肿瘤放疗与TIM-3分子关系的研究进展
Research Progress on the Relationship between Tumor Radiotherapy and TIM-3
DOI: 10.12677/ACM.2022.1291215, PDF, HTML, XML, 下载: 242  浏览: 395 
作者: 矫晨晨, 周 非, 周雨媛, 陈文秀, 于洪升*:青岛大学附属医院肿瘤放疗科,山东 青岛;曹万里:青岛市城阳区流亭街道卫生院,山东 青岛
关键词: 放疗免疫治疗TIM-3Radiotherapy Immunotherapy T Cell Immunoglobulin Domain and Mucin Domain-3 (TIM-3)
摘要: 放射治疗已被证明具有诱导免疫原性细胞死亡(immunogenetic cell death, ICD)和促进全身免疫应答的作用,因此放射治疗与免疫治疗的结合成为近年来的研究热点。T细胞免疫球蛋白域和粘蛋白域3 (TIM-3)是一种免疫检查点分子,可以影响肿瘤微环境(TME),在肿瘤进展和调控中发挥重要作用。有证据表明,靶向TIM-3是当前免疫治疗中一种很有前途的治疗方法,特别是与其他免疫检查点阻断剂的新组合。放疗与抗TIM-3或双重免疫治疗是否能取得更好的效果,仍需进一步探讨。本文综述肿瘤放射治疗与TIM-3的关系,为放射治疗与免疫治疗的结合提供新的思路。
Abstract: Radiotherapy has been proved to promote systemic immune response in recent years, so the com-bined application of radiotherapy and immunotherapy has become a research hotspot. T cell im-munoglobulin domain and mucin domain-3 (TIM-3), a kind of immune checkpoint molecule had been proved it can affect the tumor microenvironment and play an important role in tumor pro-gression and regulation. Evidences showed that targeting at TIM-3 is one of the promising immu-notherapies especially the combination of TIM-3 and other immune checkpoint inhibitors. However, whether the combination of radiotherapy and TIM-3 or dual-immunotherapy could achieve better effect still needs further discussion. This article reviews the relationship between tumor radio-therapy and TIM-3, which may provide evidence for the combination of radiotherapy and immuno-therapy.
文章引用:矫晨晨, 周非, 曹万里, 周雨媛, 陈文秀, 于洪升. 肿瘤放疗与TIM-3分子关系的研究进展[J]. 临床医学进展, 2022, 12(9): 8427-8433. https://doi.org/10.12677/ACM.2022.1291215

1. 引言

放射治疗作为肿瘤的治疗手段之一,在治疗局部病灶和预防疾病复发方面有较好的疗效,约50%~70%的肿瘤患者在病程中都需要放疗,且部分肿瘤可由放疗治愈。近年来越来越多的研究表明,放疗不仅仅是一种局部治疗的方式,更能引起全身的免疫反应,这为其与免疫治疗的联合提供了理论依据。随着免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)如抗PD-1/PD-L1抗体、抗CTLA-4抗体等被批准用于肺癌、食管癌、黑色素瘤等的治疗,放疗与免疫治疗联合的临床探索及机制研究也在火热进行。T细胞免疫球蛋白黏蛋白-3 (T cell immunoglobulin domain and mucin domain-3, TIM-3)又称甲肝病毒细胞受体2 (hepatitis A virus cellular receptor 2, HAVCR2),是近年来发现的免疫抑制分子,被证明在肿瘤进展与免疫逃逸中关系密切,多个研究表明TIM-3在多种肿瘤中表达上调,影响肿瘤微环境(tumor microenvironment, TME)并与肿瘤的不良预后相关。本文回顾了国内外文献研究,总结了肿瘤放射治疗与TIM-3分子之间关系的研究进展。

2. TIM-3

2.1. TIM-3分子结构及配体

TIM-3是位于人类染色体5q33.2上的I型跨膜蛋白,由HAVCR2基因编码的302个氨基酸组成 [1]。其最早被发现表达于Th1细胞表面,逐步又发现Th17细胞、单核细胞、巨噬细胞、树突状细胞(dendritic cells, DCs)、NK (natural killer)细胞等免疫细胞以及肿瘤细胞上均有Tim-3的表达,可以调节先天性及适应性免疫反应。TIM-3的主要结构包括四个部分:可变的免疫球蛋白V (immunoglobulin V, IgV)结构域、糖基化粘蛋白结构区、跨膜结构区和具有酪氨酸磷酸化基序的细胞质区 [2]。其中,IgV结构域为TIM-3与配体结合的位点,胞浆区的主要功能是参与信号传递。有趣的是,与其他免疫检查点如PD-1等的结构不同,TIM-3细胞质区尾部没有经典的抑制信号基序,如免疫受体酪氨酸的抑制基序(inhibition of human receptor tyrosine motif, ITIM)或免疫受体酪氨酸的开关基序(ITSM),但含有5个保守的酪氨酸残基 [3],其中Y256和Y263可促进人类白细胞抗原B关联转录因子3 (human leukocyte antigen-B associated transcript 3, BAT3)和Src激酶家族成员中的Fyn相互作用 [4]。当TIM-3未与配体结合时,BAT-3可附着在TIM-3的细胞质尾部并招募酪氨酸激酶Lck,抑制Fyn与其结合并维持T细胞的激活。而当TIM-3被配体激活时,细胞质区尾部的保守的酪氨酸残基被磷酸化,导致Bat3的释放,使TIM-3发挥负性调控作用。

TIM-3的配体主要包括半乳糖凝集素-9 (galectin9, Gal-9),磷脂酰丝氨酸(Phosphatidylserine, PtdSer),高迁移率族蛋白B1 (highmobility group box1 protein, HMGB1)和癌胚抗原相关细胞粘附分子1 (carcinoembryonic antigen related cellular adhesionmolecule1, Ceacam-1) [5]。其中,Galectin-9和HMGB1是可溶性配体,而Ceacam-1和PtdSer属于表面配体。许多研究证明,TIM-3与Galectin-9的相互作用在肿瘤调控中起关键作用 [6],但最终表现为抑制作用还是刺激作用,主要取决于表达Tim-3的细胞类型。正常生理条件下,T细胞亚群(Th1、Th17和Tc1)和巨噬细胞上表达的TIM3与Gal-9结合有抑制作用,而NK细胞和DCs上表达的TIM-3与Gal-9结合则有刺激作用。HMGB1是一种与损伤相关的分子模式蛋白,在肿瘤微环境中,肿瘤浸润性DCs上高表达的TIM-3与肿瘤细胞释放的核酸竞争结合HMGB1,而TIM-3与HMGB1结合可以阻断肿瘤核酸向核内体转运,从而抑制模式识别受体介导的固有免疫应答 [7],使肿瘤发生免疫逃逸。PtdSer与TIM-3的结合有助于凋亡小体的吞噬,促进树突状细胞的抗原提呈 [8] [9],它可能通过介导凋亡细胞的清除,在调节免疫耐受中发挥关键作用。Ceacam-1通过N端结构域与TIM-3结合形成异源二聚体,并通过反式相互作用促进TIM-3在免疫细胞表面的稳定表达,同时这种反式作用也可以抑制T细胞功能。小鼠模型中研究显示,细胞表面Ceaxam-1的缺乏会导致TIM-3表达的下降 [7]。

2.2. TIM-3与抗肿瘤免疫

研究证明,TIM-3在多种肿瘤细胞中都有表达,但TIM-3表达水平与肿瘤之间关系仍尚不明确。一项meta分析 [10] 汇总显示,TIM-3的表达与非小细胞肺癌、胃癌的不良预后相关,但TIM-3高表达的三阴乳腺癌、前列腺癌患者有更长的OS获益,食管癌、肾癌的患者TIM-3表达则与预后无关。这说明不同癌种中TIM-3的表达所引起的效应是不同的。TIM-3的负性调控作用与介导CD8+ T细胞功能失调,促进Treg细胞增殖成熟及分泌IL-10等抑制性细胞因子的功能,进而抑制T细胞免疫反应相关 [11] [12],TIM-3还能通过抑制CD4+ T细胞NF-κb/TNF-α通路诱导免疫抑制 [13]。TIM-3在固有免疫细胞上的表达能够促进抗炎反应 [14],在DCs上TIM-3可作为凋亡细胞的吞噬受体,它也被认为是NK细胞成熟的标志物,能增加IFN-γ的分泌 [15]。尽管TIM-3被认为是T细胞耗竭标志,但这部分细胞体外刺激时仍然具有分泌抗炎因子IFN-γ、TNF-α的功能,因此这或许并不是耗竭的T细胞群体,而是最终分化的一种对肿瘤起抗原反应的细胞群体,这样TIM-3的高表达才会与乳腺癌等癌种的良好预后相关 [16]。

3. 肿瘤放射治疗与免疫治疗

放射治疗过去被认为是一种局部治疗方式,通过直接作用或间接诱导产生肿瘤细胞DNA损伤来达到治疗效果,但越来越多的研究证实,放疗是一种具有免疫原性的治疗措施,它能够改变肿瘤免疫微环境,诱导肿瘤细胞发生免疫原性细胞死亡(ICD) [17],这也被认为是放疗远隔效应的一种解释。许多研究表明,放疗诱导的DNA损伤本身就会引起免疫系统对癌细胞的识别效应,这主要由环状GMP-AMP合成酶–干扰素基因刺激因子通路(cGAS/STING通路)介导 [18],并最终使得I型干扰素(IFN-I)的产生增加,IFN-I能够诱导DCs的向肿瘤迁移和T细胞的激活,从而起到增强抗肿瘤免疫的作用 [19]。而放射治疗引起ICD的主要特征是,肿瘤细胞在受到照射后,暴露于电离辐射下的细胞在发出特定的细胞死亡相关分子模式(death-associated molecular patterns, DAMPs)信号后死亡,这些DAMPs信号刺激抗原提呈细胞对肿瘤特异性抗原产生交叉提呈进而激活抗肿瘤免疫应答。研究发现,当树突状细胞吞噬了放射处理的肿瘤细胞后可引起强烈的免疫应答,这可能与暴露于死亡细胞表面的钙网蛋白(calreticulin, CRT)、大量三磷酸腺苷(triphosphate, ATP)的释放、高迁移率组蛋白由细胞核进入细胞质等相关,这些分子相互作用,使得肿瘤抗原的提呈加速并且启动T 淋巴细胞介导的免疫应答 [20]。简单来说,放疗不仅能使受辐射的肿瘤细胞的产生DNA损伤,还能调节肿瘤与免疫系统的相互作用,增强免疫系统对受辐射肿瘤细胞的识别,提高机体的抗肿瘤免疫。另外,放疗后肿瘤细胞人类白细胞抗原(human leukocyte antigen, HLA) I类分子表达增加,这说明除ICD外,放疗可能在诱导免疫原性方面发挥非常有益的作用,因为HLA I类分子能促进抗原特异性CD8+ T细胞依赖的肿瘤细胞杀伤。

以免疫检查点抑制剂为代表的免疫时代的到来,为肿瘤的治疗提供了新的选择和方向,然而并不是所有患者都对免疫检查点抑制剂有良好反应,且部分患者接受免疫治疗后也会产生适应性耐药,这被认为与肿瘤微环境中的免疫抑制及免疫逃逸机制有关。已有研究证实放疗可以诱导细胞程序性死亡–配体1 (Programmed cell death 1 ligand 1, PD-L1)的表达,这可能是DNA双链断裂产生的DNA损伤信号分子,通过转录依赖的方式上调PD-L1的表达 [21],这种调控与炎症因子的作用也相关 [22]。同时,DNA修复蛋白如BRCA2基因的缺失,能够增强DNA损伤介导的PD-L1上调 [21],因此放疗后使用免疫治疗可能会增强这部分患者的疗效。也有研究表明,PD-L1除了能够抑制T细胞的活化,还能维持DNA损伤修复蛋白相关的mRNA稳定 [23],这说明放疗后细胞产生治疗耐药性可能与PD-L1的表达有关,而放疗后抑制PD-L1通路可能会通过抑制DNA的修复来增强放疗效果。因此,关于免疫治疗与放射治疗联合的临床研究也在不断探索。在一项治疗转移性NSCLC的II期临床研究中,使用ipilimumab (CTLA-4抑制剂)同时给予患者立体定向放疗(stereotactic radiotherapy, SBRT)治疗,能够显著提高有效率且未增加明显不良反应 [24]。另一项研究对比了单药pembrolizumab治疗与SBRT放疗后给予免疫治疗,放疗后免疫治疗组在总生存期、无进展生存期及有效率上均具有明显优势 [25]。KEYNOTE-001等试验的结果显示,与从未接受过放疗的患者相比,曾接受过放疗(无论是姑息性放疗还是根治性放疗)的患者接受免疫治疗如pembrolizumab、nivolumab等都有更明显的总生存(Overall survival, OS)和无病生存期(Progression-free Survival, PFS)获益 [26] [27]。

4. 肿瘤放射治疗与TIM-3

目前放射治疗与TIM-3通路的关系尚不明确,TIM-3的双向免疫调节作用使它在放疗与不同癌种的调节也是不同的。赵春燕等 [28] 的研究中发现,在放疗抵抗的食管癌患者中,肿瘤组织及外周血内的TIM-3表达均高于放疗敏感组,且COX回归示TIM-3高表达为影响放疗敏感性的独立危险因素,这证明TIM-3或许可作为患者放疗疗效的预测指标。

不同肿瘤放疗后肿瘤细胞及免疫细胞上TIM-3的表达情况已有部分研究开展,但结果不尽相同。有动物试验表明,2Gy的全身低剂量照射能够提高胰腺癌小鼠脾脏TIM-3的表达 [29]。在乳腺癌小鼠模型中,接受了放疗的小鼠PD-1高表达的T细胞上TIM-3表达也升高 [30]。Ruan等的一项鼻咽癌患者的病例对照研究发现 [31],调强放疗组患者外周血血浆中的TIM-3表达明显高于对照组(2643.3 ± 1243.8 vs 2005.6 ± 633.4, P = 0.005),而调强放疗后患者外周血中TIM-3也较放疗前有了显著提高(2643.3 ± 1243.8 vs 1702.8 ± 867.8, P < 0.001)。同样,chew等 [16] 关于钇90 (Y90)放射栓塞治疗肝癌的一项研究中,实验组患者特别是对Y90治疗持续应答的患者肿瘤浸润淋巴细胞中TIM-3+CD8+ T细胞比例高于对照组,TIM-3在肿瘤组织中的表达也升高,且治疗后1个月、3个月、6个月TIM-3+CD8+ T细胞仍处于较高水平,这可能是因为Y90治疗对外周T淋巴细胞的持续激活,引起了机体对Y90治疗的持续反应。这说明放疗引起的肿瘤抗原释放适当刺激时,可以激活机体免疫反应,发挥潜在的局部抗肿瘤作用。同时,在持续应答细胞中TIM-3+CD8+ T细胞上发现了趋化因子受体CCR5和CXCR6的表达也显著升高,这两种受体也被证明是T细胞归巢受体,这说明了放射治疗使得TIM-3+CD8+ T细胞在趋化因子的作用下向肿瘤区域富集。这些研究说明放疗作用激活免疫系统,引起T细胞的免疫应答,增加了T细胞上TIM-3的表达,并通过趋化因子的作用使TIM-3+CD8+ T细胞向肿瘤区域富集,增强抗肿瘤作用。

然而部分研究发现,给予放射治疗后TIM-3的表达较前下降。Peng等 [32] 发现直肠癌新辅助放疗后,免疫细胞及肿瘤细胞中TIM-3的表达均有所下降。在长程放疗后8周内,TIM-3均处于较低水平且TIM-3是新辅助放疗后影响直肠癌患者无病生存期的独立预后因素。Filatenkov等 [33] 研究CT26结肠癌细胞发现单次高剂量照射(30Gy)后可以观察到肿瘤组织中效应T细胞的增加,然而高表达TIM-3的T细胞比例却没有明显增加。另一项关于鼻咽癌的研究主要观察了标准放化疗患者CD39+CD8+ T细胞 [34],结果显示,与对照组相比,放化疗后患者CD39+CD8+ T细胞数量显著提高,而绝大多数CD39+ T细胞不表达PD-L1以及TIM-3。这些细胞不表达耗竭抑制分子PD-1和TIM-3,被认为它们是高质量的功能性效应细胞,能够有效杀死癌细胞。一项Lewis肺癌小鼠模型研究显示,与对照组相比,单独放疗对TIM-3的表达没有影响,但联合抑制吲哚胺2,3双加氧酶(IDO)可显著下调TIM-3的表达 [35],逆转T细胞耗竭,提高疗效。这些研究可能提示在这些癌种中,放疗后并未发生以TIM-3+ T细胞富集为代表的免疫系统的激活,TIM-3的表达依然起到了负性调控作用,既往研究证明靶向TIM-3确实能够起到逆转T细胞耗竭,恢复机体抗肿瘤免疫的效果,因此放疗后联合抗TIM-3治疗,或许能起到增强放疗效果,延长反应时间的作用。

Petersen等 [36] 对胃癌不同细胞株进行10Gy放射治疗后,TIM-3的配体Gal-9的表达均可见明显增高,联合5-Fu治疗组升高更加明显。对于MKN7细胞来说,单独阻断Tim-3通路对于促进DCs的成熟并无作用,但放疗后阻断TIM-3却能观察到强烈的DCs刺激作用,这可能与CD80、CD86的上调有关。这证明单独应用抗TIM-3免疫治疗或许并不能获得理想的临床疗效,但放疗联合TIM-3治疗则能发挥对免疫系统激活的协同作用。

目前关于放疗和TIM-3的探索更多的是放疗联合免疫检查点抑制剂的联合应用研究。在小鼠非小细胞肺癌和头颈部鳞癌模型中发现,抗PD-1治疗的适应性耐药性是通过TIM-3上调介导的 [37],共同阻断PD-L1和TIM-3比单独阻断任何一个通路能取得更好的效果 [38] 也证明了PD-L1与TIM-3在细胞衰竭的过程中起到了协同作用。那么放疗后联合双ICIs是否会进一步增强疗效?Oweida等的动物试验 [39] 表明,头颈部鳞癌小鼠模型接受放疗以及PD-L1阻断治疗后,CD4+ T细胞及CD8+ T细胞上TIM-3的表达均有了明显增加,同时TIM-3+ Treg细胞比例也有显著提高。与TIM-3-阴性Tregs相比,TIM-3阳性Tregs已被证明表达更高水平的IL10,并且具有更高的抑制效应T细胞分泌IFN-γ和TNF-α的能力 [40]。在放疗联合抗PD-L1治疗后,TIM-3是唯一上调的T细胞共抑制受体,其他受体包括细胞毒性T淋巴细胞相关蛋白4 (cytotoxic T-lymphocyte-associated protein 4, CTLA-4)、淋巴细胞活化基因3 (lymphocyteactivationgene-3, LAG3)等均未表达。在此基础上加入阻断TIM-3治疗,结果显示,三联治疗组Treg细胞比例明显低于对照组、单药组以及单药联合放疗组,且IFN-γ的表达显著增加,即效应T细胞数量显著高于其他组,且三联治疗能显著抑制局部肿瘤生长,但效果仍是短暂的。这项研究提出的靶向Treg联合放疗及双免疫检查点封锁的治疗方法,也值得后续探索。

5. 展望

SBRT等放射技术的进步使放疗精确度与安全性得到了极大的提升,各种研究也证明了放射治疗与免疫治疗的协同作用,然而,二者如何联合才能产生最大获益,如放疗剂量、分割方式以及加入ICIs的时机均需进一步研究阐明。TIM-3作为免疫治疗的潜在靶点,与放疗、与其他ICIs的联合也被赋予厚望,其药物如TSR-022、MBG453等的临床试验也在火热进行中。我们也期待放疗与TIM-3分子机制关系的进一步明确,为免疫治疗与放射治疗的联合提供更多的可能。

NOTES

*通讯作者Email: yuhongsheng@qdu.edu.cn

参考文献

[1] Meyers, J., Sabatos, C., Chakravarti, S., et al. (2005) The TIM Gene Family Regulates Autoimmune and Allergic Dis-eases. Trends in Molecular Medicine, 11, 362-369.
https://doi.org/10.1016/j.molmed.2005.06.008
[2] Saleh, R., Toor, S. and Elkord, E. (2020) Targeting TIM-3 in Solid Tumors: Innovations in the Preclinical and Translational Realm and Therapeutic Potential. Expert Opinion on Therapeutic Targets, 24, 1251-1262.
https://doi.org/10.1080/14728222.2020.1841750
[3] Van de Weyer, P., Muehlfeit, M., Klose, C., et al. (2006) A Highly Conserved Tyrosine of Tim-3 Is Phosphorylated upon Stimulation by Its Ligand Galectin-9. Biochemical and Bi-ophysical Research Communications, 351, 571-576.
https://doi.org/10.1016/j.bbrc.2006.10.079
[4] Clayton, K., Haaland, M., Douglas-Vail, M., et al. (2014) T Cell Ig and Mucin Domain-Containing Protein 3 Is Recruited to the Immune Synapse, Disrupts Stable Synapse Formation, and Associates with Receptor Phosphatases. Journal of Immunology (Baltimore, MD: 1950), 192, 782-791.
https://doi.org/10.4049/jimmunol.1302663
[5] Yu, L., Liu, X., Wang, X., et al. (2021) TIGIT TIM-3 NK Cells Are Correlated with NK Cell Exhaustion and Disease Progression in Patients with Hepatitis B Virus-Related Hepatocel-lular Carcinoma. Oncoimmunology, 10, Article ID: 1942673.
https://doi.org/10.1080/2162402X.2021.1942673
[6] Kandel, S., Adhikary, P., Li, G., et al. (2021) The TIM3/Gal9 Signaling Pathway: An Emerging Target for Cancer Immunotherapy. Cancer Letters, 510, 67-78.
https://doi.org/10.1016/j.canlet.2021.04.011
[7] Tang, D. and Lotze, M. (2012) Tumor Immunity Times Out: TIM-3 and HMGB1. Nature Immunology, 13, 808-810.
https://doi.org/10.1038/ni.2396
[8] Sordi, R., Bet, Â., Della Justina, A., et al. (2020) The Apoptosis Clearance Signal Phosphatidylserine Inhibits Leukocyte Migration and Promotes Inflammation Resolution in Vivo. European Jour-nal of Pharmacology, 877, Article ID: 173095.
https://doi.org/10.1016/j.ejphar.2020.173095
[9] Freeman, G., Casasnovas, J., Umetsu, D., et al. (2010) TIM Genes: A Family of Cell Surface Phosphatidylserine Receptors That Reg-ulate Innate and Adaptive Immunity. Immunological Reviews, 235, 172-189.
https://doi.org/10.1111/j.0105-2896.2010.00903.x
[10] Zang, K., Hui, L., Wang, M., et al. (2021) TIM-3 as a Prognostic Marker and a Potential Immunotherapy Target in Human Malignant Tumors: A Meta-Analysis and Bioinfor-matics Validation. Frontiers in Oncology, 11, Article 579351.
https://doi.org/10.3389/fonc.2021.579351
[11] Gao, X., Zhu, Y., Li, G., et al. (2012) TIM-3 Expression Characterizes Regulatory T Cells in Tumor Tissues and Is Associated with Lung Cancer Progression. PLOS ONE, 7, e30676.
https://doi.org/10.1371/journal.pone.0030676
[12] Sun, H., Gao, W., Pan, W., et al. (2017) Tim3+ Foxp3+ Treg Cells Are Potent Inhibitors of Effector T Cells and Are Suppressed in Rheumatoid Arthritis. Inflammation, 40, 1342-1350.
https://doi.org/10.1007/s10753-017-0577-6
[13] Huang, S., Liu, D., Sun, J., et al. (2022) Tim-3 Regulates Sepsis-Induced Immunosuppression by Inhibiting the NF-κB Signaling Pathway in CD4 T Cells. Molecular Therapy, 30, 1227-1238.
https://doi.org/10.1016/j.ymthe.2021.12.013
[14] Han, G., Chen, G., Shen, B., et al. (2013) Tim-3: An Activation Marker and Activation Limiter of Innate Immune Cells. Frontiers in Immunology, 4, Article 449.
https://doi.org/10.3389/fimmu.2013.00449
[15] Li, Y.-H., Zhou, W.-H., Tao, Y., et al. (2016) The Galec-tin-9/Tim-3 Pathway Is Involved in the Regulation of NK Cell Function at the Maternal-Fetal Interface in Early Pregnancy. Cellular & Molecular Immunology, 13, 73-81.
https://doi.org/10.1038/cmi.2014.126
[16] Chew, V., Lee, Y., Pan, L., et al. (2019) Immune Activation Underlies a Sustained Clinical Response to Yttrium-90 Radioembolisation in Hepatocellular Carcinoma. Gut, 68, 335-346.
https://doi.org/10.1136/gutjnl-2017-315485
[17] Galluzzi, L., Buqu, A., Kepp, O., et al. (2017) Immunogenic Cell Death in Cancer and Infectious Disease. Nature Reviews Immunology, 17, 97-111.
https://doi.org/10.1038/nri.2016.107
[18] Chen, Q., Sun, L. and Chen, Z. (2016) Regulation and Function of the cGAS-STING Pathway of Cytosolic DNA Sensing. Nature Immunology, 17, 1142-1149.
https://doi.org/10.1038/ni.3558
[19] Sun, L., Wu, J., Du, F., et al. (2013) Cyclic GMP-AMP Synthase Is a Cyto-solic DNA Sensor That Activates the Type I Interferon pathway. Science (New York, NY), 339, 786-791.
https://doi.org/10.1126/science.1232458
[20] Rodriguez-Ruiz, M., Rodriguez, I., Leaman, O., et al. (2019) Immune Mechanisms Mediating Abscopal Effects in Radioimmunotherapy. Pharmacology & Therapeutics, 196, 195-203.
https://doi.org/10.1016/j.pharmthera.2018.12.002
[21] Sato, H., Niimi, A., Yasuhara, T., et al. (2017) DNA Dou-ble-Strand Break Repair Pathway Regulates PD-L1 Expression in Cancer Cells. Nature Communications, 8, Article No. 1751.
https://doi.org/10.1038/s41467-017-01883-9
[22] Azad, A., Lim, S.Y., D’costa, Z., et al. (2017) PD-L1 Blockade Enhances Response of Pancreatic Ductal Adenocarcinoma to Radiotherapy. EMBO Molecular Medicine, 9, 167-180.
https://doi.org/10.15252/emmm.201606674
[23] Tu, X., Qin, B., Zhang, Y., et al. (2019) PD-L1 (B7-H1) Competes with the RNA Exosome to Regulate the DNA Damage Response and Can Be Targeted to Sensitize to Radia-tion or Chemotherapy. Molecular Cell, 74, 1215-1226.e4.
https://doi.org/10.1016/j.molcel.2019.04.005
[24] Formenti, S., Rudqvist, N., Golden, E., et al. (2018) Radiothera-py Induces Responses of Lung Cancer to CTLA-4 Blockade. Nature Medicine, 24, 1845-1851.
https://doi.org/10.1038/s41591-018-0232-2
[25] Theelen, W., Peulen, H., Lalezari, F., et al. (2019) Effect of Pem-brolizumab after Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients with Ad-vanced Non-Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncology, 5, 1276-1282.
https://doi.org/10.1001/jamaoncol.2019.1478
[26] Shaverdian, N., Lisberg, A., Bornazyan, K., et al. (2017) Previ-ous Radiotherapy and the Clinical Activity and Toxicity of Pembrolizumab in the Treatment of Non-Small-Cell Lung Cancer: A Secondary Analysis of the KEYNOTE-001 Phase 1 Trial. The Lancet Oncology, 18, 895-903.
https://doi.org/10.1016/S1470-2045(17)30380-7
[27] Yamaguchi, O., Kaira, K., Hashimoto, K., et al. (2019) Radi-otherapy Is an Independent Prognostic Marker of Favorable Prognosis in Non-Small Cell Lung Cancer Patients after Treatment with the Immune Checkpoint Inhibitor, Nivolumab. Thoracic Cancer, 10, 992-1000.
https://doi.org/10.1111/1759-7714.13044
[28] 赵春燕, 唐嘉迎. 外周血Tim-3表达水平与食管癌放化疗敏感性的相关性研究[J]. 河北医学, 2021, 27(6): 886-892.
[29] Sonanini, D., Griessinger, C., Schörg, B., et al. (2021) Low-Dose Total Body Irradiation Facilitates Antitumoral Th1 Immune Responses. Theranostics, 11, 7700-7714.
https://doi.org/10.7150/thno.61459
[30] Verbrugge, I., Hagekyriakou, J., Sharp, L., et al. (2012) Radiotherapy In-creases the Permissiveness of Established Mammary Tumors to Rejection by Immunomodulatory Antibodies. Cancer Research, 72, 3163-3174.
https://doi.org/10.1158/0008-5472.CAN-12-0210
[31] Ruan, Y., Hu, W., Li, W., et al. (2019) Analysis of Plasma EBV-DNA and Soluble Checkpoint Proteins in Nasopharyngeal Carcinoma Patients after Definitive Intensity-Modulated Radiotherapy. BioMed Research International, 2019, Article ID: 3939720.
https://doi.org/10.1155/2019/3939720
[32] Peng, Q., Li, J., Xin, P., et al. (2021) Assessment of the Expression and Response of PD-1, LAG-3, and TIM-3 after Neoadjuvant Radiotherapy in Rectal Cancer. Neoplasma, 68, 742-750.
https://doi.org/10.4149/neo_2021_201210N1341
[33] Filatenkov, A., Baker, J., Mueller, A., et al. (2015) Ablative Tumor Radiation Can Change the Tumor Immune Cell Microenvironment to Induce Durable Complete Remissions. Clin-ical Cancer Research, 21, 3727-3739.
https://doi.org/10.1158/1078-0432.CCR-14-2824
[34] Dong, D.-N., Fan, P.-W., Feng, Y.-N., Liu, G.-H., et al. (2021) Association between Circulating CD39+CD8+ T Cells Pre-Chemoradiotherapy and Prognosis in Patients with Nasopharyngeal Carcinoma. Chinese Medical Journal, 134, 2066-2072.
https://doi.org/10.1097/CM9.0000000000001745
[35] Liu, M., Li, Z., Yao, W., et al. (2020) IDO Inhibitor Syner-gized with Radiotherapy to Delay Tumor Growth by Reversing T Cell Exhaustion. Molecular Medicine Reports, 21, 445-453.
https://doi.org/10.3892/mmr.2019.10816
[36] Petersen, S., Kua, L., Nakajima, S., Yong, W., et al. (2021) Chemoradiation Induces Upregulation of Immunogenic Cell Death-Related Molecules Together with Increased Expres-sion of PD-L1 and Galectin-9 in Gastric Cancer. Scientific Reports, 11, Article No. 12264.
https://doi.org/10.1038/s41598-021-91603-7
[37] Shayan, G., Srivastava, R., Li, J., et al. (2017) Adaptive Re-sistance to Anti-PD1 Therapy by Tim-3 Upregulation Is Mediated by the PI3K-Akt Pathway in Head and Neck Cancer. Oncoimmunology, 6, e1261779.
https://doi.org/10.1080/2162402X.2016.1261779
[38] Ngiow, S., Von Scheidt, B., Akiba, H., et al. (2011) An-ti-TIM3 Antibody Promotes T Cell IFN-γ-Mediated Antitumor Immunity and Suppresses Established Tumors. Cancer Research, 71, 3540-3551.
https://doi.org/10.1158/0008-5472.CAN-11-0096
[39] Oweida, A., Hararah, M., Phan, A., et al. (2018) Resistance to Radiotherapy and PD-L1 Blockade Is Mediated by TIM-3 Upregulation and Regulatory T-Cell Infiltration. Clinical Cancer Research, 24, 5368-5380.
https://doi.org/10.1158/1078-0432.CCR-18-1038
[40] Anderson, A.C., Joller, N. and Kuchroo, V.K. (2016) Lag-3, Tim-3, and TIGIT: Co-Inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity, 44, 989-1004.
https://doi.org/10.1016/j.immuni.2016.05.001