#### 期刊菜单

Development of Three-Phase Three Wire Active Power Filter based on Proportional Integral Control Strategy
DOI: 10.12677/OE.2022.123014, PDF, HTML, XML, 下载: 50  浏览: 100

Abstract: With the rapid development of manufacturing industry and the rapid improvement of production technology, active power filter (APF), as a device that can effectively control the harmonic of power grid, has become a research hotspot. In this paper, the structure design of compound current loop controller of PI controller with proportional integral control strategy is proposed. The performance is analyzed and simulated on MATLAB simulation platform. The experimental results show that the experimental method is correct and realizable. At the same time, it also fully shows that the system has good harmonic compensation performance.

1. 引言

2. 有源电力滤波器的比例积分控制算法

1) PI调节器的优化

${G}_{PI}\left(s\right)={K}_{p}+\frac{{K}_{i}}{s}$ (1)

Kp为控制器的比例系数；

Ki为控制器的积分系数。

$\begin{array}{c}u\left(k\right)=u\left(k-1\right)+\Delta u\left(k\right)=u\left(k-1\right)+\left[u\left(k\right)-u\left(k-1\right)\right]\left(k-1\right)\\ =u\left(k-1\right)+{K}_{P}\left[e\left(k\right)-e\left(k-1\right)\right]+K{T}_{s}e\left(k\right)\end{array}$ (2)

$u\left(k\right)=u\left(k-1\right)+\Delta u\left(k\right)$ (3)

2) 积分分离算法。

Figure 1. Voltage control outer loop and current control inner loop

3. 仿真与结果分析

3.1. 仿真准备

3.2. 比例积分控制策略

Figure 2. Relationship among load current, grid current and inverter output current under pure proportional control

Figure 3. FFT analysis of grid current

Figure 4. FFT analysis of load current

Table 1. Relationship between scale factor and current harmonic content

3.3. 阻容性负载的分析

Figure 6. Relationship among load current of resistive capacitive load, grid current and inverter output current

4. 总结与展望

Figure 8. Grid current

 [1] 程稳. LCL滤波三相并联有源电力滤波器研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2015. [2] 许若冰. 三相四线制并联有源电力滤波器研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2015. [3] 杨佳能. 有源电力滤波器补偿性能研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2017. [4] 刘洁. 混合级联有源电力滤波器预研[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2015. [5] 周柯, 罗安, 蒋辉平. 混合型有源电力滤波器建模与控制特性分析[J]. 电力系统自动化, 2007, 31(1): 65-69. [6] 魏艳迪. 有源电力滤波器建模与复合控制策略研究[D]: [硕士学位论文]. 济南: 济南大学, 2010. [7] 韩忠旭, 张同为, 潘钢, 孙颖, 考志强. 增量式广义PI函数观测器的概念与工程应用[J]. 控制工程, 2008, 15(1): 89-93. [8] 刘亚峰, 陈羽, 彭克, 刘国栋. 基于改进PR控制的多功能逆变器控制策略[J]. 山东电力技术, 2017, 44(235): 35-39. [9] 殷明. LCL滤波并联有源电力滤波器研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2016. [10] 周卫平, 吴正国, 夏立, 刘大明. 三相三线有源电力滤波器电流跟踪性能最优化控制[J]. 中国电机工程学报, 2004, 24(11): 85-90. [11] 万山明, 吴芳, 黄声华. 三相四桥臂电压源高频链逆变器[J]. 中国电机工程学报, 2005, 25(12): 47-51. [12] 刘桂英, 粟时平. 并联有源电力滤波器滞环电流比较控制研究[J]. 高电压技术, 2005, 31(5): 58-60. [13] 王明菊, 张昌凡, 兰志杰. 一种改进的高压大功率有源电力滤波器设计及实现[J]. 电子测量与仪器学报, 2007, 21(3): 108-112. [14] Matthias Lüscher, T. (2004) 5 Integrated Gate Commutated Thyristors Application Note. ABB Switzerland Ltd., Switzerland.