环状RNA在急性髓系白血病中的研究进展
Research Progress of CircRNAs in Acute My-eloid Leukemia
DOI: 10.12677/ACM.2022.1281134, PDF, HTML, XML, 下载: 232  浏览: 348 
作者: 寇丹婷, 葛繁梅*:延安大学附属医院,陕西 延安
关键词: 环状RNA急性髓细胞性白血病综述Circular RNA Acute Myeloid Leukemia Review
摘要: 急性髓系白血病(AML)是起源于造血系统髓系原始细胞的克隆性恶性疾病。AML具有治愈率与存活率低而复发率高的特点,因此寻找早期且敏感的生物标记物、探索积极有效的治疗手段尤为重要。环状RNA (circRNA)是一类非编码RNA,可以在转录水平、转录后水平和表观遗传学等方面发挥重要的调控作用,影响细胞的增殖、分化、凋亡和耐药等生物学过程。本文就hsa-circ-0004277、circPAN3、hsa-circ-0009910、hsa-circ-0006332、hsa-circ-0017639等近几年来发现的circRNA在急性髓系白血病中的作用作一综述,旨在为AML的临床诊断及治疗靶点提供潜在依据。
Abstract: Acute myeloid leukemia (AML) is a clonal malignant disease originating from myeloid blasts of hematopoietic system. AML is characterized by low cure rate and survival rate and high recurrence rate. Therefore, it is particularly important to find early and sensitive biomarkers and explore ac-tive and effective treatment methods. Circular RNA (circRNA) is a class of non-coding RNA, which can play an important regulatory role in transcriptional level, post-transcriptional level and epige-netics, affecting biological processes such as cell proliferation, differentiation, apoptosis and drug resistance. This article reviews the role of circRNAs discovered in recent years, such as HSA-CIRC-0004277, circPAN3, HSA-CIRC-0009910, HSA-CIRC-0006332, HSA-CIRC-0017639 in acute myeloid leukemia, aiming to provide a potential basis for the clinical diagnosis and therapeutic targets of AML.
文章引用:寇丹婷, 葛繁梅. 环状RNA在急性髓系白血病中的研究进展[J]. 临床医学进展, 2022, 12(8): 7871-7876. https://doi.org/10.12677/ACM.2022.1281134

1. 引言

急性髓系白血病(acute myeloid leukemia, AML)是一种髓系造血干/祖细胞的克隆性恶性疾病,其发病机制复杂,主要特征是骨髓中白血病细胞不受控制的增殖和成熟障碍,从而影响了骨髓的正常造血功能。虽然近些年来在AML的治疗方面取得了一些进展,新型治疗药物的出现和造血干细胞移植技术的发展都使得AML的预后有很大的改善,但AML主要治疗方式还是经典“3 + 7方案”,即化疗和造血干细胞移植,而且AML的临床结局仍不尽人意,长期生存率仍较差;只有不到40%的AML患者获得长期生存 [1]。因此,寻找新的生物标志物和靶向治疗分子显得尤为重要。

环状RNA (circular RNA, circRNA)是基因组在转录过程中由mRNA前体(pre-mRNA)反向剪接而形成的一类单链闭环非编码RNA分子,大多数存在于真核细胞中,且具有一定组织特异性和时序性 [2] [3]。与传统线性RNA相比,circRNA没有5′端的帽子结构和3′端的poly(A)尾巴 [4]。这种特有的结构使其具有较高的稳定性,能够抵抗核酸外切酶的降解作用,在细胞中持续稳定表达 [5]。根据其来源以及构成序列不同主要可以分为三类:外显子circRNA、内含子circRNA和外显子–内含子circRNA。目前circRNA常作为竞争性内源RNA (ceRNA),通过内源性竞争作用“海绵吸附”miRNA,调控下游靶基因的表达水平。越来越多的研究表明,circRNAs在恶性肿瘤的发生发展中起重要的作用 [6]。本文总结了近年来在AML中发现的几种circRNA在急性髓系白血病中的作用,以期为AML的临床诊断及治疗靶供潜在依据。

2. 近年来发现的与急性髓系白血病相关的circRNAs

2.1. Hsa-circ-0004277

hsa-circ-0004277的线性同种型是WDR37,位于chr10:1125950-1126416 [7]。该家族与细胞凋亡、信号通路和细胞事件包括细胞周期相关 [8]。目前认为Hsa-circ-0004277在癌细胞中过表达,与肝癌和结直肠癌等相关,在肝癌中促进细胞增殖和上皮间质转化 [9] [10]。Wei等 [7] 研究表明,新诊断的AML病例hsa-circ-0004277表达下调,完全缓解的病例hsa-circ-0004277表达升高,复发/难治性病例hsa-circ-0004277表达再次下调,进一步通过生物信息学分析预测了一个详细hsa-circ-0004277-miRNA- mRNA相互作用网络,它为其在AML中的潜在致病机制提供了深入的了解。这些结果表明hsa-circ-0004277可能作为AML的诊断标志物和治疗靶点。Liu等 [11] 人研究揭示了circ-0004277在AML中是低表达的,功能实验表明Circ-0004277过表达会阻碍AML细胞的生长和侵袭性。在机制上,circ-0004277通过海绵化miR-134-5p上调SSBP2的表达,而SSBP2过表达会导致AML细胞系的克隆发生能力丧失和细胞周期停滞 [12]。这项工作为circRNA在介导AML发展中的生物学功能提供了创新和重要的见解,并为AML的诊断和治疗提供了一些线索。

2.2. CircPAN3

CircPAN3位于chr5:147450653-147488258,通过Pan3 pre-mRNA的反向剪接产生。Shang等 [13] 通过研究RT-PCR发现,耐阿霉素(ADM)的THP-1 AML细胞系(THP-1/ADM)细胞中circPAN3高表达,并且自难治性和复发性AML患者的BM样本显示circPAN3的表达增加,功能缺失实验中通过转染siRNA下调circPAN3显着恢复了THP-1/ADM细胞的ADM灵敏度,进一步研究表明,circPAN3的下调可以降低细胞凋亡蛋白(XIAP) X连锁抑制剂的表达,但这种效应被miR-153-3p或miR-183-5p特异性抑制剂抵消,荧光素酶报告实验证实,这些分子参与circPAN3调节网络。因此,推测circPAN3可能通过miR-153-5p/miR-183-5p-XIAP轴调控AML细胞的化疗耐药。因此,circPAN3可以成为预测AML患者化疗临床疗效的宝贵指标,靶向HOXA-AS2或许能攻克AML患者对阿霉素耐药问题。此外,CircPAN3在自噬介导的心脏纤维化过程中通过miR-221/FoxO3/ATG7轴表现出促纤维化作用,这可能是心脏纤维化治疗的潜在生物标志物 [14]。Shang再次研究表明,自噬在AML细胞耐药过程中发挥重要作用,进一步研究发现,circPAN3在耐药AML细胞中高表达,下调circPAN3可以降低耐药AML细胞的自噬活性并增加其凋亡,慢病毒介导的circPAN3过表达在药物敏感的AML细胞中导致相反的结果 [15]。接下来研究circPAN3调控自噬的机制发现,siRNA下调circPAN3导致AMPK/mTOR通路失活,AMPK的抑制剂可以显著减弱过表达circPAN3引起的自噬活性增加,通过生物信息学分析预测了circPAN3-miR-545-3p-TAK1轴导致THP-1/ADM细胞中AMPK/mTOR通路的激活相互作用网络,功能实验及双荧光素酶实验证实了这一预测。因此,circPAN3极有可能是AML获得性耐药的关键调控因子,它可能通过AMPK/mTOR通路作为自噬诱导因子调控自噬,从而促进AML细胞的耐药,这为circRNA在介导AML耐药性中的作用提供新的重要见解,并表明circPAN3可能是治疗耐药AML的潜在靶点。

2.3. Hsa-circ-0009910

近年来有研究证明hsa-circ-0009910与胃癌和骨肉瘤相关 [16] [17]。Wang等 [18] 通过检测qRT-PCR发现,hsa-circ-0009910在AML细胞中明显高表达,特别是在AML细胞衍生的外泌体中,干扰hsa-circ-0009910表达可抑制细胞增殖和细胞周期进展,促进细胞的凋亡率。qRT-PCR显示,AML细胞中miR-5195-3p表达下调,过表达miR-5195-3p可抑制AML细胞增殖,抑制细胞周期,促进细胞凋亡。双荧光素酶报告实验表明,hsa-circ-0009910可以通过外泌体穿梭,直接调控AML细胞中miR-23a-3p的表达,miR-23a-3p能抑制生长因子受体结合蛋白10 (GRB10)的表达。因此,hsa-circ-0009910可通过miR-5195-3p/GRB10影响AML细胞的增殖,凋亡和细胞周期进展。以上研究表明hsa-circ-0009910通过外泌体的穿梭来建立细胞间通讯并维持AML的恶性行为,这表明hsa-circ-0009910可能是AML中一种有希望的非侵入性生物标志物 [18]。类似的研究还发现,Hsa-circ-0009910在AML组织和细胞中高度表达,沉默hsa-circ-0009910可显著抑制AML细胞的增殖、球体形成和自噬,促进AML细胞的凋亡,进一步研究表明,Hsa-circ-0009910可以通过调节B4GALT5表达并通过海绵miR-491-5p激活PI3K/AKT信号通路来抑制增殖、球体形成、自噬和加速细胞凋亡,这表明hsa-circ-0009910可能是治疗AML的潜在生物标志物 [19]。

2.4. CircMYBL2 (hsa-circ-0006332)

最近研究发现circMYBL2与多种肿瘤相关,如宫颈癌 [20]、胰腺癌 [21] 等。Qian等 [22] 研究发现,circMYBL2在具有FLT3-ITD突变的AML患者中表达显著增高,在白血病进展中发挥重要作用,敲低circMYBL2可以抑制FLT3-ITD AML细胞增殖并促进其在体外和体内的分化,进一步研究发现,circMYBL2显著影响突变FLT3激酶的蛋白质水平,这有助于FLT3-ITD依赖性信号通路的激活。多聚嘧啶区结合蛋白1 (PTBP1)是一种RNA结合蛋白,可调节mRNA代谢的各个方面,尤其是翻译调节,circMYBL2通过增加PTBP1与FLT3信使RNA的结合来增强FLT3激酶的翻译效率,敲低circMYBL2导致FLT3激酶表达显着下降,随后其下游信号通路失活,损害了FLT3-ITD细胞的活性 [22]。因此,circMYBL2可能是FLT3-ITD AML的潜在治疗靶点。

2.5. Circ-SFMBT2 (hsa-circ-0017639)

Circ-SFMBT2主要分布在细胞质中 [23]。Chang等 [23] 研究发现,circ-SFMBT2在临床AML患者和AML细胞系中表达显著升高,其与AML细胞的恶性表型相关AML细胞中circ-SFMBT2高表达,功能缺失实验中,敲除circ-SFMBT2可抑制AML细胞的增殖、迁移、侵袭和糖酵解,诱导细胞凋亡。荧光素酶报告实验证实,circ-SFMBT2与miR-582-3p结合,miR-193a靶向含有20的锌指和BTB结构域(ZBTB20)。因此,circ-SFMBT2/miR-582-3p/ZBTB20轴可能为AML提供潜在的治疗策略。

2.6. Has-circ-0001947

Has-circ-0001947来源于基因AFF2外显子,其长度为861 bp。Han等 [24] 人研究发现,hsa-circ-0001947在新诊断或复发难治AML患者中的表达水平明显低于健康对照组,并且在化疗后其表达水平可显著恢复,表明其可以作为AML诊断和预后的生物标志物。进一步实验表明,转染siRNA下调hsa-circ-0001947可以促进THP-1细胞的增值并抑制其凋亡,并且下游靶基因CREBRF的表达水平也随之下调。生物信息学分析提示,hsa-circ-0001947与has-miR-329-5p存在潜在结合位点。双荧光素酶实验报告证实,hsa-circ-0001947与has-miR-329-5p结合,has-miR-329-5p能够抑制CREBRF的表达。因此,hsa-circ-0001947在AML中发挥了关键的调控作用,可能成为AML的潜在治疗靶点。

以上研究表明,circRNA在白血病的发生、发展、预后中具有重要作用,但是circRNA在AML致病机制中的研究尚处于起步阶段,主要集中于circRNA常作为竞争性内源RNA (ceRNA)调控下游基因表达方面,尚需要更多功能机制实验和临床试验研究,为靶向治疗AML的circRNA相关药物出现提供有力的依据。

3. 展望

综上所述,环状RNA作为一种新的、早期的、较敏感的生物标记物,不仅可以用于早期筛查AML,而且可以干扰相关作用靶点用于疾病的靶向性治疗。目前对环状RNA和AML关系的研究刚刚起步,在环状RNA和AML之间的这个复杂的关系网络中,目前的发现只是冰山一角,还需要研究者们进行更多更深入的研究。AML具有治愈率与存活率低,而复发率高的特点,研究环状RNA对AML的影响机制,使得其在临床AML的诊断、分型、治疗和预后评估等方面发挥重要作用,未来可能为AML治疗提供一个新的途径。

NOTES

*通讯作者。

参考文献

[1] Döhner, H., Estey, E.H., Amadori, S., et al. (2010) Diagnosis and Management of Acute Myeloid Leukemia in Adults: Recommendations from an International Expert Panel, on Behalf of the European LeukemiaNet. Blood, 115, 453-474.
https://doi.org/10.1182/blood-2009-07-235358
[2] Jeck, W.R., et al. (2013) Circular RNAs Are Abundant, Con-served, and Associated with ALU Repeats. RNA, 19, 141-157.
https://doi.org/10.1261/rna.035667.112
[3] Chen, L.L. and Yang, L. (2015) Regulation of circRNA Biogenesis. RNA Biology, 12, 381-388.
https://doi.org/10.1080/15476286.2015.1020271
[4] Li, X., Yang, L. and Chen, L.L. (2018) The Biogenesis, Functions, and Challenges of Circular RNAs. Molecular Cell, 71, 428-442.
https://doi.org/10.1016/j.molcel.2018.06.034
[5] Chen, X., Fan, S. and Song, E. (2016) Noncoding RNAs: New Players in Cancers. Advances in Experimental Medicine and Biology, 927, 1-47.
https://doi.org/10.1007/978-981-10-1498-7_1
[6] 李馨慧, 张慧杰, 吴丹, 马瑞肖, 张淑兰. 环状RNA在妇科肿瘤中的研究进展[J]. 中国实用妇科与产科杂志, 2018, 34(11): 1291-1294.
[7] Li, W., Zhong, C., Jiao, J., Li, P., Cui, B., Ji, C. and Ma, D. (2017) Characterization of hsa-circ-0004277 as a New Biomarker for Acute Myeloid Leukemia via Circular RNA Profile and Bioinformatics Analysis. International Journal of Molecular Sciences, 18, 597.
https://doi.org/10.3390/ijms18030597
[8] Greene, J., Baird, A.M., Brady, L., Lim, M., Gray, S.G., McDermott, R. and Finn, S.P. (2017) Circular RNAs: Biogenesis, Function and Role in Human Diseases. Frontiers in Molecular Bio-sciences, 4, Article No. 38.
https://doi.org/10.3389/fmolb.2017.00038
[9] Yang, L., Sun, H., Liu, X., Chen, J., Tian, Z., Xu, J., Xiang, B. and Qin, B. (2020) Circular RNA hsa-circ-0004277 Contributes to Malignant Phenotype of Colorectal Cancer by Sponging miR-512-5p to Upregulate the Expression of PTMA. Journal of Cellular Physiology.
https://doi.org/10.1002/jcp.29484
[10] Zhu, C., Su, Y., Liu, L., Wang, S., Liu, Y. and Wu, J. (2021) Circular RNA hsa-circ-0004277 Stimulates Malignant Phenotype of Hepatocellular Carcinoma and Epithelial-Mesenchymal Transition of Peripheral Cells. Frontiers in Cell and Developmental Biology, 8, Article ID: 585565.
https://doi.org/10.3389/fcell.2020.585565
[11] Liu, Y., Chen, X., Liu, J., Jin, Y. and Wang, W. (2022) Circular RNA circ-0004277 Inhibits Acute Myeloid Leukemia Progression through MicroRNA-134-5p/Single Stranded DNA Binding Protein 2. Bioengineered, 13, 9662-9673.
https://doi.org/10.1080/21655979.2022.2059609
[12] Liang, H., Samanta, S. and Nagarajan, L. (2005) SSBP2, a Candidate Tumor Suppressor Gene, Induces Growth Arrest and Differentiation of Myeloid Leukemia Cells. Oncogene, 24, 2625-2634.
https://doi.org/10.1038/sj.onc.1208167
[13] Shang, J., Chen, W.M., Wang, Z.H., Wei, T.N., Chen, Z.Z. and Wu, W.B. (2019) CircPAN3 Mediates Drug Resistance in Acute Myeloid Leukemia through the miR-153-5p/miR-183-5p-XIAP Axis. Experimental Hematology, 70, 42-54.e3.
https://doi.org/10.1016/j.exphem.2018.10.011
[14] Li, F., Long, T.Y., Bi, S.S., Sheikh, S.A. and Zhang, C.L. (2020) circPAN3 Exerts a Profibrotic Role via Sponging miR-221 through FoxO3/ATG7-Activated Autophagy in a Rat Model of Myocardial Infarction. Life Sciences, 257, Article ID: 118015.
https://doi.org/10.1016/j.lfs.2020.118015
[15] Shang, J., Chen, W.M., Liu, S., Wang, Z.H., Wei, T.N., Chen, Z.Z. and Wu, W.B. (2019) CircPAN3 Contributes to Drug Resistance in Acute Myeloid Leukemia through Regulation of Autophagy. Leukemia Research, 85, Article ID: 106198.
https://doi.org/10.1016/j.leukres.2019.106198
[16] Deng, N., Li, L., Gao, J., Zhou, J., Wang, Y., Wang, C. and Liu, Y. (2018) Hsa-hsa-circ-0009910 Promotes Carcinogenesis by Promoting the Expression of miR-449a Target IL6R in Osteosarcoma. Biochemical and Biophysical Research Commu-nications, 495, 189-196.
https://doi.org/10.1016/j.bbrc.2017.11.028
[17] Liu, M., Liu, K.D., Zhang, L., Cai, J., Yao, H.W., Bai, Y.K. and Zhang, Z.T. (2018) Hsa-circ-0009910 Regulates Growth and Metastasis and Is Associated with Poor Prognosis in Gastric Cancer. European Review for Medical and Pharmacological Sciences, 22, 8248-8256.
[18] Wang, D., Ming, X., Xu, J. and Xiao, Y. (2021) Hsa-circ-0009910 Shuttled by Exosomes Regulates Proliferation, Cell Cycle and Apoptosis of Acute Myeloid Leukemia Cells by Regulating miR-5195-3p/GRB10 Axis. Hematological Oncology, 39, 390-400.
https://doi.org/10.1002/hon.2874
[19] Wu, Y., Zhao, B., Chen, X., Geng, X. and Zhang, Z. (2022) Hsa-circ-0009910 Sponges miR-491-5p to Promote Acute Myeloid Leukemia Progression through Modulating B4GALT5 Expression and PI3K/AKT Signaling Pathway. International Journal of Laboratory Hematology, 44, 320-332.
https://doi.org/10.1111/ijlh.13742
[20] Sun, Y.M., Wang, W.T., Zeng, Z.C., Chen, T.Q., Han, C., Pan, Q., Huang, W., Fang, K., Sun, L.Y., Zhou, Y.F., Luo, X.Q., Luo, C., Du, X. and Chen, Y.Q. (2019) circMYBL2, a circRNA from MYBL2, Regulates FLT3 Translation by Recruiting PTBP1 to Promote FLT3-ITD AML Progression. Blood, 134, 1533-1546.
https://doi.org/10.1182/blood.2019000802
[21] Dong, M., Li, P., Xie, Y., Wang, Z. and Wang, R. (2021) CircMYBL2 Regulates the Resistance of Cervical Cancer Cells to Paclitaxel via miR-665-Dependent Regulation of EG FR. Drug Development Research, 82, 1193-1205.
https://doi.org/10.1002/ddr.21834
[22] Qian, X., Zong, W., Ma, L., Yang, Z., Chen, W., Yan, J. and Xu, J. (2022) MM-Associated Circular RNA Downregulates microRNA-19a through Methylation to Suppress Proliferation of Pancre-atic Adenocarcinoma Cells. Bioengineered, 13, 9294-9300.
https://doi.org/10.1080/21655979.2022.2051815
[23] Chang, W., Shang, Z., Ming, X., Wu, J. and Xiao, Y. (2022) Circ-SFMBT2 Facilitates the Malignant Growth of Acute Myeloid Leukemia Cells by Modulating miR-582-3p/ZBTB20 Pathway. Histology and Histopathology, 37, 137-149.
[24] Han, F., Zhong, C., Li, W., Wang, R., Zhang, C., Yang, X., Ji, C. and Ma, D. (2020) hsa-circ-0001947 Suppresses Acute Myeloid Leukemia Progression via Targeting hsa-miR-329-5p/CREBRF Axis. Epigenomics, 12, 935-953.
https://doi.org/10.2217/epi-2019-0352