基于简并四波混频的偏振复用全光整形研究
Research on Degenerate-Four-Wave-Mixing-Based All-Optical Reshaping Using Polarization Multiplexing
摘要: 根据三束光注入高非线性光纤所发生的四波混频(FWM)过程,分析了基于FWM的多波长全光再生方案中串扰的主要来源。提出了一种新的基于简并四波混频的双波长全光幅度整形方案,连续辅助光的偏振方向与两路偏振正交的高功率数据光偏振方向呈45˚夹角。仿真研究表明,通过优化高非线性光纤的双折射值,非简并四波混频串扰可以得到较好的抑制,再生信号的消光比和Q因子均有大幅度提升。
Abstract: According to the four wave mixing (FWM) process of three input light beams in highly nonlinear fiber (HNLF), the major crosstalk factors occurring in the FWM-based multi-wavelength all-optical regenerators are ana- lyzed. A new two-channel all-optical reshaping scheme based on degenerate FWM is proposed, in which the linear po- larization states of two high-power data light are orthogonal each other and are controlled at 45˚ relative to that of con- tinuous wave. It is shown by simulation that the non-degenerate FWM crosstalk components can be greatly suppressed by optimizing the HNLF birefringence and both the extinction ratio and Q-factor of regenerated signal are improved to a great extent.
文章引用:田丰沣, 武保剑, 周恒, 邱昆. 基于简并四波混频的偏振复用全光整形研究[J]. 光电子, 2012, 2(1): 1-7. http://dx.doi.org/10.12677/oe.2012.21001

参考文献

[1] H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenlowe and P. Jeppesen. 640 Gbit/s and 1.28 Tbit/s po- larization insensitive all optical wavelength conversion. Optics Express, 2010, 18(10): 9961-9966.
[2] M. Jinno, M. Abe. All optical regenerator based on nonlinear fibre Saganac interferometer. Electronic Letters, 1992, 28(14): 1350.
[3] J. K. Lucek, K. Smith. All optical signal regenetator. Optics Letters, 1993, 18(15): 1226.
[4] E. Ciaramella, S. Trillo. All-optical signal reshaping via four- wave mixing in optical fibers. IEEE Photonic Technology Let- ters, 2000, 12(7): 849-851.
[5] E. Ciaramella, F. Curti. All-optical signal reshaping by means of four-wave mixing in optical fibers. IEEE Photonic Technology Letters, 2001, 13(2): 142-144.
[6] A. Bogris, D. Syvridis. Regenerative properties of a pump- modulated four-wave mixing scheme in dispersion-shifted fibers. IEEE Journal of Lightwave Technology, 2003, 21(9): 1892- 1902.
[7] M. Nakazawa, E. Yamade, H. Kubota and K. Suzuki. 10 Gbit/s soliton transmission over one million kilometers. Electronic Letters, 1991, 27(14): 1270-1272.
[8] O. Leclerc. B. Lavigne, E. Balmefrezol, P, Brindel, L. Pierre, D. Rouvillain and F. Seguineau. Optical Regeneration at 40 Gbit/s and Beyond. Journal of Lightwave Technology, 2003, 21(11): 2779-2790.
[9] K. Inoue, T. Mukai. Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier. Optics Letters, 2001, 26(1): 10-12.
[10] N. S. M. Shah and M. Matsumoto. 2R Regeneration of time- interleaved multiwavelength signals based on higher order four- wave mixing in a fiber. IEEE Photonics Technology Letters, 2010, 14: 10339-10344.
[11] 于晋龙, 罗俊, 韩丙辰, 郭精忠, 吴波, 王菊, 张晓媛, 杨恩泽. 基于光纤光参量放大的异步双波长全光再生技术研究[J]. 物理学报, 2010, 59(9): 6138-6144.
[12] J. Hansryd, A. A. Peter, M. Westlund, et al. Fiber-based optical parametric amplifiers and their applications. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(3): 506-520.
[13] G. P. Agrawal. Nonlinear fiber optics. New York: Academic Press, 2001.