极低的弹性模量(与人体组织相当)、较大的弹性拉伸性、良好的生物相容性、对流和扩散性,有机械柔性但坚固耐用。因此在生物传感器和生物医学领域引起了广泛关注。Li课题组以聚二甲基硅氧烷(PDMS)为基底,并在弹性PDMS基板上制造了一层薄的碳纳米管(CNT)薄膜,随后通过电沉积技术将纳米结构的金锚定在薄膜上,以此构造了具有良好导电性的柔性导电基底。CNT因其强大纵横比、高机械强度、低刚度和化学惰性而成为制造柔性传感器的理想材料,而纳米金层赋予柔性基底高导电性和良好的生物相容性 [36]。Shu等人将高度可拉伸的Ni-Co金属有机框架、Au纳米颗粒和CNT沉积在PDMS薄膜上以形成柔性可拉伸基底。再通过使用毛细管模板制造出还原的氧化石墨烯/聚氨酯(rGO/PU)纤维。将导电银胶和合成的Ni-Co MOF纳米片分别涂覆在rGO/PU纤维上,得到可拉伸的纤维工作电极,形成柔性可穿戴的非酶汗液葡萄糖传感器 [37],可用于连续监测汗液中的葡萄糖水平,具有很高的准确性。

3.4. 三维海绵

海绵是一种具有连续可变形骨架的3D多孔柔性材料,可用于制备柔性传感器导电基底。首先,这种三维骨架提供了一个连续的表面,方便在其基础上构建一个渗透的导电网络。在海绵状导电材料的制备过程中,已经报道了许多材料和方法,通常涉及多个步骤和各种新材料。总体思路是组装包含导电材料的可压缩三维(3D)结构。由纯导电材料如碳材料(如碳纳米管、石墨烯、碳纳米纤维和炭黑)、金属纳米线和导电聚合物组成的导电海绵,可以通过聚合物海绵的直接碳化、基于模板海绵的组装以及冷冻干燥等方法制备 [38]。海绵模板组装方法旨在碳化海绵模板或在浸渍导电基板后去除海绵模板。用这种方法制备的半导体三维(3D)海绵具有较低的比表面积。而冷冻干燥法旨在升华溶剂晶体并形成多孔3D海绵结构。一些研究通过冷冻干燥纳米纤维或溶剂混合物制备了一种静电纺丝3D纳米纤维多孔结构海绵,该海绵具有重量轻、高度多孔的海绵结构和高刚度 [39]。Miao课题组将纳米技术与冷冻干燥法相结合,制备了PVDF纳米纤维石墨烯多轴可压缩复合海绵传感器,然后通过多个传感海绵集成桥接电路器件。经检测,制备的传感器装置是一种具有高灵敏度、宽传感范围和良好耐用性的多功能可穿戴设备 [40]。在海绵的基础上添加柔性矩阵可以提高可穿戴传感设备的可拉伸性、柔韧性和耐用性。例如可拉伸电子设备和疏水传感海绵,这不仅提高了设备的机械性能,而且提高了传感器在可穿戴设备中的稳定性。3D传感海绵的导电填料起到导电和传感的作用,主要以两种形式存在,分布在柔性基板表面或分散在柔性基板内部。不同的导电填料和柔性基底材料,以及不同的制备工艺,可能会导致柔性应变传感器的传感性能存在差异。

4. 柔性可穿戴电化学汗液传感器的应用

4.1. 医疗保健监测

各种具有不同活性传感元件(例如酶、抗体)的柔性可穿戴汗液传感器已被用于监测生理相关成分,并相应地展示了它们在评估身体状况方面的巨大潜力。例如 Sung Bong Kim等人以PDMS为基底,使用玻璃纤维板作测定的支撑基质,将少量乙醇氧化酶溶液(~2 μL)置于每片玻璃纤维上,覆盖硅片,完成有源传感平台。可以检测到汗液中乙醇水平在饮酒后明显升高,这表明汗液乙醇传感器有望用于日常生活中的酒精监测 [41]。集成了乙醇氧化酶和葡萄糖氧化酶的柔性丝网印刷电极可以同时监测饮酒过程中汗液里乙醇和葡萄糖水平 [42]。通过将抗坏血酸氧化酶固定在基于纺织材料的柔性电极上,生产了一种可穿戴的维生素C传感器,用于动态监测汗液中维生素C以响应维生素摄入,为个性化营养管理提供了一种无创策略 [43]。另外,可穿戴汗液传感器提供了一个方便的平台来探索用于疾病诊断的汗液生物标志物。通常佩戴柔性可穿戴电化学汗液传感器来监测汗液电解质以诊断囊性纤维化。在一项早期研究中,Benjamin Schazmann等人构建了一个钠传感器腰带(SSB),由钠离子选择电极(ISE)组成,并且在实测囊性纤维化患者的汗液时观察到高钠浓度 [44]。鉴于患者排汗困难,柔性可穿戴电化学汗液传感器结合离子电渗疗法接口实现了自主汗液提取,提高了其在实际应用中的成功率。此外,将柔性可穿戴电化学汗液传感器与钠离子和氯离子择性电极集成可用于同时监测汗液中的钠离子和氯离子。与健康人相比,囊性纤维化患者的钠离子和氯离子浓度升高,这表明柔性可穿戴电化学汗液传感器在囊性纤维化的早期筛查、严重程度和恢复监测方面具有潜力。近年来,随着柔性可穿戴电化学汗液传感器原型的进步,越来越多的汗液生物标志物被监测并与更多的疾病相关联。除疾病诊断外,柔性可穿戴电化学汗液传感器有望进一步扩展到监测各种药物,包括咖啡因、可卡因、精神活性物质和抗生素等。

4.2. 运动监测

运动为柔性可穿戴电化学汗液传感器提供了一个合适的应用场景,因为在运动过程中容易产生大量的汗水。此外,柔性可穿戴电化学汗液传感器可以动态且连续地监测运动中的汗液成分,这是传统实验室方法无法实现的。由于汗液中乳酸的含量明显高于血液中的乳酸含量,因此人们越来越关注使用柔性可穿戴电化学汗液传感器实时检测汗液乳酸。Xuan课题组开发了一种可穿戴的乳酸传感器,创新性的加入了“扩散限制层”,该层由聚合物、增塑剂和亲脂性盐组成,降低乳酸氧化酶与底物的结合常数,直接监测汗液中的高浓度乳酸,为个性化运动训练提供了可能性 [14]。在此基础上,Elena V.等人研究了超高检出限的可穿戴乳酸传感器,记录人体运动期间的汗液乳酸时间曲线,表明汗液乳酸水平的变化与体力消耗程度有关,同时也证明了其在辅助训练及评估最大乳酸稳态方面的可行性 [45]。基于对运动过程中汗液乳酸监测的大量研究,可以得出汗液乳酸浓度是运动员体能的指标,尤其是对运动员耐力的评价和高水平运动员的选择。此外,可穿戴汗液传感器与离子选择性电极相结合,可以在运动过程中实时监测汗液电解质。例如,通过钠离子选择性电极的集成传感阵列测量发现,在长时间的体力活动期间汗液中钠离子浓度显著增加,这证明汗液中钠离子可以作为识别脱水的生物标志物之一。总体而言,汗液电解质水平的监测有助于评估运动者的水合状态,从而为电解质平衡和运动管理提供指导。如今,柔性可穿戴电化学汗液传感器在运动监测方面有了巨大的进步,特别是在多路分析和穿戴性的改进方面。然而,目前只有汗液乳酸和电解质是该领域有前景的生物标志物,还需要优化设备、基于统计分析的实际运动试验以及标准化试验。

5. 结论与展望

柔性可穿戴电化学汗液传感器由于其无创操作模式、实时可用性以及在医疗保健和运动监测领域的广泛应用而引起了极大的关注。正常情况下,汗液的收集相对困难,因为汗液的分泌量少,挥发快,并且身体不同部位的分泌量不同。为此,微流体技术应运而生。到目前为止,已经设计了许多用于汗液处理的微流体系统,包括汗液提取、储存和转移。执行汗液响应功能的柔性传感接口是柔性可穿戴汗液传感器最关键的模块。一般来说,人体汗液的灵活传感接口涉及附着在皮肤上、特定的传感原理和实际的汗液检测。使用各种柔性材料作为基底为传感元件和皮肤之间的连接提供了一种解决方案。尽管多种柔性传感接口在汗液检测的使用中表现出优异的性能,但这些接口的构建始终需要多步操作和多种材料的组合。这种复杂性会对传感器的可靠性和稳定性产生不利影响。因此,这一领域仍存在重大挑战。综上所述,柔性可穿戴电化学汗液传感器最近发展迅速,尽管争议和挑战仍然存在,但我们坚信多种技术的融合和强大的需求将推动柔性可穿戴电化学汗液传感器走向现实生活应用。

NOTES

*通讯作者。

参考文献

[1] Suherman, A.L., Rasche, B., Godlewska, B., Nicholas, P., Herlihy, S., Caiger, N., Cowen, P.J. and Compton, R.G. (2019) Electrochemical Detection and Quantification of Lithium Ions in Authentic Human Saliva Using LiMn2O4- Modified Electrodes. ACS Sensors, 4, 2497-2506.
https://doi.org/10.1021/acssensors.9b01176
[2] Park, S., Park, K., Na, H.S., Chung, J. and Yang, H. (2021) Washing- and Separation-Free Electrochemical Detection of Porphyromonas gingivalis in Saliva for Initial Diagnosis of Periodontitis. Analytical Chemistry, 93, 5644-5650.
https://doi.org/10.1021/acs.analchem.1c00572
[3] Li, M.S., Wong, H.L., Ip, Y.L., Peng, Z., Yiu, R., Yuan, H., Wai Wong, J.K. and Chan, Y.K. (2022) Current and Future Perspectives on Microfluidic Tear Analytic Devices. ACS Sensors, 7, 1300-1314.
https://doi.org/10.1021/acssensors.2c00569
[4] Zhang, T., Hu, L., Ma, H., Ni, F., Liu, F. and Chen, H. (2020) Detection of Tear Components Using Matrix-Assisted Laser Desorption Ionization/Time-of-Flight Mass Spectrometry for Rapid Dry Eye Diagnosis. Journal of Proteome Research, 19, 3644-3651.
https://doi.org/10.1021/acs.jproteome.0c00138
[5] Paalanne, N., Wikstedt, L., Pokka, T., Salo, J., Uhari, M., Renko, M. and Tapiainen, T. (2020) Diaper-Embedded Urine Test Device for the Screening of Urinary Tract Infections in Children: A Cohort Study. BMC Pediatrics, 20, Article No. 378.
https://doi.org/10.1186/s12887-020-02277-5
[6] Brothers, M.C., DeBrosse, M., Grigsby, C.C., Naik, R.R., Hussain, S.M., Heikenfeld, J. and Kim, S.S. (2019) Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms. Accounts of Chemical Research, 52, 297-306.
https://doi.org/10.1021/acs.accounts.8b00555
[7] Chung, M., Fortunato, G. and Radacsi, N. (2019) Wearable Flexible Sweat Sensors for Healthcare Monitoring: A Review. Journal of the Royal Society Interface, 16, Article ID: 20190217.
https://doi.org/10.1098/rsif.2019.0217
[8] Gao, W., Nyein, H.Y.Y., Shahpar, Z., Fahad, H.M., Chen, K., Emaminejad, S., Gao, Y., Tai, L.-C., Ota, H., Wu, E., Bullock, J., Zeng, Y., Lien, D.-H. and Javey, A. (2016) Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids. ACS Sensors, 1, 866-874.
https://doi.org/10.1021/acssensors.6b00287
[9] Macedo, A.N., Mathiaparanam, S., Brick, L., Keenan, K., Gonska, T., Pedder, L., Hill, S. and Britz-McKibbin, P. (2017) The Sweat Metabolome of Screen-Positive Cystic Fibrosis Infants: Revealing Mechanisms beyond Impaired Chloride Transport. ACS Central Science, 3, 904-913.
https://doi.org/10.1021/acscentsci.7b00299
[10] Choi, D.H., Kim, J.S., Cutting, G.R. and Searson, P.C. (2016) Wearable Potentiometric Chloride Sweat Sensor: The Critical Role of the Salt Bridge. Analytical Chemistry, 88, 12241-12247.
https://doi.org/10.1021/acs.analchem.6b03391
[11] Ghoorchian, A., Kamalabadi, M., Moradi, M., Madrakian, T., Afkhami, A., Bagheri, H., Ahmadi, M. and Khoshsafar, H. (2022) Wearable Potentiometric Sensor Based on Na0.44MnO2 for Non-invasive Monitoring of Sodium Ions in Sweat. Analytical Chemistry, 94, 2263-2270.
https://doi.org/10.1021/acs.analchem.1c04960
[12] Aerathupalathu Janardhanan, J., Chen, Y.L., Liu, C.T., Tseng, H.S., Wu, P.I., She, J.W., Hsiao, Y.S. and Yu, H.H. (2022) Sensitive Detection of Sweat Cortisol Using an Organic Electrochemical Transistor Featuring Nanostructured Poly(3,4-Ethylenedioxythiophene) Derivatives in the Channel Layer. Analytical Chemistry, 94, 7584-7593.
https://doi.org/10.1021/acs.analchem.2c00497
[13] Weng, X., Z. Zhang Fu, C., Jiang, W. and Jiang, H. (2022) A Portable 3D Microfluidic Origami Biosensor for Cortisol Detection in Human Sweat. Analytical Chemistry, 94, 3526-3534.
https://doi.org/10.1021/acs.analchem.1c04508
[14] Xuan, X., Perez-Rafols, C., Chen, C., Cuartero, M. and Crespo, G.A. (2021) Lactate Biosensing for Reliable On-Body Sweat Analysis. ACS Sensors, 6, 2763-2771.
https://doi.org/10.1021/acssensors.1c01009
[15] Huynh, C., Brunelle, E., Agudelo, J. and Halamek, J. (2017) Bioaffinity-Based Assay for the Sensitive Detection and Discrimination of Sweat Aimed at Forensic Applications. Talanta, 170, 210-214.
https://doi.org/10.1016/j.talanta.2017.04.016
[16] Yokus, B.M.A. and Daniele, M.A. (2021) Integrated Non-Invasive Biochemical and Biophysical Sensing Systems for Health and Performance Monitoring: A Systems Perspective. Biosensors and Bioelectronics, 184, Article ID: 113249.
https://doi.org/10.1016/j.bios.2021.113249
[17] Wu, W., Wang, L., Yang, Y., Du, W., Ji, W., Fang, Z., Hou, X., Wu, Q., Zhang, C. and Li, L. (2022) Optical Flexible Biosensors: From Detection Principles to Biomedical Applications. Biosensors and Bioelectronics, 210, Article ID: 114328.
https://doi.org/10.1016/j.bios.2022.114328
[18] Yu, J., Wang, D., Tipparaju, V.V., Jung, W. and Xian, X. (2022) Detection of Transdermal Biomarkers Using Gradient-Based Colorimetric Array Sensor. Biosensors and Bioelectronics, 195, Article ID: 113650.
https://doi.org/10.1016/j.bios.2021.113650
[19] Zhang, H., He, R., Niu, Y., Han, F., Li, J., Zhang, X. and Xu, F. (2022) Graphene-Enabled Wearable Sensors for Healthcare Monitoring. Biosensors and Bioelectronics, 197, Article ID: 113777.
https://doi.org/10.1016/j.bios.2021.113777
[20] Li, H., Wang, C., Wang, X., Hou, P., Luo, B., Song, P., Pan, D., Li, A. and Chen, L. (2019) Disposable Stainless Steel- Based Electrochemical Microsensor for in Vivo Determination of Indole-3-Acetic Acid in Soybean Seedlings. Biosensors and Bioelectronics, 126, 193-199.
https://doi.org/10.1016/j.bios.2018.10.041
[21] Zhang, H., Jia, Z., Lyu, X., Zhou, J., Chen, L., Liu, R. and Ma, J. (2013) Porous Silicon Optical Microcavity Biosensor on Silicon-on-Insulator Wafer for Sensitive DNA Detection. Biosensors and Bioelectronics, 44, 89-94.
https://doi.org/10.1016/j.bios.2013.01.012
[22] Ding, L., Gao, Y. and Di, J. (2016) A Sensitive Plasmonic Copper(II) Sensor Based on Gold Nanoparticles Deposited on ITO Glass Substrate. Biosensors and Bioelectronics, 83, 9-14.
https://doi.org/10.1016/j.bios.2016.04.002
[23] Naik, A.R., Zhou, Y., Dey, A.A., Arellano, D.L.G., Okoroanyanwu, U., Secor, E.B., Hersam, M.C., Morse, J., Rothstein, J.P., Carter, K.R. and Watkins, J.J. (2021) Printed Microfluidic Sweat Sensing Platform for Cortisol and Glucose Detection. Lab on a Chip, 22, 156-169.
https://doi.org/10.1039/D1LC00633A
[24] Vaquer, A., Baron, E. and de la Rica, R. (2021) Wearable Analytical Platform with Enzyme-Modulated Dynamic Range for the Simultaneous Colorimetric Detection of Sweat Volume and Sweat Biomarkers. ACS Sensors, 6, 130-136.
https://doi.org/10.1021/acssensors.0c01980
[25] Jiang, Y., Shen, L., Ma, J., Ma, H., Su, Y. and Zhu, N. (2021) Wearable Porous Au Smartsensors for On-Site Detection of Multiple Metal Ions. Analytical Chemistry, 93, 2603-2609.
https://doi.org/10.1021/acs.analchem.0c04701
[26] Gao, W., Emaminejad, S., Nyein, H.Y.Y., Challa, S., Chen, K., Peck, A., Fahad, H.M., Ota, H., Shiraki, H., Kiriya, D., Lien, D.H., Brooks, G.A., Davis, R.W. and Javey, A. (2016) Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis. Nature, 529, 509-514.
https://doi.org/10.1038/nature16521
[27] Saravanan, N. and Senthil Kumar, A. (2020) Molecular Wiring of Glucose Oxidase Enzyme with Mn Polypyridine Complex on MWCNT Modified Electrode Surface and Its Bio-Electrocatalytic Oxidation and Glucose Sensing. Methods in Enzymology, 630, 249-262.
https://doi.org/10.1016/bs.mie.2019.10.024
[28] Bagheri, N., Mazzaracchio, V., Cinti, S., Colozza, N., Di Natale, C., Netti, P.A., Saraji, M., Roggero, S., Moscone, D. and Arduini, F. (2021) Electroanalytical Sensor Based on Gold-Nanoparticle-Decorated Paper for Sensitive Detection of Copper Ions in Sweat and Serum. Analytical Chemistry, 93, 5225-5233.
https://doi.org/10.1021/acs.analchem.0c05469
[29] Cheng, C.M., Martinez, A.W., Gong, J., Mace, C.R., Phillips, S.T., Carrilho, E., Mirica, K.A. and Whitesides, G.M. (2010) Paper-Based ELISA. Angewandte Chemie International Edition, 49, 4771-4774.
https://doi.org/10.1002/anie.201001005
[30] Dungchai, W., Chailapakul, O. and Henry, C.S. (2009) Electrochemical Detection for Paper-Based Microfluidics. Analytical Chemistry, 81, 5821-5826.
https://doi.org/10.1021/ac9007573
[31] Qin, X., Wu, T., Zhu, Y., Shan, X., Liu, C. and Tao, N. (2020) A Paper Based Milli-Cantilever Sensor for Detecting Hydrocarbon Gases via Smartphone Camera. Analytical Chemistry, 92, 8480-8486.
https://doi.org/10.1021/acs.analchem.0c01240
[32] Santopolo, G., Clemente, A., Rojo-Molinero, E., Oliver, A., Noé, C. and de la Rica, R. (2022) Rapid Identification and Classification of Pathogens That Produce Carbapenemases and Cephalosporinases with a Colorimetric Paper-Based Multisensor. Analytical Chemistry, 94, 9442-9449.
https://doi.org/10.1021/acs.analchem.2c01724
[33] Delaney, J.L., Hogan, C.F., Tian, J. and Shen, W. (2011) Electrogenerated Chemiluminescence Detection in Paper- Based Microfluidic Sensors. Analytical Chemistry, 83, 1300-1306.
https://doi.org/10.1021/ac102392t
[34] Novell, M., Parrilla, M., Crespo, G.A., Rius, F.X. and Andrade, F.J. (2012) Paper-Based Ion-Selective Potentiometric Sensors. Analytical Chemistry, 84, 4695-4702.
https://doi.org/10.1021/ac202979j
[35] Chen, L., Chen, F., Liu, G., Lin, H., Bao, Y., Han, D., Wang, W., Ma, Y., Zhang, B. and Niu, L. (2022) Superhydrophobic Functionalized Ti3C2Tx MXene-Based Skin-Attachable and Wearable Electrochemical pH Sensor for Real- Time Sweat Detection. Analytical Chemistry, 94, 7319-7328.
https://doi.org/10.1021/acs.analchem.2c00684
[36] Li, J., Jiang, M., Su, M., Tian, L., Shi, W. and Yu, C. (2021) Stretchable and Transparent Electrochemical Sensor Based on Nanostructured Au on Carbon Nanotube Networks for Real-Time Analysis of H2O2 Release from Cells. Analytical Chemistry, 93, 6723-6730.
https://doi.org/10.1021/acs.analchem.1c00336
[37] Shu, Y., Su, T., Lu, Q., Shang, Z., Xu, Q. and Hu, X. (2021) Highly Stretchable Wearable Electrochemical Sensor Based on Ni-Co MOF Nanosheet-Decorated Ag/rGO/PU Fiber for Continuous Sweat Glucose Detection. Analytical Chemistry, 93, 16222-16230.
https://doi.org/10.1021/acs.analchem.1c04106
[38] Ding, Y., Xu, T., Onyilagha, O., Fong, H. and Zhu, Z. (2019) Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. ACS Applied Materials & Interfaces, 11, 6685- 6704.
https://doi.org/10.1021/acsami.8b20929
[39] Xu, T., Ding, Y., Liang, Z., Sun, H., Zheng, F., Zhu, Z., Zhao, Y. and Fong, H. (2020) Three-Dimensional Monolithic Porous Structures Assembled from Fragmented Electrospun Nanofiber Mats/Membranes: Methods, Properties, and Applications. Progress in Materials Science, 112, Article ID: 100656.
https://doi.org/10.1016/j.pmatsci.2020.100656
[40] Miao, Y., Li, P., Cheng, S., Zhou, Q., Cao, M., Yi, J. and Zhang, H. (2022) Preparation of Multi-Axial Compressible 3D PVDF Nanofibre/Graphene Wearable Composites Sensor Sponge and Application of Integrated Sensor. Sensors and Actuators A: Physical, 342, Article ID: 113648.
https://doi.org/10.1016/j.sna.2022.113648
[41] Kim, S.B., Koo, J., Yoon, J., Hourlier-Fargette, A., Lee, B., Chen, S., Jo, S., Choi, J., Oh, Y.S., Lee, G., Won, S.M., Aranyosi, A.J., Lee, S.P., Model, J.B., Braun, P.V., Ghaffari, R., Park, C. and Rogers, J.A. (2020) Soft, Skin-Interfaced Microfluidic Systems with Integrated Enzymatic Assays for Measuring the Concentration of Ammonia and Ethanol in Sweat. Lab on a Chip, 20, 84-92.
https://doi.org/10.1039/C9LC01045A
[42] Kim, J., Sempionatto, J.R., Imani, S., Hartel, M.C., Barfidokht, A., Tang, G., Campbell, A.S., Mercier, P.P. and Wang, J. (2018) Simultaneous Monitoring of Sweat and Interstitial Fluid Using a Single Wearable Biosensor Platform. Advanced Science, 5, Article ID: 1800880.
https://doi.org/10.1002/advs.201800880
[43] Sempionatto, J.R., Khorshed, A.A., Ahmed, A., De Loyola, E.S.A.N., Barfidokht, A., Yin, L., Goud, K.Y., Mohamed, M.A., Bailey, E., May, J., Aebischer, C., Chatelle, C. and Wang, J. (2020) Epidermal Enzymatic Biosensors for Sweat Vitamin C: Toward Personalized Nutrition. ACS Sensors, 5, 1804-1813.
https://doi.org/10.1021/acssensors.0c00604
[44] Schazmann, B., Morris, D., Slater, C., Beirne, S., Fay, C., Reuveny, R., Moyna, N. and Diamond, D. (2010) A Wearable Electrochemical Sensor for the Real-Time Measurement of Sweat Sodium Concentration. Analytical Methods, 2, 342-348.
https://doi.org/10.1039/b9ay00184k
[45] Daboss, E.V., Tikhonov, D.V., Shcherbacheva, E.V. and Karyakin, A.A. (2022) Ultrastable Lactate Biosensor Linearly Responding in Whole Sweat for Noninvasive Monitoring of Hypoxia. Analytical Chemistry, 94, 9201-9207.
https://doi.org/10.1021/acs.analchem.2c02208
[46] Wang, Z., Shin, J., Park, J.H., Lee, H., Kim, D.H. and Liu, H. (2020) Engineering Materials for Electrochemical Sweat Sensing. Advanced Functional Materials, 31, Article ID: 2008130.
https://doi.org/10.1002/adfm.202008130
[47] Wang, P., Wang, M., Zhou, F., Yang, G., Qu, L. and Miao, X. (2017) Development of a Paper-Based, Inexpensive, and Disposable Electrochemical Sensing Platform for Nitrite Detection. Electrochemistry Communications, 81, 74-78.
https://doi.org/10.1016/j.elecom.2017.06.006
[48] Cagnani, G.R., Ibanez-Redin, G., Tirich, B., Goncalves, D., Balogh, D.T. and Oliveira Jr., O.N. (2020) Fully-Printed Electrochemical Sensors Made with Flexible Screen-Printed Electrodes Modified by Roll-to-Roll Slot-Die Coating. Biosensors and Bioelectronics, 165, Article ID: 112428.
https://doi.org/10.1016/j.bios.2020.112428
[49] Cui, F., Jafarishad, H., Zhou, Z., Chen, J., Shao, J., Wen, Q., Liu, Y. and Zhou, H.S. (2020) Batch Fabrication of Electrochemical Sensors on a Glycol-Modified Polyethylene Terephthalate-Based Microfluidic Device. Biosensors and Bioelectronics, 167, Article ID: 112521.
https://doi.org/10.1016/j.bios.2020.112521