新生儿高胆红素血症病因研究进展
Research Progress in Etiology of Neonatal Hyperbilirubinemia
DOI: 10.12677/ACM.2022.1281161, PDF, HTML, XML, 下载: 207  浏览: 453 
作者: 召 拉, 刘春枝*, 白 璐, 许玉红:内蒙古医科大学附属医院新生儿科,内蒙古 呼和浩特
关键词: 新生儿高胆红素血症病因溶血遗传种族及地域Neonatal Hyperbilirubinemia Pathogeny Hemolysis Heredity Race and Region
摘要: 新生儿高胆红素血症是新生儿出生后需住院治疗的最常见病因,也是新生儿时期再次入院的主要原因,其是由血清胆红素的产生和消除之间的不平衡引起的,主要是红细胞分解的结果。新生儿高胆红素血症为多因素多基因参与的疾病,包括孕母妊娠期并发症、早产、新生儿感染、基因、种族地域及不明原因等。新生儿高胆红素血症通过光疗等积极有效处理得到缓解,但仍可见病情进展造成不可逆的严重后果,如重度高胆红素血症引起胆红素脑病,即未结合胆红素穿过血脑屏障,可留下脑瘫、智力发育受损和神经性耳聋等不可逆神经系统损伤,甚至危机患儿生命。因此,明确新生儿高胆红素血症的常见病因,为早期筛查、积极预防及及时诊断提供有效依据,降低其发生率。
Abstract: Neonatal hyperbilirubinemia is the most common cause of hospitalization after birth, and also the main cause of readmission during the neonatal period. It is caused by the imbalance between the production and elimination of serum bilirubin, which is mainly the result of erythrocyte decompo-sition. Neonatal hyperbilirubinemia is a disease involving multiple factors and genes, including maternal complications during pregnancy, premature delivery, neonatal infection, genes, race, re-gion and unknown causes. Neonatal hyperbilirubinemia has been relieved through active and effec-tive treatment such as phototherapy, but it can still be seen that the progress of the disease has caused irreversible serious consequences. For example, severe hyperbilirubinemia causes bilirubin encephalopathy, that is, unconjugated bilirubin crosses the blood-brain barrier, which can leave ir-reversible nervous system damage such as cerebral palsy, impaired intellectual development and neurogenic deafness, and even endanger the lives of children. Therefore, we need to identify the common causes of neonatal hyperbilirubinemia, provide effective basis for early screening, active prevention and timely diagnosis, and reduce its incidence.
文章引用:召拉, 刘春枝, 白璐, 许玉红. 新生儿高胆红素血症病因研究进展[J]. 临床医学进展, 2022, 12(8): 8063-8070. https://doi.org/10.12677/ACM.2022.1281161

1. 引言

新生儿高胆红素血症(neonatal hyperbilirubinemia, NHB),是全球最常见的现象之一,是以未结合胆红素(unconjugated bilirubin, UCB)升高而影响大多数新生儿的疾病,也是出生后第一周入院的主要原因 [1]。据报道,全世界NHB的发病率存在广泛差异。总体而言,约60%的足月儿和80%的早产儿在出生后3天出现黄疸 [2]。适当的胆红素(total serum bilirubin, TSB)水平具有一定的抗氧化作用,对机体有益,而高水平TSB值与促氧化作用有关 [3] [4] [5]。UCB大量沉积在患儿大脑中可能会出现胆红素诱导的神经功能障碍,其主要特征为脑瘫、智力发育受损和神经性耳聋 [6]。

2016年全球儿童死亡率与NHB数据提示,极重度高胆红素血症(TSB峰值超过427 μmol/L (25 mg/dl))每年影响481,000例晚期早产儿或足月新生儿,约114,000例死亡,63,000例存活,但留下不同程度不可逆神经系统损伤 [7]。在瑞典10万名近足月或足月活产婴儿中,有6.8名出现危险性高胆红素血症,1.3名出现核黄疸。在出现与危险性高胆红素血症相关脑损伤的婴儿中,85%被认为是可以避免的 [8]。最近的研究报道,NHB可能是自闭症谱系障碍 [9]、哮喘 [10]、注意缺陷多动障碍 [11]、癫痫 [12] 等儿科疾病的危险因素。故掌握NHB常见病因,了解可能存在风险,早期给予合理筛查和监测,避免给患儿留下永久不可逆神经系统损伤,减少家属不必要的经济压力是临床工作中的重点。本文就NHB常见病因进行阐述。

2. 围生期与NHB

NHB的发生与围生期诸多因素密切相关,如胎膜早破、羊水粪染、前置胎盘、早产、窒息、胎粪排出延迟等均相关 [13]。早产新生儿较足月新生儿NHB发病率高,更容易损伤听力 [14],胎龄对于NHB而言是保护因素 [15] [16]。早产儿生后常存在开奶困难、喂养不耐受、低出生体重、低血糖以及低蛋白血症等问题,红细胞寿命较短(与足月儿60~80天相比为30~60天),且肠蠕动较足月儿缓慢,引起肠肝循环增加以及并发疾病 [17] [18],诸多因素导致患儿胆红素水平增高,引起NHB的发生。新生儿发生窒息缺氧导致葡萄糖的无氧酵解增多,导致酸中毒和红细胞膜的破坏,白蛋白结合能力下降,这些因素均可导致体内胆红素水平增高,最终导致NHB [19]。新生儿生后24小时内排胎便,大约需要2~3天时间排完,如因开奶困难或喂养不耐受导致早期入量不足引起的胎粪排出延迟,肠肝循环增加使胆红素吸收增加。在Mohammadbeigi等人的一项研究中 [20],糖尿病母亲新生儿发生NHB的几率比对照组高三倍。糖尿病母亲患儿出现黄疸的原因有众多,包括早产、红细胞增多症以及巨大儿等 [21]。韩国一项病例对照研究显示 [22],妊娠期梅毒和平滑肌瘤,妊娠前输卵管卵巢炎是NHB的母体危险因素。

3. 溶血病与NHB

新生儿溶血病 (Hemolytic Disease of Newborn, HDN)是指由于母体和新生儿血型不相容而导致的红细胞抗体引起的新生儿同种免疫溶血。患病率因血型而异,临床表现和自然病程各不相同。母亲是O型或Rh阴性血型、既往有不明原因的死胎、多次流产、新生儿重度黄疸的病史孕妇均是HDN的危险因素 [23]。新生儿病房中常见ABO溶血和Rh溶血,其他几种同种异体抗体也与溶血有关,包括MNS,Kidd,Diego,Duffy,Kell和Anti-Mur。

3.1. ABO溶血

ABO溶血主要发生于血型为O型的母亲,A或B血型的新生儿中。由于ABO不相容,免疫球蛋白(Ig)G亚类的母体抗A抗体或抗B抗体会穿过胎盘,导致血型为A或B型新生儿发生溶血 [24]。ABO血型不合大约50%发生在第一胎,仅有20%发生溶血病。关于新生儿ABO溶血性疾病,抗-A引起的溶血更常见,但抗-B的情况下引起的溶血更为严重 [25] [26]。研究发现,溶血的发生率与母亲血清IgG抗A或B抗体效价升高而增加,且与妊娠次数及年龄相关,经产妇及年龄较大者血清抗体效价较高,故发生风险增加 [27]。ABO溶血临床症状轻,预后良好,大多数情况下予光疗即缓解症状,可有效降低血中胆红素值,极少涉及静脉注射丙种球蛋白、白蛋白以及换血治疗 [28]。

3.2. Rh溶血

Rh血型系统有6种抗原(D, E, C, c, d, e),其中抗原性最强者为D,临床中RhD溶血病最常见。在我国,RhD阴性人数约为0.3%~0.5%,每年约1万多名产妇为RhD阴性血型 [29],该血型因不同人群而发病率不同,据估计,与非洲人(4%至8%)或亚洲人后裔(0.1%至0.3%)相比,高加索人(北美和欧洲)血统(15%至17%)的Rh阴性发生率更高 [30]。Rh溶血与ABO不相同,无输血等特殊情况下常发生于第二胎,但症状较ABO溶血重,且可以发生在自怀孕至分娩任何时间段,溶血的时机取决于在发育过程中,红细胞抗原在胎儿或新生儿红细胞上的表达时间,可导致流产、胎儿水肿、死胎以及生后的胆红素脑病等严重后果 [31] [32]。因可能严重影响患儿近期健康,且有可能造成长远身心健康问题,故一旦诊断明确,常需要换血治疗。但换血后或过程中有不良反应,土耳其一项前瞻性研究结果提示,其中最常见为血小板减少,除此之外还有低钙血症、坏死性小肠结肠炎等 [33]。张榕等的研究提示,重症Rh溶血在换血失败后可以进行血浆置换,有效控制溶血 [34]。

4. 感染与NHB

NHB发病相关的感染因素,包括败血症、化脓性脑膜炎、坏死性小肠结肠炎、新生儿呼吸道感染、尿路感染、脐炎等。感染因素主要考虑与新生儿免疫系统差,引起红细胞破坏增多,通过影响葡萄糖醛酸转移酶活性,导致肝脏胆红素代谢紊乱。Zahed等的一项荟萃分析发现,未知因素是伊朗患者非结合型高胆红素血症的最常见原因,其次是新生儿感染,其中包括败血症、尿路感染和肺炎 [35]。叶宝妮 [36] 等的研究发现,感染是消退延迟的NHB病因排在第一位的因素,游森水 [37] 等对247名诊断为NHB的患儿病因进行分析,母体感染导致患病75例,新生儿感染导致患病15例,在母体因素与患儿因素中均排在首位。另外一项研究中 [38],将NHB患儿按照病情严重程度分为轻症及重症两组后得结论,感染因素在两组临床发病原因中均排列在前三名,因此,感染是NHB发病的重要危险因素之一。

5. 遗传与NHB

大多数NHB的病因,通过患儿的临床症状以及辅助检查可追溯的,但是仍有一部分是因未知因素发病,且症状严重。最近,越来越多无法明确病因的疾病相关研究走向基因测序。而关于NHB发病相关基因常见有葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase deficiency, G-6-PD)基因、尿苷二磷酸葡萄糖醛酸转移酶1A1 (uridine diphosphate glucuronosyl transferase 1A1, UGT1A1)、血红素氧合酶1 (heme oxygenase 1, HO-1)、胆绿素再被胆绿素还原酶A (biliverdin reductase A, BLVRA)等 [39]。Mei等的研究提示 [38],在45例患者中最常见的基因类型是酶缺乏症,26例G6PD、8例UGT1A1,其他NHB相关基因主要分布在与代谢或生化紊乱和红细胞相关的基因中膜缺陷,如3例ANK1。

5.1. G6PD基因

G6PD缺乏症是由X连锁染色体突变引起的,主要致病原因是G6PD缺乏使红细胞极易受到氧化损伤,尤其是有一些诱因时易急性溶血,如感染、摄入蚕豆及使用某些药物 [40]。G6PD缺乏症是由G6PD基因突变引起的,其中许多突变在不同地理区域和不同种族群体中具有特征分布 [41] [42]。Pan [43] 等的研究结果表明,G6PD的活动受季节和性别的影响。在中国,G6PD缺乏症的发病趋势为“南高,北低”,广西、广东、贵州高发病率 [44]。在一项为期三年的G6PD缺乏症前瞻性研究中,发现c.1388G > A和c.1376G > T突变是汉族人群中的两个主要变异,总发生频率超过64%,其次是c.95A > G,c.392G > T,c.871G > A和c.1024C > T突变,最小频率分别为5% [45]。G6PD缺乏症基因突变分布情况受多种因素的影响,故可以进一步研究我区G6PD缺乏症基因突变特点。

5.2. UGT1A1基因

UGT1A1是II相代谢酶家族的成员,也是唯一可以代谢解毒胆红素的酶。迄今为止,已经发现了一百多个UGT1A1多态性。UGT1A1基因与神经系统疾病、肝胆疾病、心血管疾病、克罗恩病、肥胖、糖尿病、骨髓抑制、白血病、肿瘤等的发生均相关 [46]。UGT1A1基因突变,包括编码区的突变和启动子区的突变,可导致酶活性降低或功能缺乏,从而导致胆红素代谢紊乱和高胆红素血症的发生 [47]。据报道,211G > A (Gly71Arg)是编码区中最常见的UGT1A1基因多态性之一,是NHB的危险因素,可能通过降低酶活性导致未结合的高胆红素血症 [48],这与Yang [49] 等的研究结果符合。一项荟萃分析结果提示,亚洲和非洲UGT1A1 Gly71Arg的变异以及亚洲和欧洲UGT1A1 TATA启动子的变异可能会增加NHB的风险 [50]。

目前尽管临床中基因诊断率不高,但是可以针对已经诊断患儿进行有效干预,比如避免G6PD的氧化物质,在必要时对ANK1基因相关NHB患儿进行脾切除术等,从而避免潜在的危险。

6. 母乳与NHB

生后最初六个月的纯母乳喂养至关重要,随着大力推广母乳喂养,新生儿母乳性黄疸(Newborn babies mother of icterus, BMJ)也逐步受到大家的关注。武华红 [51] 等观察30年期间我国9市城郊2岁以下婴幼儿母乳喂养现况及变化趋势,近10年母乳喂养率明显上升,至2015年为止6月龄以下婴幼儿纯母乳喂养率接近50%,且城郊比率相近。一项前瞻性队列研究结果得出,纯母乳喂养是健康婴儿黄疸的危险因素 [52]。目前BMJ的发生机制暂不明确。早发型BMJ发生时间早,母乳喂养2~3天后出现症状,并1周时达到高峰,认为与早期无效吸吮、乳头条件差、喂养方式不合理导致入量不足及胎粪排出延迟相关,另一方面与母乳中含有的某些成分影响UGT的活性,增加肠道胆红素吸收 [53]。关于肠道菌群与BMJ相关研究提示,BMJ组的乙酸和丙酸水平明显低于对照组。乙酸和丙酸水平的降低可能与链球菌的增加和肠球菌的减少有关,这两者都可能导致BMJ [54]。迟发型BMJ常在母乳喂养1周后出现症状,除皮肤黄染之外无明显症状,监测UCB高于正常,且延续较长时间。如达到光疗标准,即给予干预,监测UCB的情况下一般可以不停母乳。杨雨菲 [55] 等的关于人乳脂肪酸组分与BMJ相关研究提示,人乳中链饱和脂肪酸可能与NHB的发生相关,主要通过调控体内包括UGT1A1在内多种基因的表达,故可以通过改变母亲膳食而达到降低BMJ发生率,如增加长链不饱和脂肪酸摄入,例如蔬菜、水果、坚果及鱼油的食物。母乳对新生儿避免感染、促进神经认知发育等方面具有无法代替作用 [56],故应将宣传、鼓励及监测为一体化。

7. 种族及地域与NHB

NHB发病与种族有明显相关性。与高加索人和黑人相比,亚洲人和美洲印第安人NHB的发病率和严重程度要高得多。亚洲种族长期以来一直被认为是NHB的危险因素。虽然黑人种族被认为可以预防高胆红素血症,但黑人婴儿患核黄疸的风险增加。尽管黑人婴儿发生血清总胆红素水平 ≥ 20 mg/dL的风险低于白人婴儿,但他们患 ≥ 30 mg/dL水平的风险更大,且发生核黄疸风险更高 [57] [58]。一项研究中 [59],被称之为东南亚人(老挝人,柬埔寨人,印度尼西亚人,越南人和菲律宾人)的婴儿或被称之为远东人(中国人,韩国人,台湾人,日本人和蒙古人)的婴儿因NHB再次入院的风险增加。NHB风险的差异可能与NHB相关基因多态性分布有关。例如,与白人人群相比,UGT1A1基因的突变已被证明与亚洲人群中新生儿高胆红素血症的风险增加有关 [60]。日本一项关于NHB发生率与地域相关生态学研究,结果提示日照时间较短地区的新生儿更有可能接受NHB的光疗 [61]。关于蒙古族与汉族足月新生儿NHB发病情况相关研究得出,汉族新生儿NHB发病率以及胆红素峰值均高于蒙古族新生儿,考虑与民族饮食组成部分以及习惯相关 [62]。因此,NHB发病与种族以及地域相关,可以在多民族居住地区加大样本量进行相关研究,得到我国NHB流行病学特点。

8. 混合因素

目前临床中可见混合多种因素引起NHB,其中血管外出血是不可忽视的。血管外出血包括头颅血肿、皮下血肿、颅内出血、肺出血及其他部位出血。头颅血肿及皮下血肿经常见于产伤,而颅内出血等其他脏器出血常见于早产、缺血缺氧及凝血因子不足等情况。头颅血肿是一种骨膜下积血,发生率为所有活产婴儿的0.4%~2.5%。通常无需特殊处理,观察即可,但在患儿合并感染或其他疾病情况下,可使NHB的发生风险增加 [63] [64]。一项研究观察1412名诊断NHB患儿,68%的患儿可确定临床病因。轻度NHB组已知的前3位临床原因是感染、混合因素(感染合并血管外出血最常见)和母乳喂养。重度NHB组最常见的临床原因是综合因素(感染合并血管外出血最常见),其次是新生儿溶血病和血管外出血 [38]。伊朗一项横断面研究也提示头颅血肿和瘀斑等可能导致血管外溶血,导致胆红素水平升高 [65]。因此,可以了解到血管外溶血是不可忽视的病因,尤其患儿合并其他疾病时,在NHB发生过程中可能发挥着促进作用,故需特殊关注监测。

9. 总结与展望

NHB是新生儿生后不可忽视的问题,因此,进行NHB发病因素相关研究,在病情进展至留下不可逆神经系统后遗症之前,甚至在发病之前给予干预是必要的。关于母亲孕期疾病以及基因多态性相关发病机制尚不明确,且越来越多患儿因混合因素发生NHB,需进行更多研究以明确其机制,为NHB的管理及监测给予指导。

NOTES

*通讯作者。

参考文献

[1] Olusanya, B.O., Ogunlesi, T.A., Kumar, P., et al. (2015) Management of Late-Preterm and Term Infants with Hyperbili-rubinaemia in Resource-Constrained Settings. BMC Pediatrics, 15, Article No. 39.
https://doi.org/10.1186/s12887-015-0358-z
[2] Hossain, M., Begum, M., Ahmed, S. and Absar, M.N. (2015) Causes, Management and Immediate Complications of Management of Neonatal Jaundice—A Hospital-Based Study. Journal of Enam Medical College, 5, 104-109.
https://doi.org/10.3329/jemc.v5i2.23384
[3] Dani, C., Poggi, C. and Pratesi, S. (2018) Bilirubin and Oxidative Stress in Term and Preterm Infants. Free Radical Research, 53, 2-7.
https://doi.org/10.1080/10715762.2018.1478089
[4] Creeden, J.F., Gordon, D.M., Stec, D.E., et al. (2020) Bili-rubin as a Metabolic Hormone: The Physiological Relevance of Low Levels. AJP Endocrinology and Metabolism, 320, E191-E207.
https://doi.org/10.1152/ajpendo.00405.2020
[5] Fujiwara, R., Haag, M., Schaeffeler, E., et al. (2018) Systemic Regulation of Bilirubin Homeostasis: Potential Benefits of Hyperbilirubinemia. Hepatology, 67, 1609-1619.
https://doi.org/10.1002/hep.29599
[6] Bhutani, V.K. and Wong, R. (2015) Bilirubin-Induced Neurologic Dys-function (BIND). Seminars in Fetal & Neonatal Medicine, 20, 1.
https://doi.org/10.1016/j.siny.2014.12.010
[7] Olusanya, B.O., Teeple, S. and Kassebaum, N.J. (2018) The Con-tribution of Neonatal Jaundice to Global Child Mortality: Findings from the GBD 2016 Study. Pediatrics, 141, Article ID: e20171471.
https://doi.org/10.1542/peds.2017-1471
[8] Alkén, J., Håkansson, S., Ekéus, C., et al. (2019) Rates of Extreme Neonatal Hyperbilirubinemia and Kernicterus in Children and Adherence to National Guidelines for Screening, Diagnosis, and Treatment in Sweden. JAMA Network Open, 2, Article ID: e190858.
https://doi.org/10.1001/jamanetworkopen.2019.0858
[9] Lozada, L.E., Nylund, C.M., Gorman, G.H., et al. (2015) Association of Autism Spectrum Disorders with Neonatal Hyperbilirubinemia. Global Pediatric Health, 2, Article ID: 2333794X15596518.
https://doi.org/10.1177/2333794X15596518
[10] Kuzniewicz, M.W., Hamid, N., Walsh, E.M., et al. (2018) Hy-perbilirubinemia, Phototherapy, and Childhood Asthma. Pediatrics, 142, Article ID: e20180662.
https://doi.org/10.1542/peds.2018-0662
[11] Wei, C.C., Chang, C.H., Lin, C.L., et al. (2015) Neonatal Jaundice and Increased Risk of Attention-Deficit Hyperactivity Disorder: A Population-Based Cohort Study. Journal of Child Psychology & Psychiatry & Allied Disciplines, 56, 460-467.
https://doi.org/10.1111/jcpp.12303
[12] Maimburg, R.D., Olsen, J. and Sun, Y. (2016) Neonatal Hyperbilirubinemia and the Risk of Febrile Seizures and Childhood Epilep-sy. Epilepsy Research, 124, 67-72.
https://doi.org/10.1016/j.eplepsyres.2016.05.004
[13] 黄家虎, 孙建华. 新生儿高胆红素血症病因的研究进展[J]. 医学综述, 2021, 27(4): 680-684.
[14] Nam, G.S., Kwak, S.H., Bae, S.H., et al. (2019) Hyperbilirubinemia and Follow-up Auditory Brainstem Responses in Preterm Infants. Clinical and Experimental Otorhinolaryngology, 12, 163-168.
https://doi.org/10.21053/ceo.2018.00899
[15] Campbell Wagemann, S. and Mena Nannig, P. (2019) Hiperbilirru-binemia severa en Recién Nacidos, factores de riesgo y secuelas neurológicas [Severe Hyperbilirubinemia in Newborns, Risk Factors and Neurological Outcomes]. Revista Chilena de Pediatría, 90, 267-274. (Spanish)
https://doi.org/10.32641/rchped.v90i3.772
[16] 段姗姗 . 新生儿高非结合胆红素血症的发病原因分析[J]. 山西卫生健康职业学院学报, 2019, 29(5): 111-113
[17] Pillai, A., Pandita, A., Osiovich, H., et al. (2020) Pathogenesis and Management of Indirect Hyperbilirubinemia in Preterm Neonates Less than 35 Weeks: Moving Toward a Standard-ized Approach. NeoReviews, 21, e298-e307.
https://doi.org/10.1542/neo.21-5-e298
[18] Aynalem, S., Abayneh, M., Metaferia, G., et al. (2020) Hyperbiliru-binemia in Preterm Infants Admitted to Neonatal Intensive Care Units in Ethiopia. Global Pediatric Health, 7, Article ID: 2333794X20985809.
https://doi.org/10.1177/2333794X20985809
[19] 姚丽萍, 田佳. 新生儿高胆红素血症病因构成随时间变迁分析[J]. 中国妇幼保健, 2016, 31(21): 4456-4459.
[20] Mohammad-Beigi, A., Tabatabaee, S.H.R., Yazdani, M., et al. (2007) Gestational Diabetes Related Unpleasant Outcomes of Pregnancy [Persian]. Feyz Journals of Kashan University of Medical Sciences, 11, 1-6.
[21] Maamouri, G., Boskabadi, H.M., Af Inejad, S., et al. (2014) Efficacy of Oral Zinc Sulfate Intake in Prevention of Neonatal Jaundice. Iranian Journal of Neonatology, 4, 11-16.
[22] Yu, Y., Choi, J., Lee, M.H., et al. (2022) Maternal Disease Factors Associated with Neonatal Jaundice: A Case-Control Study. BMC Preg-nancy and Childbirth, 22, Article No. 247.
https://doi.org/10.1186/s12884-022-04566-6
[23] Akorsu, E.E., Ac-quaye, J.K., Benneh, A.A., et al. (2019) Fetomaternal Hemorrhage among Pregnant Women in Accra, Ghana. Interna-tional Journal of Gynecology & Obstetrics, 146, 333-338.
https://doi.org/10.1002/ijgo.12890
[24] Ansong-Assoku, B., Shah, S.D., Adnan, M., et al. (2022) Neonatal Jaundice. 2022 Feb 19. In: StatPearls, StatPearls Publishing, Treasure Island.
[25] Bel Hadj, I., Boukhris, R., Khalsi, F., et al. (2019) ABO Hemolytic Disease of Newborn: Does newborn’s Blood Group a Risk Factor? La Tunisie médicale, 97, 455-460.
[26] 姚润, 杨涓, 李宁. 不同血型系统胎儿或新生儿溶血病的特点[J]. 临床血液学杂志, 2021, 34(12): 890-893.
[27] 邓虹艳, 赵广平, 张梦, 等. 不同因素对O型血孕妇血清IgG抗A(B)抗体效价及新生儿溶血病发生率的影响[J]. 河北医药, 2022, 44(6): 916-918+922.
[28] Metcalf, R.A., Khan, J., Andrews, J., et al. (2019) Severe ABO Hemolytic Disease of the Newborn Requiring Exchange Transfusion. Journal of Pediatric Hematology, 41, 632-634.
https://doi.org/10.1097/MPH.0000000000001248
[29] 陈阳. RhD阴性孕妇的产前同种免疫分析及围产期新生儿溶血病的监测和预防[J]. 临床输血与检验, 2022, 24(1): 42-45.
[30] Costumbrado, J., Mansour, T. and Ghassemzadeh, S. (2022) Rh Incompatibility. 2021 Dec 14. In: StatPearls, StatPearls Publishing.
[31] 金方思, 陈通, 黄颖, 等. “二孩”母婴结局与新生儿Rh溶血病的关联[J]. 临床血液学杂志, 2021, 34(6): 428-431.
[32] Sarwar, A. and Sridhar, D.C. (2020) Rh-Hemolytic Disease. In: StatPearls, StatPearls Publishing, Treasure Island.
[33] Okulu, E., Erdeve, Ö., Tuncer, O., et al. (2021) Exchange Transfusion for Neonatal Hyperbilirubinemia: A Multicenter, Prospective Study of Turkish Neonatal Society. Turkish Archives of Pediatrics, 56, 121-126.
https://doi.org/10.14744/turkpediatriars.2020.65983
[34] 张榕, 李正秋, 张帆, 等. 血浆置换治疗换血失败的新生儿Rh溶血病疗效分析[J]. 中华新生儿科杂志, 2020, 35(5): 364-367.
[35] Zahed Pasha, Y., Alizadeh-Tabari, S., Zahed Pasha, E., et al. (2020) Etiology and Therapeutic Management of Neonatal Jaundice in Iran: A Systematic Review and Meta-Analysis. World Journal of Pediatrics, 16, 480-493.
https://doi.org/10.1007/s12519-020-00339-3
[36] 叶宝妮, 刘俐, 李小权, 等. 消退延迟的新生儿高胆红素血症病因分析及转归[J]. 中国妇幼健康研究, 2021, 32(5): 735-739.
[37] 游森水, 曾靖平. 新生儿高胆红素血症病因分析及临床治疗效果评价[J]. 中外医疗, 2020, 39(27): 37-39.
[38] Mei, H., Dong, X., Wu, B., et al. (2021) Clini-cal and Genetic Etiologies of Neonatal Unconjugated Hyperbilirubinemia in the China Neonatal Genomes Project. Pediat-rics, 243, 53-60.e9.
https://doi.org/10.1016/j.jpeds.2021.12.038
[39] 何翠红, 屈艺. 新生儿高胆红素血症与基因多态性研究进展[J]. 中国当代儿科杂志, 2020, 22(3): 280-284.
[40] Luzzatto, L., Ally, M. and Notaro, R. (2020) Glucose-6-Phosphate Dehydrogenase Deficiency. Blood, 136, 1225-1240.
https://doi.org/10.1182/blood.2019000944
[41] Howes, R.E., Battle, K.E., Satyagraha, A.W., et al. (2013) G6PD Deficiency: Global Distribution, Genetic Variants and Primaquine Therapy. Advances in Parasitology, 81, 133-201.
https://doi.org/10.1016/B978-0-12-407826-0.00004-7
[42] Koromina, M., Pandi, M.T., van der Spek, P.J., et al. (2021) The Ethnogeographic Variability of Genetic Factors Underlying G6PD Deficiency. Pharmacological Research, 173, Article ID: 105904.
https://doi.org/10.1016/j.phrs.2021.105904
[43] Pan, J., Zhuang, D., Yu, Q., et al. (2021) Molecular Genotyping of G6PD Mutations for Neonates in Ningbo Area. Journal of Clinical Laboratory Analysis, 35, Article ID: e24104.
https://doi.org/10.1002/jcla.24104
[44] Wu, C.X., Shan, K.R., He, Y., et al. (2007) Detection of Glu-cose-6-Phosphate Dehydrogenase Gene Mutations of Tujia Ethnic in Jiangkou, Guizhou. Chinese Journal of Endemiol-ogy, 26, 415-417. (In Chinese)
[45] He, Y., Zhang, Y., Chen, X., et al. (2020) Glucose-6-Phosphate Dehydrogenase Deficiency in the Han Chinese Population: Molecular Characterization and Genotype-Phenotype Association throughout an Activity Distribution. Scientific Reports, 10, Article No. 17106.
https://doi.org/10.1038/s41598-020-74200-y
[46] Liu, D., Yu, Q., Ning, Q., et al. (2021) The Relationship be-tween UGT1A1 Gene & Various Diseases and Prevention Strategies. Drug Metabolism Reviews, 54, 1-21.
https://doi.org/10.1080/03602532.2021.2001493
[47] Mohammed, A.E., Behiry, E.G., El-Sadek, A.E., et al. (2016) Case-Controlled Study on Indirect Hyperbilirubinemia in Exclusively Breast Fed Neonates and Mutations of the Bilirubin Uridine Diphosphate-Glucuronyl Transferase Gene 1A1. Annals of Medicine and Surgery, 13, 6-12.
https://doi.org/10.1016/j.amsu.2016.11.046
[48] Sato, H., Uchida, T., Toyota, K., et al. (2013) Association of Breast-Fed Neonatal Hyperbilirubinemia with UGT1A1 Polymorphisms: 211G>A (G71R) Mutation Becomes a Risk Factor under Inadequate Feeding. Journal of Human Genetics, 58, 7-10.
https://doi.org/10.1038/jhg.2012.116
[49] Yang, H., Lin, F., Chen, Z.K., et al. (2021) UGT1A1 Mutation Associa-tion with Increased Bilirubin Levels and Severity of Unconjugated Hyperbilirubinemia in ABO Incompatible Newborns of China. BMC Pediatrics, 21, Article No. 259.
https://doi.org/10.1186/s12887-021-02726-9
[50] Wang, J., Yin, J., Xue, M., et al. (2020) Roles of UGT1A1 Gly71Arg and TATA Promoter Polymorphisms in Neonatal Hyperbiliru-binemia: A Meta-Analysis. Gene, 736, Article ID: 144409.
https://doi.org/10.1016/j.gene.2020.144409
[51] 武华红, 张亚钦, 宗心南, 等. 中国九市城郊2岁以下婴幼儿母乳喂养现状及1985年至2015年的变化趋势[J]. 中华围产医学杂志, 2019(7): 445-450.
[52] Weng, Y.H., Cheng, S.W., Yang, C.Y., et al. (2018) Risk Assessment of Pro-longed Jaundice in Infants at One Month of Age: A Prospective Cohort Study. Scientific Reports, 8, Article No. 14824.
https://doi.org/10.1038/s41598-018-33249-6
[53] 丁国芳. 母乳喂养和母乳喂养性黄疸[J]. 中华围产医学杂志, 2016, 19(11): 804-807.
[54] Duan, M., Han, Z.H., Huang, T., et al. (2021) Characterization of Gut Microbiota and Short-Chain Fatty Acid in Breastfed Infants with or without Breast Milk Jaundice. Letters in Applied Microbiology, 72, 60-67.
https://doi.org/10.1111/lam.13382
[55] 杨丽菲, 李菁, 胡瑞, 等. 人乳脂肪酸组分与新生儿母乳性黄疸的相关性分析[J]. 中国当代儿科杂志, 2020, 22(12): 1256-1260.
[56] Prameela, K.K. (2019) Breastfeeding during Breast Milk Jaundice—A Pathophysiological Perspective. Medical Journal of Malaysia, 74, 527-533.
[57] Wickremasinghe, A.C., Kuzniewicz, M.W. and Newman, T.B. (2013) Black Race Is Not Protective against Hazardous Bilirubin Levels. Pediatrics, 162, 1068-1069.
https://doi.org/10.1016/j.jpeds.2012.12.092
[58] Okolie, F., South-Paul, J.E. and Watchko, J.F. (2020) Combating the Hidden Health Disparity of Kernicterus in Black Infants: A Review. JAMA Pediat-rics, 174, 1199-1205.
https://doi.org/10.1001/jamapediatrics.2020.1767
[59] Bentz, M.G., Carmona, N., Bhagwat, M.M., et al. (2018) Beyond “Asian”: Specific East and Southeast Asian Races or Ethnicities Associated With Jaundice Readmission. Hospital Pediatrics, 8, 269-273.
https://doi.org/10.1542/hpeds.2017-0234
[60] Maruo, Y., Morioka, Y., Fujito, H., et al. (2014) Bilirubin Uridine Diphosphate-Glucuronosyitransferase Variation Is a Genetic Basis of Breast Milk Jaundice. The Journal of Pediatrics, 165, 36-41.e1.
https://doi.org/10.1016/j.jpeds.2014.01.060
[61] Kuniyoshi, Y., Tokutake, H., Takahashi, N., et al. (2021) Regional Variation in the Development of Neonatal Hyperbilirubinemia and Relation with Sunshine Duration in Japan: An Eco-logical Study. The Journal of Maternal-Fetal & Neonatal Medicine, 1-6.
https://doi.org/10.1080/14767058.2021.1873270
[62] 阿日贡高娃, 白小丽. 蒙古族和汉族足月新生儿高胆红素血症发病情况及相关影响因素[J]. 中国妇幼保健, 2017, 32(11): 2372-2374.
[63] Raines, D.A., Krawiec, C. and Jain, S. (2022) Cephalohematoma. 2022 Feb 1. In: StatPearls, StatPearls Publishing, Treasure Island.
[64] Bergmann, A.U. and Thorkelsson, T. (2020) Incidence and Risk Factors for Severe Hyperbilirubinemia in Term Neonates. Laeknabladid, 106, 139-143. (Icelandic)
[65] Mojtahedi, S.Y., Izadi, A., Seirafi, G., et al. (2018) Risk Factors Associ-ated with Neonatal Jaundice: A Cross-Sectional Study from Iran. Open Access Open Access Macedonian Journal of Medical Sciences, 6, 1387-1393.