|
[1]
|
Chen, X.Y., Zhou, G.H., Mao, S. and Chen, J.H. (2018) Rapid Detection of Nutrients with Electronic Sensors: A Review. Environmental Science: Nano, 5, 837-862. [Google Scholar] [CrossRef]
|
|
[2]
|
Gutierrez-Capitan, M., Baldi, A. and Fernandez-Sanchez, C. (2020) Electrochemical Paper-Based Biosensor Devices for Rapid Detection of Biomarkers. Sensors, 20, Article No. 967. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, D., Wu, C., Tang, X., Zhang, Y. and Wang, T. (2021) Electrochemical Sensors Applied for in Vitro Diagnosis. Chemical Research in Chinese Universities, 37, 803-822. [Google Scholar] [CrossRef]
|
|
[4]
|
Ozcelikay, G., Karadurmus, L., Kaya, S.I., Bakirhan, N.K. and Ozkan, S.A. (2020) A Review: New Trends in Electrode Systems for Sensitive Drug and Biomolecule Analysis. Critical Reviews in Analytical Chemistry, 50, 212-225.
[Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Huo, X.-L., Qi, J.-F., He, K.-C., Bao, N. and Shi, C.-G. (2020) Stainless Steel Sheets as the Substrate of Disposable Electrochemical Sensors for Analysis of Heavy Metals or Biomolecules. Analytica Chimica Acta, 1124, 32-39.
[Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chen, C., Wang, Y., Zhang, D. and Zhang, Z. (2022) 316 Stainless Steel Wire Mesh for Visual Detection of H2O2, Glutathione and Glucose Based on the Peroxidase-Like Activity. Analytical Sciences, 38, 941-948.
[Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shang, L., Shi, B.-J., Zhang, W., Jia, L.-P., Ma, R.-N., Xue, Q.-W., Wang, H.-S. and Yan, W. (2022) Electrochemical Stripping Chemiluminescence Coupled with Recycling Amplification Strategy for Sensitive Detection of Carcinoembryonic Antigen. Sensors and Actuators B: Chemical, 368, Article ID: 132191.
[Google Scholar] [CrossRef]
|
|
[8]
|
Li, T., Xi, K., Jiang, P.-Y., Pan, Q.-R., Feng, Y. and Wu, H. (2022) Mixed Co-Mn Spinel Oxides Based Electrocatalysts for Amperometric Determination of Hydrogen Peroxide. ChemistrySelect, 7, Article ID: e202200631.
[Google Scholar] [CrossRef]
|
|
[9]
|
Rahmawati, I., Einaga, Y., Ivandini, T.A. and Fiorani, A. (2022) Enzymatic Biosensors with Electrochemiluminescence Transduction. ChemElectroChem, 9, Article ID: e202200175. [Google Scholar] [CrossRef]
|
|
[10]
|
Li, H., Wang, C., Wang, X., Hou, P., Luo, B., Song, P., Pan, D., Li, A. and Chen, L. (2019) Disposable Stainless Steel-Based Electrochemical Microsensor for in Vivo Determination of Indole-3-Acetic Acid in Soybean Seedlings. Biosensors & Bioelectronics, 126, 193-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Biyani, M., Biyani, R., Tsuchihashi, T., Takamura, Y., Ushijima, H., Tamiya, E. and Biyani, M. (2017) DEP-On-Go for Simultaneous Sensing of Multiple Heavy Metals Pollutants in Environmental Samples. Sensors, 17, Article No. 45.
[Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Philip, A.S., Rison, S., Cherian, A.R., Akshaya, K.B., George, L. and Varghese, A. (2021) Electrochemical Sensing of Formaldehyde in Fish Samples Using a Polydopamine-Modified Stainless Steel Electrode. ECS Journal of Solid State Science and Technology, 10, Article ID: 067003. [Google Scholar] [CrossRef]
|
|
[13]
|
Kitte, S.A., Gao, W., Zholudov, Y.T., Qi, L., Nsabimana, A., Liu, Z. and Xu, G. (2017) Stainless Steel Electrode for Sensitive Luminol Electrochemiluminescent Detection of H2O2, Glucose, and Glucose Oxidase Activity. Analytical Chemistry, 89, 9864-9869. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kitte, S.A., Zafar, M.N., Zholudov, Y.T., Ma, X., Nsabimana, A., Zhang, W. and Xu, G. (2018) Determination of Concentrated Hydrogen Peroxide Free from Oxygen Interference at Stainless Steel Electrode. Analytical Chemistry, 90, 8680-8685. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Vinh Xuan, L., Lee, H., Nguyen Sy, P., Bong, S., Oh, H., Cho, S.-H. and Shin, I.-S. (2021) Stainless Steel 304 Needle Electrode for Precise Glucose Biosensor with High Signal-to-Noise Ratio. Sensors and Actuators B-Chemical, 346, Article ID: 130552. [Google Scholar] [CrossRef]
|
|
[16]
|
Chen, Y., Li, Q., Jiang, H. and Wang, X. (2016) Pt Modified Carbon Fiber Microelectrode for Electrochemically Catalytic Reduction of Hydrogen Peroxide and Its Application in Living Cell H2O2 Detection. Journal of Electroanalytical Chemistry, 781, 233-237. [Google Scholar] [CrossRef]
|
|
[17]
|
Jiang, L., Zhao, Y., Zhao, P., Zhou, S., Ji, Z., Huo, D., Zhong, D. and Hou, C. (2021) Electrochemical Sensor Based on Reduced Graphene Oxide Supported Dumbbell-Shaped CuCo2O4 for Real-Time Monitoring of H2O2 Released from Cells. Microchemical Journal, 160, Article ID: 105521. [Google Scholar] [CrossRef]
|
|
[18]
|
Jiang, Y., Sun, Y., Zhang, L. and Wang, X. (2020) Influence Factor Analysis of Soil Heavy Metal Cd Based on the GeoDetector. Stochastic Environmental Research and Risk Assessment, 34, 921-930.
[Google Scholar] [CrossRef]
|
|
[19]
|
Dal’nova, O.A., Bebeshko, G.I., Es’kina, V.V., Baranovskaya, V.B. and Karpov, Y.A. (2018) Contemporary Methods of Detecting Heavy Metals in Waste Waters (Review). Inorganic Materials, 54, 1397-1406.
[Google Scholar] [CrossRef]
|
|
[20]
|
Kutralam-Muniasamy, G., Perez-Guevara, F., Martinez, I.E. and Shruti, V.C. (2021) Overview of Microplastics Pollution with Heavy Metals: Analytical Methods, Occurrence, Transfer Risks and Call for Standardization. Journal of Hazardous Materials, 415, Article ID: 125755. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zeiner, M., Pirkl, R. and Cindric, I.J. (2020) Field-Tests versus Laboratory Methods for Determining Metal Pollutants in Soil Extracts. Soil & Sediment Contamination, 29, 53-68. [Google Scholar] [CrossRef]
|
|
[22]
|
Bi, X.-M., Wang, H.-R., Ge, L.-Q., Zhou, D.-M., Xu, J.-Z., Gu, H.-Y. and Bao, N. (2018) Gold-Coated Nanostructured Carbon Tape for Rapid Electrochemical Detection of Cadmium in Rice with in Situ Electrodeposition of Bismuthin Paper-Based Analytical Devices. Sensors and Actuators B-Chemical, 260, 475-479.
[Google Scholar] [CrossRef]
|
|
[23]
|
Liu, Y., Liu, J., Zhang, Q., Wei, J. and Xu, G. (2019) Bismuth Nano-Flower Modified CPE for Anodic Stripping Voltammetry Detection of Cd(II). International Journal of Electrochemical Science, 14, 4483-4495.
[Google Scholar] [CrossRef]
|
|
[24]
|
Martin-Yerga, D., Alvarez-Martos, I., Carmen Blanco-Lopez, M., Henry, C.S. and Teresa Fernandez-Abedul, M. (2017) Point-of-Need Simultaneous Electrochemical Detection of Lead and Cadmium Using Low-Cost Stencil-Printed Transparency Electrodes. Analytica Chimica Acta, 981, 24-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Borrill, A.J., Reily, N.E. and Macpherson, J.V. (2019) Addressing the Practicalities of Anodic Stripping Voltammetry for Heavy Metal Detection: A Tutorial Review. Analyst, 144, 6834-6849. [Google Scholar] [CrossRef]
|
|
[26]
|
Tyszczuk-Rotko, K. (2019) Metal Film Electrodes Prepared with a Reversibly Deposited Mediator in Voltammetric Analysis of Metal Ions. Current Opinion in Electrochemistry, 17, 128-133.
[Google Scholar] [CrossRef]
|
|
[27]
|
Goncalves-Filho, D., Goncalves Silva, C.C. and De Souza, D. (2020) Pesticides Determination in Foods and Natural Waters Using Solid Amalgam-Based Electrodes: Challenges and Trends. Talanta, 212, Article ID: 120756.
[Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Qin, D., Xamxikamar, M., Li, Y., Hu, X., Cheng, H. and Hu, G. (2020) A Composite with Botryoidal Texture Prepared from Nitrogen-Doped Carbon Spheres and Carbon Nanotubes for Voltammetric Sensing of Copper(II). Microchemical Journal, 153, Article ID: 104299. [Google Scholar] [CrossRef]
|
|
[29]
|
Thanalechumi, P., Yusoff, A.R.M. and Yusop, Z. (2020) Novel Electrochemical Sensor Based on Nylon 6,6-Modified Graphite HB Pencil Electrode for Chlorothalonil Determination by Differential Pulse Cathodic Stripping Voltammetry. Water Air and Soil Pollution, 231, Article No. 189. [Google Scholar] [CrossRef]
|
|
[30]
|
Kitte, S.A., Li, S., Nsabimana, A., Gao, W., Lai, J., Liu, Z. and Xu, G. (2019) Stainless Steel Electrode for Simultaneous Stripping Analysis of Cd(II), Pb(II), Cu(II) and Hg(II). Talanta, 191, 485-490.
[Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Huang, W.-L., Chang, W.-H., Cheng, S.-F., Li, H.-Y. and Chen, H.-L. (2021) Potential Risk of Consuming Vegetables Planted in Soil with Copper and Cadmium and the Influence on Vegetable Antioxidant Activity. Applied Sciences-Basel, 11, Article No. 3761. [Google Scholar] [CrossRef]
|
|
[32]
|
Zwolak, A., Sarzynska, M., Szpyrka, E. and Stawarczyk, K. (2019) Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review. Water Air and Soil Pollution, 230, Article No. 164.
[Google Scholar] [CrossRef]
|
|
[33]
|
Hossain, B. (2018) Effects of Zinc on Indole Carboxylic Acid and Indole Acetic Acids Contents in Radish Shoot. Bangladesh Journal of Botany, 47, 329-335.
|
|
[34]
|
Revelou, P.-K., Kokotou, M.G. and Constantinou-Kokotou, V. (2019) Identification of Auxin Metabolites in Brassicaceae by Ultra-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Molecules, 24, Article No. 2615. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, Y.-N., Wu, H.-L., Zhu, S.-H., Nie, J.-F., Yu, Y.-J., Wang, X.-M. and Yu, R.-Q. (2009) Determination of Indole-3-Acetic Acid in Soil Using Excitation-Emission Matrix Fluorescence with Trilinear Decomposition-Based Calibration Methods. Analytical Sciences, 25, 83-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chen, H., Guo, X.-F., Zhang, H.-S. and Wang, H. (2011) Simultaneous Determination of Phytohormones Containing Carboxyl in Crude Extracts of Fruit Samples Based on Chemical Derivatization by Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 879, 1802-1808. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kaczmarek, M. and Staninski, K. (2017) Terbium(III) Ions as Sensitizers of Oxidation of Indole and Its Derivatives in Fenton System. Journal of Luminescence, 183, 470-477. [Google Scholar] [CrossRef]
|
|
[38]
|
Hanuszewska-Dominiak, M., Martyniuk, K. and Lewczuk, B. (2021) Embryonic Development of Avian Pineal Secretory Activity—A Lesson from the Goose Pineal Organs in Superfusion Culture. Molecules, 26, Article No. 6329.
[Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Pajootan, E., Omanovic, S. and Coulombe, S. (2021) Controllable Dry Synthesis of Binder-Free Nanostructured Platinum Electrocatalysts Supported on Multi-Walled Carbon Nanotubes and Their Performance in the Oxygen Reduction Reaction. Chemical Engineering Journal, 426, Article ID: 131706. [Google Scholar] [CrossRef]
|
|
[40]
|
Edison, T.N.J.I., Atchudan, R., Karthik, N., Chandrasekaran, S., Perumal, S., Raja, P.B., Perumal, V. and Lee, Y.R. (2021) Deep Eutectic Solvent Assisted Electrosynthesis of Ruthenium Nanoparticles on Stainless Steel Mesh for Electrocatalytic Hydrogen Evolution Reaction. Fuel, 297, Article ID: 120786. [Google Scholar] [CrossRef]
|
|
[41]
|
Cheuquepan, W., Hernandez, S., Perez-Estebanez, M., Romay, L., Heras, A. and Colina, A. (2021) Electrochemical Generation of Surface Enhanced Raman Scattering Substrates for the Determination of Folic Acid. Journal of Electroanalytical Chemistry, 896, Article ID: 115288. [Google Scholar] [CrossRef]
|
|
[42]
|
Hovancova, J., Sisolakova, I., Orinakova, R. and Orinak, A. (2017) Nanomaterial-Based Electrochemical Sensors for Detection of Glucose and Insulin. Journal of Solid State Electrochemistry, 21, 2147-2166.
[Google Scholar] [CrossRef]
|
|
[43]
|
Yuan, Z., Yang, C. and Meng, F. (2021) Strategies for Improving the Sensing Performance of Semiconductor Gas Sensors for High-Performance Formaldehyde Detection: A Review. Chemosensors, 9, Article No. 179.
[Google Scholar] [CrossRef]
|
|
[44]
|
Zhang, Y. and Yan, B. (2019) A Portable Self-Calibrating Logic Detector for Gradient Detection of Formaldehyde Based on Luminescent Metal Organic Frameworks. Journal of Materials Chemistry C, 7, 5652-5657.
[Google Scholar] [CrossRef]
|
|
[45]
|
He, J.-H., Zhang, S.-T., Cai, Y.-H. and Song, Z.-R. (2013) A Sensitive Electrochemical Sensor for the Detection of Formaldehyde Based on L-Alanine/Pt-Nanoparticles Modified Glassy Carbon Electrode. Asian Journal of Chemistry, 25, 10121-10126. [Google Scholar] [CrossRef]
|
|
[46]
|
Feng, L., Musto, C.J. and Suslick, K.S. (2010) A Simple and Highly Sensitive Colorimetric Detection Method for Gaseous Formaldehyde. Journal of the American Chemical Society, 132, 4046-4047. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Xie, H., Sheng, C., Chen, X., Wang, X., Li, Z. and Zhou, J. (2012) Multi-Wall Carbon Nanotube Gas Sensors Modified with Amino-Group to Detect Low Concentration of Formaldehyde. Sensors and Actuators B: Chemical, 168, 34-38.
[Google Scholar] [CrossRef]
|
|
[48]
|
Zhang, S., Wen, X., Long, M., Xi, J., Hu, J. and Tang, A. (2020) Fabrication of CuO/Cu/TiO2 Nanotube Arrays Modified Electrode for Detection of Formaldehyde. Journal of Alloys and Compounds, 829, Article ID: 154568.
[Google Scholar] [CrossRef]
|
|
[49]
|
Kanyong, P., Krampa, F.D., Aniweh, Y. and Awandare, G.A. (2020) Polydopamine-Functionalized Graphene Nanoplatelet Smart Conducting Electrode for Bio-Sensing Applications. Arabian Journal of Chemistry, 13, 1669-1677.
[Google Scholar] [CrossRef]
|
|
[50]
|
Wang, Q., Jia, F., Song, S. and Li, Y. (2020) Hydrophilic MoS2/Polydopamine (PDA) Nanocomposites as the Electrode for Enhanced Capacitive Deionization. Separation and Purification Technology, 236, Article ID: 116298.
[Google Scholar] [CrossRef]
|
|
[51]
|
Carl, A.E., Taillie, L.S., Grummon, A.H., Lazard, A.J., Higgins, I.C.A., Sheldon, J.M. and Hall, M.G. (2021) Awareness of and Reactions to the Health Harms of Sugary Drinks: An Online Study of US Parents. Appetite, 164, Article ID: 105234. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
McGlynn, N.D., Khan, T.A., Wang, L., Zhang, R., Chiavaroli, L., Au-Yeung, F., Lee, J.J., Noronha, J.C., Comelli, E.M., Mejia, S.B., Ahmed, A., Malik, V.S., Hill, J.O., Leiter, L.A., Agarwal, A., Jeppesen, P.B., Rahelic, D., Kahleova, H., Salas-Salvado, J., Kendall, C.W.C. and Sievenpiper, J.L. (2022) Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages with Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-Analysis. JAMA Network Open, 5, Article ID: e222092.
[Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Mozaffarian, D. (2019) Dairy Foods, Obesity, and Metabolic Health: The Role of the Food Matrix Compared with Single Nutrients. Advances in Nutrition, 10, 917S-923S. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Fu, Y., Huang, M. and Chen, X. (2021) Fingertip Capillary Dynamic Near Infrared Spectrum (DNIRS) Measurement Combined with Multivariate Linear Modification Algorithm for Noninvasive Blood Glucose Monitoring. Vibrational Spectroscopy, 113, Article ID: 103223. [Google Scholar] [CrossRef]
|
|
[55]
|
Li, G., Wang, K., Wang, D. and Lin, L. (2022) Noninvasive Blood Glucose Detection System Based on Dynamic Spectrum and “M+N” Theory. Analytica Chimica Acta, 1201, Article ID: 339635.
[Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Liu, W., Zhao, X., Guo, Q., Dai, Y., Tan, J., Wang, M. and Qi, Y. (2022) Preparation of Electrochemical Sensor Based on the Novel NiO Quantum Dots Modified Cu/Cu2O 3D Hybrid Electrode and Its Application for Non-Enzymatic Detection of Glucose in Serums and Beverages. Journal of Alloys and Compounds, 895, Article ID: 162573.
[Google Scholar] [CrossRef]
|
|
[57]
|
Zou, L., Wang, S.-S. and Qiu, J. (2020) Preparation and Properties of a Glucose Biosensor Based on an Ionic Liquid-Functionalized Graphene/Carbon Nanotube Composite. New Carbon Materials, 35, 12-19.
[Google Scholar] [CrossRef]
|
|
[58]
|
Guo, M.Q., Fang, H.D., Wang, R., Yang, Z.Q. and Xu, X.H. (2011) Electrodeposition of Chitosan-Glucose Oxidase Biocomposite onto Pt-Pb Nanoparticles Modified Stainless Steel Needle Electrode for Amperometric Glucose Biosensor. Journal of Materials Science-Materials in Medicine, 22, 1985-1992. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Cheung, E.C. and Vousden, K.H. (2022) The Role of ROS in Tumour Development and Progression. Nature Reviews Cancer, 22, 280-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Ramalingam, V. and Rajaram, R. (2021) A Paradoxical Role of Reactive Oxygen Species in Cancer Signaling Pathway: Physiology and Pathology. Process Biochemistry, 100, 69-81. [Google Scholar] [CrossRef]
|
|
[61]
|
Sahoo, B.M., Banik, B.K., Borah, P. and Jain, A. (2022) Reactive Oxygen Species (ROS): Key Components in Cancer Therapies. Anti-Cancer Agents in Medicinal Chemistry, 22, 215-222.
[Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Carriere, V.M., Rodrigues, J.P., Tan, C., Arumugam, P. and Poh, S. (2021) In Vitro Electrochemical Detection of Hydrogen Peroxide in Activated Macrophages via a Platinum Microelectrode Array. Sensors, 21, Article No. 5607.
[Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Patella, B., Buscetta, M., Di Vincenzo, S., Ferraro, M., Aiello, G., Sunseri, C., Pace, E., Inguanta, R. and Cipollina, C. (2021) Electrochemical Sensor Based on rGO/Au Nanoparticles for Monitoring H2O2 Released by Human Macrophages. Sensors and Actuators B-Chemical, 327, Article ID: 128901. [Google Scholar] [CrossRef]
|
|
[64]
|
Yang, Y., Zhang, H., Wang, Z., Li, X., Abdelsamie Abdelrahim Abdelsamie, A., Yuan, X., Fan, X., Zhang, R. and Chang, H. (2020) Highly Sensitive Electrochemical Detection of Reactive Oxygen Species in Living Cancer Cells Using Monolithic Metallic Foam Electrodes. Chemelectrochem, 7, 2485-2492. [Google Scholar] [CrossRef]
|
|
[65]
|
Lu, H., Yu, C., Zhang, Y. and Xu, S. (2019) Efficient Core Shell Structured Dual Response Ratiometric Fluorescence Probe for Determination of H2O2 and Glucose via Etching of Silver Nanoprisms. Analytica Chimica Acta, 1048, 178-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Li, Y., Liu, J., Fu, Y., Xie, Q. and Li, Y. (2018) Magnetic-Core@Dual-Functional-Shell Nanocomposites with Peroxidase Mimicking Properties for Use in Colorimetric and Electrochemical Sensing of Hydrogen Peroxide. Microchimica Acta, 186, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Li, Y., You, X. and Shi, X. (2017) Enhanced Chemiluminescence Determination of Hydrogen Peroxide in Milk Sample Using Metal-Organic Framework Fe-MIL-88NH2 as Peroxidase Mimetic. Food Analytical Methods, 10, 626-633.
[Google Scholar] [CrossRef]
|
|
[68]
|
Song, M., Wang, J., Chen, B. and Wang, L. (2017) A Facile, Nonreactive Hydrogen Peroxide (H2O2) Detection Method Enabled by Ion Chromatography with UV Detector. Analytical Chemistry, 89, 11537-11544.
[Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Zhao, P., Chen, S., Zhou, J., Zhang, S., Huo, D. and Hou, C. (2020) A Novel Fe-Hemin-Metal Organic Frameworks Supported on Chitosan-Reduced Graphene Oxide for Real-Time Monitoring of H2O2 Released from Living Cells. Analytica Chimica Acta, 1128, 90-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Zhou, J.X., Tang, L.N., Yang, F., Liang, F.X., Wang, H., Li, Y.T. and Zhang, G.J. (2017) MoS2/Pt Nanocomposite-Functionalized Micro-Needle for Real-Time Monitoring of Hydrogen Peroxide Release from Living Cells. Analyst, 142, 4322-4329. [Google Scholar] [CrossRef]
|