肿瘤免疫检查点抑制剂的神经系统相关不良反应及管理策略
Nervous System Related Adverse Reactions and Management Strategies of Tumor Immune Checkpoint Inhibitors
摘要: 免疫检查点抑制剂(Immune checkpoint inhibitors, ICIs)是为阻断人体免疫系统中抑制性免疫调节位点、增强人体抗肿瘤作用而开发的一类蛋白类分子。目前已被食品药品监督管理局(Food and Drug Administration, FDA)批准用于治疗晚期恶性肿瘤的一类新型药物,其显著提高了癌症患者的生存期,尽管疗效显著,但治疗所产生的免疫相关不良事件(immune-related adverse events, irAEs)发生率及死亡率亦不断升高。常见的irAEs包括皮肤、胃肠道、肝脏和内分泌事件等,神经系统不良反应比较少见,目前已有报道的包括吉兰–巴雷综合征、重症肌无力、无菌性脑膜炎、多发性硬化和肌炎等。对于诊断免疫介导的神经系统不良反应,需要结合患者、症状体征及影像学、脑脊液细胞学、脑电图或肌电图等检查,除外感染或恶性肿瘤后获得诊断。治疗中,大部分患者运用糖皮质激素或丙种球蛋白治疗和对症支持治疗症状能得到显著改善。本文的目的是总结了神经系统的irAEs发生率、临床表现和诊断、发生机制及管理策略进行阐述,旨在为临床医师应用ICIs提供参考。
Abstract: Immune checkpoint inhibitors (ICIs) are a class of protein molecules developed to block inhibitory immune regulatory sites in the human Immune system and enhance the anti-tumor effect of human body. A new class of drugs approved by the Food and Drug Administration to treat advanced malig-nancies significantly improves survival in cancer patients; at the same time, a wide range of im-mune-related adverse events (irAEs) will also occur. The common irAEs include cutaneous, gastro-intestinal, liver and endocrine events, while neurological adverse reactions are relatively rare. Cur-rently, there have been reports of Guillan-Barre syndrome, myasthenia gravis, aseptic meningitis, multiple sclerosis and myitis. For the diagnosis of immune-mediated neurologic adverse reactions, it is necessary to combine with patients, symptoms and signs, imaging, cerebrospinal fluid cytology, electroencephalogram or electromyography to exclude after infections or malignancies to obtain the diagnosis. The purpose of this review is to summarize the incidence, clinical manifestations, di-agnosis, pathogenesis and management strategies of irAEs in the nervous system, so as to provide reference for clinicians to apply ICIs.
文章引用:杨敏, 王玉忠. 肿瘤免疫检查点抑制剂的神经系统相关不良反应及管理策略[J]. 临床医学进展, 2022, 12(8): 7964-7971. https://doi.org/10.12677/ACM.2022.1281147

1. 引言

免疫检查点抑制剂是近年来兴起的针对癌症治疗的新型药物,其机制是抑制免疫系统中抑制性免疫调节位点,使T细胞大量增殖,杀伤肿瘤细胞。关于ICIs的研发最早始于1996年,大量的动物和临床试验均证明ICIs具有显著的抗肿瘤的疗效。自2011年来,美国食品和药品管理局先后批准细胞毒性T淋巴细胞相关抗原4 (Cytotoxic T lymphocyte-associated antigen 4, CTLA-4)抑制剂、程序性细胞死亡蛋白1 (Programmed cell death protein 1, PD-1)抑制剂和程序性死亡受体配体1 (Programmed cell death receptor ligand 1, PD-L1)抑制剂用于黑色素瘤、霍奇金淋巴瘤、肾细胞和尿路上皮癌、非小细胞肺癌和头颈癌等的治疗 [1] [2] [3] [4]。尽管大量研究已证明ICIs对肿瘤治疗效果明显,但由于激活了自身特异性免疫,也会产生免疫相关不良事件(immune related adverse events, irAEs),包括皮肤、消化系统、呼吸系统、神经系统等多种系统 [5] [6]。根据已有的临床试验分析表明,抗CTLA-4和抗PD-1/PD-L1抗体发生irAEs的概率分别为72%和66%,且两者联合治疗的发病率为比单一治疗明显增高,病变程度严重的发生率分别为24%和14% [7] [8]。早期识别免疫检查点抑制剂引发的神经系统不良反应,并根据相关指南和临床经验做出适当及时的处理,这是免疫检查点抑制剂治疗中不容忽视的内容。本文中,我们总结了临床上常见的免疫相关下神经毒性不良反应及其发生机制和管理策略,旨在为临床医师处理神经irAEs提供参考。

2. 常见的ICIs及其作用机制

目前,ICIs引发神经不良反应的发生机制尚不明确,有研究报道,可能因ICIs促进T细胞增殖、活化,活化的T细胞对神经细胞造成免疫损伤,引起自身免疫性神经病。研究发现人和鼠的神经细胞均可表达PD-L1分子,发生神经细胞损伤时其表达明显增加,且神经细胞与肿瘤细胞一样都能表达可被T细胞识别的抗原,故在ICIs治疗中,尤其两种ICIs联合使用(抗CTLA-4和抗PD-1抗体)时,效应T细胞直接作用于神经细胞,引发自身免疫性神经系统疾病。目前,针对CTLA-4开发的ICIs为人源化单克隆抗体(伊匹单抗)可以阻断CTLA-4-B7通路,促进效应T细胞的增殖和活化,增强抗肿瘤的免疫反应从而杀伤肿瘤细胞 [9] [10]。抗PD-1 (纳武单抗和派姆单抗)或抗PD-L1抗体(阿特朱单抗)引发irAEs可能的机制包括抑制PD-1或PD-L1通路后,效应T细胞过度激活、调节性T细胞功能降低,导致巨噬细胞和中性粒细胞的毒性作用增强、γ干扰素和肿瘤坏死因子的大量释放以及B细胞产生的抗体等密切相关 [10] [11] [12]。

3. ICIs相关神经系统不良反应研究进展

ICIs彻底改变了各种晚期恶性肿瘤的预后结果,近年来越来越广泛运用于临床。尽管疗效显著,但治疗相关不良反应所致的患者死亡亦不断升高。ICIs相关神经系统不良反应较少,但致死率高,值得临床医生重点关注。目前缺乏ICIs引发其神经系统不良反应大规模的前瞻性调查研究。Spain等人记录了在伦敦皇家马尔森医院413名黑色素瘤患者接受了ICIs治疗发生不良反应的结果,其中神经毒性的总发生率为2.4%,而严重的3级和4级不良反应发生率为1.45%。接受伊匹单抗、派姆单抗、纳武单抗发生率分别为7%、1%和2%,联合治疗的风险率为14% [13]。Cuzzubbos等对27例接受ICIs治疗并发生n-irAEs患者进行分析,结果显示n-irAEs发生的中位时间为6周(1~74周),所有n-irAEs的发生均是急性或亚急性,并且与肿瘤应答反应相关 [14]。Jordi等对两个欧洲大学中心1185名ICIs治疗患者进行一项回顾性研究。其中有24例(2%)患者出现神经毒性不良反应,周围神经系统受累14例(58.4%),中枢神经系统受累10例(33.3%),发病的平均年龄为63.4 ± 7.3岁。在发生神经毒性的患者和未发生神经毒性的患者之间,年龄、性别、肿瘤类型和ICIs类别方面没有发现明显差异。大多数发生神经毒性的患者在ICIs停用和适当的免疫调节治疗后症状有所改善。面对ICIs相关严重的神经系统不良反应,加强监测管理,多学科协作,积极救治,这成为避免致死性危害的关键性问题。

4. 常见的神经系统相关不良反应及管理策略

免疫相关的神经系统不良反应(neurological immune adverse events, n-irAEs)最常见的包括无菌性脑膜炎、脑炎、横贯性脊髓炎等中枢神经系统损害,也可引起吉兰–巴雷综合征、重症肌无力、肌病等周围神经系统损害 [15] [16]。根据The Common Terminology Criteria for Adverse Events (CTCAE)分级 [17],大部分神经系统不良反应发生的严重程度为1~2级,患者临床症状轻微,常伴有非特异性症状,如头痛、眩晕、味觉障碍和味觉障碍等。3~4级n-irAEs发生率低于1%,患者症状严重有时甚至会危及生命。大部分患者运用激素加免疫球蛋白治疗能得到明显改善,但对于免疫球蛋白难治性神经系统irAEs,临床医生可以考虑替代疗法(如霉酚酸酯、英夫利昔单抗等治疗)改善神经系统irAE的症状 [17] (图1)。

4.1. 中枢神经系统不良反应

4.1.1. 免疫相关性无菌性脑膜炎及脑炎

免疫相关性无菌性脑膜炎是一种比较罕见的不良反应,临床上以表现为急性或亚急性症状,如头疼、颈强直、伴或不伴发热,复视、意识改变等。完善脑脊液检查提示脑脊液呈无菌性,淋巴细胞及蛋白定量升高。颅脑MRI可见脑膜强化。该不良反应通常发生在免疫抑制剂治疗1~7周后。以往文献报道表明,使用抗CTLA-4抗体治疗后易患该病,其患病率为0.1%~0.2% [18] [19]。免疫介导脑炎具有症状的多样

Figure 1. Diagnosis and treatment strategies of neurological immune adverse events

图1. 免疫性神经系统不良反应诊断及治疗策略

性和非典型性,诊断较困难,目前已有报道多为病例报道。其主要的临床症状为头痛、发热、精神错乱、记忆力障碍、嗜睡、幻觉、癫痫发作、颈强直、精神状态下降、注意力受损和定向障碍等。根据Larkin等近期的研究,免疫介导脑炎总体发生率为0.44%,抗CTLA-4与抗PD-1联合治疗发病率明显高于单一药物治疗,发病时间在用药后8周。出现相应的临床症状时,需要完善颅脑MRI及腰穿脑脊液检查评估病变情况 [15]。Ruocco等报道了1名59岁女性,患有晚期黑色素瘤且发生多处转移的患者,在接受伊匹单抗(3 mg/kg,为期三周)第三周期后一周,出现严重发热、头痛、恶心及呕吐,不伴有颈强直及脑膜刺激征。在T2加权FLAIR图像中,脑磁共振成像(MRI)显示脑膜上弥漫性高信号强度,没有脑实质的具体发现。脑脊液提示细胞数及蛋白含量增高,细胞数增高以淋巴细胞增多为主 [20]。治疗上脑炎与无菌性脑膜炎治疗相似,停止免疫抑制剂使用,建议同时静脉注射阿昔洛韦。如果出现严重或进展性症状,考虑使用静脉注射皮质类固醇(甲泼尼龙1 g,3~5天)联合IVIG或血浆置换治疗,4~6周减少皮质类固醇用量。如果症状没有改善或副肿瘤抗体阳性,可考虑使用利妥昔单抗治疗 [17]。

4.1.2. 免疫相关性脱髓鞘疾病

免疫相关性脱髓鞘疾病包括脊髓炎、多发性硬化、孤立性视神经炎及视神经炎等。有研究表明,免疫检查点抑制剂在治疗黑色素瘤或非小细胞肺癌的患者后,出现急性或亚急性上肢或下肢无力、感觉异常、视力改变、虚弱和精神状态改变等。Marcos等截至2019年12月脱髓鞘的神经免疫不良事件进行了系统的文献回顾,23名患者发生免疫相关性脱髓鞘疾病,其中7名脊髓炎,4名孤立性视神经炎,1名视神经脊髓炎,5名多发性硬化,6名非典型脱髓鞘。伊普利单抗是最常用的ICIs (11/23),从开始接受ICIs开始出现症状的中位时间为6.5周[范围1.0~43.0];患者的中位年龄为59岁;23例患者中8例为女性 [21];在1例发生横贯性脊髓炎的病例中,患者MRI表现为局灶性T2信号异常,脊髓无扩张,弥漫性强化,T2高信号从颈髓交界延伸至圆锥骨。研究者对损伤脊髓进行活检,提示发生坏死性脊髓病患者同时伴有淋巴细胞浸润 [22]。免疫相关性脱髓鞘疾病根据CTCEA分型,分为4级。1级无症状或轻微症状,继续免疫治疗,除非症状恶化或没有改善。2级临床症状明显但没有危及生命,停止使用ICIs,开始强的松每日1 mg/kg,1个月后逐渐减少用量。3~4级,临床症状严重且危及生命,应永久停止ICIs,开始甲泼尼龙1 g/d大剂量冲击,如果3天后症状没有改善或加重,可考虑IVIG或血浆置换疗法 [17] [19]。

4.2. 外周神经系统不良反应

4.2.1. 免疫相关性吉兰巴雷综合征

免疫相关性吉兰巴雷综合征(immune related Guillain-Barré Syndrome, ir-GBS)患者主要表现为感觉丧失、轻瘫、虚弱、感觉异常、麻木、吞咽困难等,脑脊液检查可见蛋白细胞分离,蛋白质含量升高,细胞数量正常,葡萄糖含量正常。肌电图提示伴有明显的运动传导减慢和F波延长,典型的脱髓鞘特征。电生理结果提示免疫相关性GBS亚型主要表现为以急性炎性脱髓鞘性多神经病变、急性运动轴突神经病变为特征的广泛性感觉运动多神经病变 [23] [24]。发生率为0.1%~0.2%,是一种比较罕见的并发症。发生时间在治疗后65.6天。治疗上应立即停止ICIs,大多数患者停药后给予免疫球蛋白(0.4 G/kg/d,连续5天,总剂量为2 g/kg)、类固醇(甲基泼尼松龙2~4 mg/kg/d,随后缓慢的类固醇减量)、免疫球蛋白联合类固醇、他克莫司、血浆置换等治疗 [17]。尽管类固醇一般不推荐用于治疗感染诱导的GBS,但在ir-GBS中,美国的临床肿瘤学学会临床实践指南和国家综合癌症网络(NCCN) [25] 指南指出可考虑给予(甲基)泼尼松龙试验1~2 mg/Kg,特别是当GBS患者脑脊液细胞增多高于预期时。对于预后方面,40%患者治疗后死亡,40%患者症状明显好转,20%患者症状维 [23] [26]。

4.2.2. 免疫相关性重症肌无力

免疫相关性重症肌无力(Immune-related Myathenia Gravis, irMG),临床表现包括上睑下垂、复视、肌肉无力、呼吸困难和吞咽困难等,部分患者会同时出现肌炎。在irMG患者中,使用ICIs治疗的基础恶性肿瘤包括黑色素瘤、非小细胞肺癌等 [7] [27] [28]。Makarious等 [22] 报告了23例ICI相关的重症肌无力,其中73%为新发病例(56%抗PD-1、17%抗CTLA-4治疗) [29]。多数患者在治疗开始后7周~11周开始出现症状 [27]。与经典MG相比,irMG的眼部症状发生率较低,但呼吸瘫痪发生率高2倍,尤其是在死于irMG的患者中。据报道,抗AChR抗体试验在经典MG中的阳性率为85%~87%,而在irMG中的阳性率为66.7% [30] [31]。胸腺瘤的存在支持其发病机制是经典MG的一部分,但与irMG无关,这一结果可能会因接受ICIs治疗的患者的癌症类型而有所偏差。与其他癌症类型的患者相比,可能只有很小一部分胸腺瘤患者接受了ICIs治疗 [32]。irMG根据CTCEA分级,分为4级,级别 ≤ 2级的患者,暂停使用ICIs,使用吡啶斯的明从30 mg口服开始,每天3次,逐渐增加到120 mg,每天4次,在可耐受的情况下,剂量根据症状和改善情况而定。可同时给予皮质类固醇(强的松0.5 mg/kg,每日口服)以改善症状。级别 ≥ 3级的患者,永久停止ICIs,需入院治疗,病情严重者可能需要重症监护。使用皮质类固醇(强的松0.5 mg/kg,每日口服)及IVIG或血浆置换3~5天。类固醇治疗3~4周后应开始减少,然后根据症状的改善停止用药。如果IVIG或血浆置换治疗效果欠佳,可考虑加用利妥昔单抗。治疗过程中需经常评估患者肺功能,以免因呼吸衰竭而引起患者死亡 [17]。

4.2.3. 免疫相关性炎性肌病

据报道,使用抗PD-1抗体治疗发生免疫相关性炎性肌病的概率比使用抗CTLA-4抗体高 [33]。Knauss等 [34] 实验研究表明在免疫相关肌炎中,T细胞侵入骨骼肌和肌纤维,同时上调刺激PD-1的配体。最常见的类型免疫相关肌炎是多发性肌炎、坏死性自身免疫性肌炎和皮肌炎 [33]。Mehdi等报道了10例ICI诱导的肌炎,其中32%出现相关心肌炎,5%伴有重症肌无力,从接受ICIs开始到出现症状的中位时间为25天(范围5~87天)。临床表现以急性或亚急性肌痛(8例)和肢体束带(7例)、轴性(7例)和动眼神经(7例)无力为主。在所有患者中,肌酸激酶水平均升高,而抗乙酰胆碱受体和肌炎相关抗体均为阴性。肌肉活检可见坏死的肌纤维和炎症变化 [35]。神经传导研究正常,针极肌电图显示低振幅和短时间多相运动单元插入活动增加。大部分患者的乙酰胆碱受体(AChR)抗体和副肿瘤抗体通常为阴性 [8] [33] [36] [37]。ICIs治疗在诊断为炎性肌病后立即停止,并且立即静脉注射大剂量皮质类固醇激素和免疫球蛋白,有助于迅速停止疾病进程的进展 [15] [38]。

5. 结论

近年来CTLA-4抑制剂、PD-1/PD-L1抑制剂等免疫治疗被证实是一种广谱、有效、作用持久且相对安全的抗肿瘤治疗方式。目前已被批准用于治疗黑色素瘤等多种类别晚期肿瘤,免疫检查点抑制剂因其毒性与传统化疗不同,因此带来了新的临床问题,如免疫相关神经系统不良反应,其发病率虽低,但致死率高,且联合治疗发病率及致死率均明显增高。临床医师必须了解相关的n-irAEs,以便快速诊断和适当管理,从而改善患者的预后和生活质量。同时,在临床工作中,临床医生应该及时掌握肿瘤患者发生ICIs相关n-irAEs的危险因素,临床上制订方案时需要注重“以人为本”理念,避免追求过度的减轻肿瘤负荷而进行过度治疗,尽量规避风险,让更多患者可以从ICIs的治疗中获益。

参考文献

[1] Vaddepally, R.K., Kharel, P., Pandey, R., et al. (2020) Review of Indications of FDA-Approved Immune Checkpoint In-hibitors per NCCN Guidelines with the Level of Evidence. Cancers (Basel), 12, Article No. 738.
https://doi.org/10.3390/cancers12030738
[2] Brahmer, J., Reckamp, K.L., Baas, P., et al. (2015) Nivolumab ver-sus Docetaxel in Advanced Squamous-Cell Non- Small-Cell Lung Cancer. The New England Journal of Medicine, 373, 123-135.
https://doi.org/10.1056/NEJMoa1504627
[3] Rosenberg, J.E., Hoffman-Censits, J., Powles, T., et al. (2016) Atezolizumab in Patients with Locally Advanced and Metastatic Urothelial Carcinoma Who Have Progressed Following Treatment with Platinum-Based Chemotherapy: A Single-Arm, Multicentre, Phase 2 Trial. The Lancet, 387, 1909-1920.
https://doi.org/10.1016/S0140-6736(16)00561-4
[4] Hodi, F.S., O’Day, S.J., McDermott, D.F., et al. (2010) Im-proved Survival with Ipilimumab in Patients with Metastatic Melanoma. The New England Journal of Medicine, 363, 711-723.
https://doi.org/10.1056/NEJMoa1003466
[5] Martins, F., Sofiya, L., Sykiotis, G.P., et al. (2019) Ad-verse Effects of Immune-Checkpoint Inhibitors: Epidemiology, Management and Surveillance. Nature Reviews Clinical Oncology, 16, 563-580.
https://doi.org/10.1038/s41571-019-0218-0
[6] Bagchi, S., Yuan, R. and Engleman, E.G. (2021) Immune Check-point Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annual Re-view of Pathology, 16, 223-249.
https://doi.org/10.1146/annurev-pathol-042020-042741
[7] Fan, S., Ren, H., Zhao, L., et al. (2020) Neurological Immune-Related Adverse Events Associated with Immune Checkpoint Inhibitors: A Review of the Literature. Asia-Pacific Journal of Clinical Oncology, 16, 291-298.
https://doi.org/10.1111/ajco.13375
[8] Bruna, J., Argyriou, A.A., Anastopoulou, G.G., et al. (2020) Incidence and Characteristics of Neurotoxicity in Immune Checkpoint Inhibitors with Focus on Neuromuscular Events: Experience be-yond the Clinical Trials. Journal of the Peripheral Nervous System, 25, 171-177.
https://doi.org/10.1111/jns.12371
[9] Buchbinder, E.I. and Desai, A. (2016) CTLA-4 and PD-1 Pathways: Simi-larities, Differences, and Implications of Their Inhibition. American Journal of Clinical Oncology, 39, 98-106.
https://doi.org/10.1097/COC.0000000000000239
[10] Chen, D.S. and Mellman, I. (2017) Elements of Cancer Immunity and the Cancer-Immune Set Point. Nature, 541, 321-330.
https://doi.org/10.1038/nature21349
[11] Boutros, C., Tarhini, A., Routier, E., et al. (2016) Safety Profiles of An-ti-CTLA-4 and Anti-PD-1 Antibodies Alone and in Combination. Nature Reviews Clinical Oncology, 13, 473-486.
https://doi.org/10.1038/nrclinonc.2016.58
[12] Michot, J.M., Bigenwald, C., Champiat, S., et al. (2016) Im-mune-Related Adverse Events with Immune Checkpoint Blockade: A Comprehensive Review. European Journal of Cancer, 54, 139-148.
https://doi.org/10.1016/j.ejca.2015.11.016
[13] Mohn, N., Beutel, G., Gutzmer, R., et al. (2019) Neurological Im-mune Related Adverse Events Associated with Nivolumab, Ipilimumab, and Pembrolizumab Therapy—Review of the Literature and Future Outlook. Journal of Clinical Medicine, 8, Article No. 1777.
https://doi.org/10.3390/jcm8111777
[14] Cuzzubbo, S., Javeri, F., Tissier, M., et al. (2017) Neurological Adverse Events Associated with Immune Checkpoint Inhibitors: Review of the Literature. European Journal of Cancer, 73, 1-8.
https://doi.org/10.1016/j.ejca.2016.12.001
[15] Astaras, C., de Micheli, R., Moura, B., et al. (2018) Neurological Adverse Events Associated with Immune Checkpoint Inhibitors: Diagnosis and Management. Current Neurology and Neuroscience Reports, 18, Article No. 3.
https://doi.org/10.1007/s11910-018-0810-1
[16] Guidon, A.C., Burton, L.B., Chwalisz, B.K., et al. (2021) Con-sensus Disease Definitions for Neurologic Immune-Related Adverse Events of Immune Checkpoint Inhibitors. Journal for ImmunoTherapy of Cancer, 9, e002890.
https://doi.org/10.1136/jitc-2021-002890corr1
[17] Schneider, B.J., Naidoo, J., Santomasso, B.D., et al. (2021) Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. Journal of Clinical Oncology, 39, 4073-4126.
https://doi.org/10.1200/JCO.21.01440
[18] Lima, G., Kahn, A., Sama, S., et al. (2019) Aseptic Meningitis as an Immune-Related Adverse Event after Pembrolizumab. Case Reports in Oncological Medicine, 2019, Article ID: 7183747.
https://doi.org/10.1155/2019/7183747
[19] Wesley, S.F., Haggiagi, A., Thakur, K.T., et al. (2021) Neurological Immunotoxicity from Cancer Treatment. International Journal of Molecular Sciences, 22, Article No. 6716.
https://doi.org/10.3390/ijms22136716
[20] Nomura, H., Mukai, M., Niimi, Y., et al. (2017) Coexistence of Ac-quired Perforating Dermatosis and Bullous Pemphigoid: Three Cases. European Journal of Dermatology, 27, 192-193.
https://doi.org/10.1684/ejd.2016.2944
[21] Oliveira, M.C.B., de Brito, M.H. and Simabukuro, M.M. (2020) Cen-tral Nervous System Demyelination Associated with Immune Checkpoint Inhibitors: Review of the Literature. Frontiers in Neurology, 11, Article ID: 538695.
https://doi.org/10.3389/fneur.2020.538695
[22] Bjoern, J., Juul Nitschke, N., Zeeberg, I.T., et al. (2016) Immuno-logical Correlates of Treatment and Response in Stage IV Malignant Melanoma Patients Treated with Ipilimumab. On-coimmunology, 5, e1100788.
https://doi.org/10.1080/2162402X.2015.1100788
[23] Li, Y., Zhang, X. and Zhao, C. (2021) Guillain-Barre Syn-drome-Like Polyneuropathy Associated with Immune Checkpoint Inhibitors: A Systematic Review of 33 Cases. BioMed Research International, 2021, Article ID: 9800488.
https://doi.org/10.1155/2021/9800488
[24] Garcia, C.A., El-Ali, A., Rath, T.J., et al. (2018) Neurologic Im-mune-Related Adverse Events Associated with Adjuvant Ipilimumab: Report of Two Cases. Journal for ImmunoThera-py of Cancer, 6, Article No. 83.
https://doi.org/10.1186/s40425-018-0393-z
[25] Thompson, J.A., Schneider, B.J., Brahmer, J., et al. (2020) NCCN Guidelines Insights: Management of Immunotherapy-Related Toxicities, Version 1.2020. Journal of the National Comprehensive Cancer Network, 18, 230-241.
https://doi.org/10.6004/jnccn.2020.0012
[26] Haugh, A.M., Probasco, J.C. and Johnson, D.B. (2020) Neurologic Complications of Immune Checkpoint Inhibitors. Expert Opinion on Drug Safety, 19, 479-488.
https://doi.org/10.1080/14740338.2020.1738382
[27] Safa, H., Johnson, D.H., Trinh, V.A., et al. (2019) Immune Checkpoint Inhibitor Related Myasthenia Gravis: Single Center Experience and Systematic Review of the Literature. Journal for ImmunoTherapy of Cancer, 7, Article No. 319.
https://doi.org/10.1186/s40425-019-0774-y
[28] Xu, M., Nie, Y., Yang, Y., et al. (2019) Risk of Neurological Toxicities Following the Use of Different Immune Checkpoint Inhibitor Regimens in Solid Tumors: A Systematic Re-view and Meta-Analysis. Neurologist, 24, 75-83.
https://doi.org/10.1097/NRL.0000000000000230
[29] Johnson, D.B., Manouchehri, A., Haugh, A.M., et al. (2019) Neurologic Toxicity Associated with Immune Checkpoint Inhibitors: A Pharmacovigilance Study. Journal for Immuno-Therapy of Cancer, 7, Article No. 134.
https://doi.org/10.1186/s40425-019-0617-x
[30] Howard, F.M., Lennon, V.A., Finley, J., et al. (1987) Clinical Correlations of Antibodies That Bind, Block, or Modulate Human Acetylcholine Receptors in Myasthenia Gravis. Annals of the New York Academy of Sciences, 505, 526-538.
https://doi.org/10.1111/j.1749-6632.1987.tb51321.x
[31] Meriggioli, M.N. and Sanders, D.B. (2012) Muscle Au-toantibodies in Myasthenia Gravis: Beyond Diagnosis? Expert Review of Clinical Immunology, 8, 427-438.
https://doi.org/10.1586/eci.12.34
[32] Huang, Y.T., Chen, Y.P., Lin, W.C., et al. (2020) Immune Checkpoint In-hibitor-Induced Myasthenia Gravis. Frontiers in Neurology, 11, Article No. 634.
https://doi.org/10.3389/fneur.2020.00634
[33] Kao, J.C., Liao, B., Markovic, S.N., et al. (2017) Neurological Complications Associated with Anti-Programmed Death 1 (PD-1) Antibodies. JAMA Neurology, 74, 1216-1222.
https://doi.org/10.1001/jamaneurol.2017.1912
[34] Moreira, A., Loquai, C., Pfohler, C., et al. (2019) Myositis and Neuromuscular Side-Effects Induced by Immune Checkpoint Inhibitors. European Journal of Cancer, 106, 12-23.
https://doi.org/10.1016/j.ejca.2018.09.033
[35] Touat, M., Maisonobe, T., Knauss, S., et al. (2018) Immune Checkpoint Inhibitor-Related Myositis and Myocarditis in Patients with Cancer. Neurology, 91, e985-e994.
https://doi.org/10.1212/WNL.0000000000006124
[36] Pinto, D., Gouveia, P., Sousa, B., et al. (2016) Reply to the Letter to the Editor “Insertion of Central Venous Catheters (CVCs): Any Changes in the Past Ten Years” by Biffi et al. Annals of Oncology, 27, 1351-1352.
https://doi.org/10.1093/annonc/mdw149
[37] Haddox, C.L., Shenoy, N., Shah, K.K., et al. (2017) Pembrolizumab Induced Bulbar Myopathy and Respiratory Failure with Necrotizing Myositis of the Diaphragm. Annals of Oncology, 28, 673-675.
https://doi.org/10.1093/annonc/mdw655
[38] Khoo, A., Zhuang, Y., Boundy, K., et al. (2019) Immune Checkpoint Inhibitor-Related Myositis Associated with Atezolizumab Therapy. Neurology Clinical Practice, 9, e25-e26.
https://doi.org/10.1212/CPJ.0000000000000597