三维随机本原方程组在Fourier-Besov空间中解的整体存在性
Global Existence of Three-Dimensional Stochastic Primitive Equations in Fourier-Besov Spaces
摘要: 众所周知,三维随机本原方程组是描述大气和海洋动力学行为的基本方程组,本文将主要研究其初值问题解的整体存在性理论。首先,运用Littlewood-Paley理论和Bony仿积分解技巧,建立了Stokes-Coriolis-Stratification半群新的双线性估计。然后,建立相应随机线性初值问题解的有界性估计,结合叠加原理以及不动点定理,在小初值和小随机外力的假设条件下,证明了三维随机本原方程组在Fourier-Besov空间中温和解的整体存在性和唯一性。本文的主要结果是对经典三维本原方程组初值问题解的整体存在性理论在随机情形下的推广。
Abstract: This paper is devoted to studying the global existence of solutions to initial value problem of the three-dimensional stochastic primitive equations, which are a basic system that is usually used to describe the dynamic behavior of the atmospheric and the oceanic ows. Firstly, by using the Littlewood-Paley theory and Bony para-product decomposition technique, we establish a new bilinear estimation for the Stokes-Coriolis-Stratification semigroup. Then, by establishing the boundedness estimations for solutions of the corresponding stochastic linear initial value problem, and combining the superposition principle and Banach's fixed point theorem, we prove the global existence and uniqueness of mild solutions to the three-dimensional stochastic primitive equations with small initial values and small random external forces in the Fourier-Besov space frame. Our main result is a generalization of the global existence of the solutions for the initial value problem of the classical three-dimensional primitive equations under the stochastic case.
文章引用:李宁. 三维随机本原方程组在Fourier-Besov空间中解的整体存在性[J]. 理论数学, 2022, 12(8): 1346-1359. https://doi.org/10.12677/PM.2022.128148

参考文献

[1] Chow, P. (1978) SPDEs in Turbulence. In: Bharucha-Reid, A.T., Ed., SPDEs in Turbulence, in Probabilistic Analysis and Related Topics, Vol. 1, Academic Press, Cambridge, MA, 1-43.
[2] Flandoli, F. (2008) An Introduction to 3D Stochastic Fluid Dynamics. In: SPDE in Hydrodynamics: Recent Progress and Prospects, Springer, Berlin, 51-150.
https://doi.org/10.1007/978-3-540-78493-7 2
[3] Mikulevicius, R. and Rozovskii, B. (2004) Stochastic Navier Stokes Equations for Turbulent Flows. SIAM Journal on Mathematical Analysis, 35, 1250-1310.
https://doi.org/10.1137/S0036141002409167
[4] Bensoussan, A. and Temam, R. (1973) Equations stochastiques du type Navier-Stokes. Journal of Func- tional Analysis, 13, 195-222.
https://doi.org/10.1016/0022-1236(73)90045-1
[5] Glatt-Holtz, N. and Ziane, M. (2009) Strong Pathwise Solutions of the Stochastic Navier-Stokes System. Advances in Differential Equations, 14, 567-600.
[6] Du, L. and Zhang, T. (2020) Local and Global Strong Solutions to the Stochastic Incompressible Navier- Stokes Equations in Critical Besov Space. Journal of Mathematical Analysis and Applications, 481, Article ID: 123472.
https://doi.org/10.1016/j.jmaa.2019.123472
[7] Wang, W. (2020) Global Existence and Analyticity of Mild Solutions for the Stochastic Navier-Stokes- Coriolis Equations in Besov Spaces. Nonlinear Analysis: Real World Applications, 52, Article ID: 103048.
https://doi.org/10.1016/j.nonrwa.2019.103048
[8] Wang, W. and Wu, G. (2018) Global Mild Solution of Stochastic Generalized Navier-Stokes Equations with Coriolis Force. Acta Mathematica Sinica, English Series, 34, 1635-1647.
https://doi.org/10.1007/s10114-018-7482-2
[9] Dong, L. (2020) Strong Solutions for the Stochastic Navier-Stokes Equations on the 2D Rotating Sphere with Stable Leevy Noise. Journal of Mathematical Analysis and Applications, 489, Article ID: 124182.
https://doi.org/10.1016/j.jmaa.2020.124182
[10] Ferrario, B. (1997) The Beenard Problem with Random Perturbations: Dissipativity and Invariant Measures. Nonlinear Differential Equations and Applications, 4, 101-121.
https://doi.org/10.1007/PL00001407
[11] Pu, X. and Guo, B. (2011) Global Well-Posedness of the Stochastic 2D Boussinesq Equations with Partial Viscosity. Acta Mathematica Scientia. Series B. English Edition, 31, 1968-1984.
https://doi.org/10.1016/S0252-9602(11)60375-5
[12] Du, L. and Zhang, T. (2020) Local and Global Existence of Pathwise Solution for the Stochastic Boussinesq Equations with Multiplicative Noises. Stochastic Processes and their Applications, 130, 1545-1567.
https://doi.org/10.1016/j.spa.2019.05.011
[13] Santo, M. and Tegegn, T. (2016) Harmonic Analysis Tools for Stochastic Magnetohydrodynamics Equations in Besov Spaces. International Journal of Modern Physics, 30, Article ID: 1640025.
https://doi.org/10.1142/S0217979216400257
[14] Sun, J. and Cui, S. (2019) Sharp Well-Posedness and Ill-Posedness in Fourier-Besov Spaces for the Viscous Primitive Equations of Geophysics. Nonlinear Analysis: Real World Applications, 48, 445-465.
https://doi.org/10.1016/j.nonrwa.2019.02.003
[15] Bahouri, H., Chemin, J.-Y. and Danchin, R. (2011) Fourier Analysis and Nonlinear Partial Differential Equations. In: Grundlehren der Mathematischen Wissenschaften, Vol. 343, Springer-Verlag, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-16830-7
[16] Triebel, T. (1983) Theory of Function Spaces, Monographs in Mathematics. Birkhauser Verlag, Basel.
https://doi.org/10.1007/978-3-0346-0416-1
[17] Iwabuchi, T., Mahalov, A. and Takada, R. (2017) Global Solutions for the Incompressible Rotating Stably Stratified Fluids. Mathematische Nachrichten, 290, 613-631.
https://doi.org/10.1002/mana.201500385