内质网应激相关心肌细胞凋亡研究进展
Research Advances in Endoplasmic Reticulum Stress-Related Cardiomyocyte Apoptosis
DOI: 10.12677/ACM.2022.1291271, PDF, HTML, XML, 下载: 249  浏览: 439 
作者: 刘亚楠, 李 飞:延安大学附属医院心内科,陕西 延安
关键词: 内质网应激未折叠蛋白反应细胞凋亡研究进展Endoplasmic Reticulum Stress Unfolded Protein Reactions Apoptosis Research Progress
摘要: 营养缺乏、缺氧、缺血、氧化应激和DNA损伤等情况能引起内质网腔内错误折叠或未折叠蛋白的积累,即形成内质网应激,随后通过未折叠蛋白反应对机体产生促生存或促凋亡作用。现综述内质网应激和未折叠蛋白反应的定义、未折叠蛋白反应相关的信号通路、内质网应激诱导心肌细胞凋亡的途径、通过调节内质网应激减轻心肌细胞凋亡,以期为心血管疾病的新型治疗提供策略。
Abstract: Nutrient deficiency, hypoxia, ischemia, oxidative stress, and DNA damage can cause the accumula-tion of misfolded or unfolded proteins in the endoplasmic reticulum cavity, that is, the formation of endoplasmic reticulum stress, followed by a pro-survival or pro-apoptotic effect on the body through the response of unfolded proteins. The definitions of endoplasmic reticulum stress and un-folded protein responses, the signaling pathways associated with unfolded protein responses, the pathways by which endoplasmic reticulum stress induces apoptosis of cardiomyocytes, and the re-duction of cardiomyocyte apoptosis by regulating endoplasmic reticulum stress are reviewed in or-der to provide strategies for novel treatments for cardiovascular diseases.
文章引用:刘亚楠, 李飞. 内质网应激相关心肌细胞凋亡研究进展[J]. 临床医学进展, 2022, 12(9): 8801-8807. https://doi.org/10.12677/ACM.2022.1291271

1. 前言

心肌细胞凋亡主要包括死亡受体途径、线粒体途径和内质网途径。近些年,对于内质网途径致心肌细胞凋亡研究进展迅速。内质网应激早期主要是通过一些适应性反应促进机体生存,但如果内质网应激长期存在或者程度剧烈则会引发细胞凋亡。 [1] 我们可以通过调节内质网应激来保护细胞,因此,对于内质网应激相关的信号转导通路的研究尤为重要。

2. 内质网应激相关心肌细胞凋亡

2.1. 内质网应激和未折叠蛋白反应的概述

内质网是蛋白质合成和运输、蛋白质折叠、脂质和类固醇合成、碳水化合物代谢和钙储存的主要场所。蛋白质在核糖体上合成后,必须在内质网内正确折叠和包装。内质网具有识别、控制和纠正蛋白质质量的作用,未折叠蛋白和错误折叠蛋白最终将会被降解 [1]。保证内质网内环境的稳态是内质网发挥其功能的必备条件。然而,内质网稳态不断受到生理需求和病理损伤的挑战,如营养缺乏、缺氧、缺血、氧化应激和DNA损伤都能引起内质网腔内错误折叠或未折叠蛋白的积累,即形成内质网应激 [2]。为了维持内质网的功能和保证蛋白质正确折叠,未折叠蛋白反应将通过一系列信号通路,来重新编程基因转录、mRNA翻译和蛋白质修饰,以减轻未折叠或错误折叠蛋白质的负荷并恢复内质网稳态。内质网应激时,未折叠蛋白反应迅速对各种刺激做出适应性反应,主要包括以下几个方面:① 通过减少蛋白质的产生来降低未折叠蛋白和错误折叠蛋白的负荷;② 诱导内质网相关降解组成基因转录,提高对未折叠蛋白和错误折叠蛋白的降解;③ 诱导内质网伴侣基因转录,提高内质网折叠蛋白的能力 [3]。

2.2. 未折叠蛋白反应激活其下游信号通路

未折叠蛋白反应主要涉及内质网内腔未折叠蛋白传感器的3种跨膜蛋白调控的信号通路:PEKR样内质网激酶(PERK)、肌醇需求酶1 (IRE1)和激活转录因子6 (ATF6) [4]。内质网分子伴侣葡萄糖调节蛋白78 (GRP78)作为内质网稳态传感器在监测内质网内未折叠蛋白的积累方面发挥着关键作用,被广泛作为内质网应激或未折叠蛋白反应的标志性蛋白。在生理条件下,GRP78与内质网内的 PERK、ATF6和IRE1结合,形成稳定的复合物。发生内质网应激时,GRP78转而与未折叠或错误折叠蛋白质结合,促进新生肽的正确折叠,防止错误折叠蛋白质的聚集 [5]。Chen [6] 等研究发现内质网应激时,GRP78的升高主要是通过下调miR-30家族的表达实现的。与此同时,与GRP78解离后的PERK、IRE1和ATF6也将通过调控相关基因表达响应未折叠蛋白反应。 [7]

2.2.1. PERK途径

内质网应激时由PERK率先引发适应性反应。磷酸化后的PERK作为一种磷酸化真核起始因子-2α (elF2α)的激酶使elF2α磷酸化。一方面,随着elF2α的磷酸化,由其介导的蛋白质翻译也将失活,最终通过减少蛋白质的合成,在源头上限制了蛋白质错误折叠的负荷 [8]。另一方面,磷酸化后的elF2α还选择性启动一组特定的mRNA的翻译,这其中包括一种应激诱导的转录因子ATF4。ATF4可激活参与氧化还原稳态、蛋白质合成、氨基酸代谢和细胞凋亡的基因的表达 [9]。当内质网稳态重新趋于稳定时,ATF4还可使elF2α去磷酸化,恢复蛋白质的合成。

2.2.2. IRE1α途径

内质网应激时IRE1α通过自身磷酸化激活其核糖核酸内切酶活性,切割编码转录因子X-box结合蛋白1 (XBP1)的mRNA,从而发生翻译框移,导致XBP1转录因子表达,并上调参与内质网蛋白转运、折叠和分泌以及错误折叠蛋白降解的基因,使蛋白质的合成和降解恢复动态平衡 [10] [11]。此外,IRE1α还可以切割一小组mRNA或前体miRNA使其降解,也从一定程度上减轻了内质网蛋白质折叠的负荷。

2.2.3. ATF6途径

内质网应激时ATF6转移至高尔基体,并在那里被特定的酶切割,释放出含有亮氨酸拉链转录因子的片段,当该片段移位至细胞核可调节编码内质网伴侣和酶的基因的转录 [12],这些酶可促进内质网蛋白的转运、折叠、成熟和分泌,以及错误折叠蛋白的降解。

总而言之,未折叠蛋白反应代表了三条信号通路的组合,通过这些信号通路以动态方式调节内质网合成、折叠和降解蛋白能力来维持内质网内环境稳态。

2.3. 内质网应激诱导心肌细胞凋亡的途径

细胞凋亡与细胞坏死不同,凋亡是指牺牲特定细胞以获得更大机体利益的一种程序性细胞死亡,是一种高度调控的细胞死亡过程,属于正常生理过程 [13]。当上述反应不能恢复内质网功能或细胞内稳态,细胞凋亡程序将被激活。

2.3.1. CHOP途径诱导的心肌细胞凋亡

CHOP是属于C/EBP家族的转录因子,参与调节编码增殖、分化和表达以及能量代谢的蛋白质的基因。CHOP在内质网应激介导的细胞凋亡中起重要作用,因此CHOP被认为是内质网应激诱导凋亡产生的标志性分子。正常生理情况下,CHOP表达量很低,但存在内质网应激时,过度活化的PERK、IRE1及ATF-6在转录和翻译水平上调CHOP的表达,导致CHOP表达显著增加 [14]。CHOP主要通过以下途径引起心肌细胞凋亡:① CHOP可通过调控BCL2蛋白家族诱导细胞凋亡。它可下调BCL2、BCL-XL和MCL-1的表达,上调BIM的表达,导致BAK和Bax的表达增加,最终引发凋亡级联反应 [15] [16]。此外,CHOP激活导致Bax蛋白从胞质转移到线粒体,导致caspase-3的激活,最终导致线粒体依赖性凋亡信号的激活。② CHOP通过与死亡受体途径结合,上调死亡受体4 (DR4)和DR5的表达,从而诱导细胞凋亡。③ CHOP还直接激活Gadd34 (DNA损伤蛋白),Gadd34与磷酸酶1蛋白结合,使eIF2α去磷酸化,导致蛋白质翻译恢复,增加内质网应激和细胞凋亡 [17] [18]。④ CHOP过表达还可导致细胞周期停滞,导致细胞凋亡 [19]。

2.3.2. c-Jun氨基末端激酶(JNK)途径诱导的心肌细胞凋亡

发生内质网应激时,被激活的IRE1a就会召集肿瘤坏死因子受体相关因子-2 (TRAF2)和凋亡信号转导蛋白-1 (ASK1),IRE1a-TRAF2-ASK1信号复合体激活JNK [20]。JNK可通过以下途径发挥作用:① 激活的JNK通过促进细胞凋亡因子表达,同时抑制抗凋亡因子表达,发挥促凋亡作用;② 激活的JNK破坏了内质网膜,导致钙稳态破坏,进而活化Caspase-12引发细胞凋亡;③ 激活后的JNK还可使线粒体膜通透性增加,导致细胞色素C释放,引发线粒体途径凋亡。

2.3.3. Caspase-12途径诱导的心肌细胞凋亡

Caspase家族是诱导细胞凋亡的最后通路,在细胞凋亡信号转导中居中心地位 [21]。正常情况下,Caspase以无活性的酶原或前体(pro-Caspase)的形式存在,活化后可水解底物,通过级联反应诱发细胞凋亡。Caspase-12途径被认为是内质网特异性的、非线粒体依赖的凋亡途径 [22]。内质网应激时,Caspase-12被激活进而全面引发Caspase家族介导的细胞凋亡途径。

2.4. 通过调节内质网应激减轻心肌细胞凋亡

随着对内质网应激研究的深入,一些药物、化合物和RNA被发现可以通过调节内质网应激减轻心肌细胞凋亡。

2.4.1. 一些可调节内质网应激的药物和化合物

Yue [23] 等采用小鼠心室肌细胞构建缺氧/复氧体外模型研究发现,鸢尾素预处理可下调GRP78和CHOP表达,同时显著降低线粒体中细胞色素c的释放和caspase-3的活化,表明鸢尾素可通过减弱内质网应激和内质网应激诱导的细胞凋亡来有效保护心肌细胞免受缺氧/复氧损伤。Yang [24] 等建立大鼠心肌缺血再灌注损伤体内模型,发现心宝丸可通过抑制内质网应激来减轻心肌细胞凋亡,从而对心肌缺血再灌注损伤发挥治疗作用。Lu [25] 等建立小鼠心肌缺血再灌注(MI/R)损伤体内模型和采用大鼠心肌细胞H9C2构建I/R体外模型,研究发现广藿香醇治疗在体内和体外通过抑制ATF4、p-PERK和caspase-3的水平,调节内质网应激和心肌细胞凋亡来预防MI/R。Zhang [26] 等发现右美托咪定可下调缺氧/复氧H9C2心肌细胞中内质网应激相关标志蛋白如CHOP、cleaved-caspase-12 and cleaved-caspase-3的水平,从而逆转内质网应激依赖性凋亡。Yang [27] 等研究发现单宁酸可通过抑制内质网应激相关功能蛋白及凋亡蛋白对脂多糖诱导的H9C2心肌细胞的凋亡起到保护作用,并且这种作用可能与活性氧(ROS)介导的内质网应激相关。Shi [28] 等研究发现钙蛋白酶抑制可以下调一些ER应激相关蛋白水平,如GRP78、PERK)和IRE-1α,以及与ER应激相关的凋亡因子来减轻CVB3诱导的心肌炎,从而抑制心肌细胞凋亡。Qian [29] 等发现淫羊藿苷治疗可降低自发性高血压大鼠的血压并下调内质网应激凋亡相关的蛋白质表达,使心肌细胞凋亡减少,左心室功能改善。Fang [30] 等采用结扎左冠状动脉前降支建立大鼠心肌缺血模型,发现丹参酮-IIA (Tan-IIA)增加受损心肌细胞的活力,抑制受损心肌细胞的凋亡并增加心肌细胞中Bcl-2和Bak 的表达。此外,Tan-IIA增加了Bim和CHOP,减少了ROS和H2O2的产生,降低了ATF4和IRE1α的表达,并减少了心肌细胞中的细胞内钙和氧化应激。表明Tan-IIA通过调节内质网应激依赖性通路改善心肌梗死和细胞凋亡。Chang [31] 等发现达格列净有效抑制多柔比星诱导的糖尿病大鼠心肌细胞凋亡和活性氧,显著降低ER应激相关蛋白,包括GRP78、PERK、eIF-2α、ATF-4和CHOP,首次揭示了达格列净可减轻多柔比星诱导的糖尿病心肌细胞中内质网应激依赖的细胞凋亡。

2.4.2. 可调节内质网应激的RNA

Xia [32] 等采用盲肠结扎穿刺法构建脓毒症大鼠模型,发现脂多糖诱导的心肌细胞和CLP诱导的脓毒症小鼠的miR-195-5p表达下调,ATF6表达上调,并且miR-195-5p可以显著减弱与脓毒症诱导的心肌梗死相关的炎症,细胞凋亡。Zhao [33] 等研究发现miR-17-5p在缺氧细胞模型中对内质网应激诱导心肌细胞凋亡和心肌损伤具有促进作用。Wang [34] 等建立异丙肾上腺素诱导的体外心脏肥大模型和体内心力衰竭模型,发现1,8-桉树脑通过抑制miR-206-3p来减少ER应激诱导的细胞凋亡。Qiu [35] 等研究发现 LncRNA AC061961.2过表达使GRP78、CHOP、Caspase-3和Bax水平降低,并且通过激活Wnt/β-catenin通路抑制内质网应激诱导的扩张型心肌病大鼠和心肌细胞凋亡。Li [36] 等研究发现lncRNA Dancr过表达通过海绵化miR-6324保护H9C2心肌细胞免受ERS损伤,从而抑制细胞凋亡,增强自噬并恢复ER稳态。

3. 结语

心肌细胞凋亡是造成心肌损伤的重要原因,内质网应激相关的心肌细胞凋亡具体机制尚不明确,通过调节内质网应激相关凋亡来保护心肌细胞可能为心血管疾病的治疗提供新策略,值得我们继续深入研究。

参考文献

[1] Amen, O.M., Sarker, S.D., Ghildyal, R., et al. (2019) Endoplasmic Reticulum Stress Activates Unfolded Protein Response Signaling and Mediates Inflammation, Obesity, and Cardiac Dysfunction: Therapeutic and Molecular Approach. Frontiers in Pharmacology, 10, Article No. 977.
https://doi.org/10.3389/fphar.2019.00977
[2] Bhattarai, K.R., Chaudhary, M., Kim, H.R., et al. (2020) Endo-plasmic Reticulum (ER) Stress Response Failure in Diseases. Trends in Cell Biology, 30, 672-675.
https://doi.org/10.1016/j.tcb.2020.05.004
[3] Lee, J.H., Kwon, E.J. and Kim, D.H. (2013) Calumenin Has a Role in the Allevia-tion of ER Stress in Neonatal Rat Cardiomyocytes. Biochemical and Biophysical Research Communications, 439, 327-332.
https://doi.org/10.1016/j.bbrc.2013.08.087
[4] Wang, S., Binder, P., Fang, Q., et al. (2018) Endoplasmic Reticulum Stress in the Heart: Insights into Mechanisms and Drug Targets. British Journal of Pharmacology, 175, 1293-1304.
https://doi.org/10.1111/bph.13888
[5] Battson, M.L., Lee, D.M. and Gentile, C.L. (2017) Endoplasmic Reticulum Stress and the Development of Endothelial Dysfunction. American Journal of Physiology Heart and Circulatory Physiology, 312, H355-H367.
https://doi.org/10.1152/ajpheart.00437.2016
[6] Chen, M., Ma, G., Yue, Y., et al. (2014) Downregulation of the miR-30 Family microRNAs Contributes to Endoplasmic Reticulum Stress in Cardiac Muscle and Vascular Smooth Muscle Cells. International Journal of Cardiology, 173, 65-73.
https://doi.org/10.1016/j.ijcard.2014.02.007
[7] Lee, W.S., Yoo, W.H. and Chae, H.J. (2015) ER Stress and Autophagy. Current Molecular Medicine, 15, 735-745.
https://doi.org/10.2174/1566524015666150921105453
[8] Zhou, X., Lu, B., Fu, D., et al. (2020) Huoxue Qianyang Decoction Ameliorates Cardiac Remodeling in Obese Spontaneously Hypertensive Rats in Association with ATF6-CHOP Endoplasmic Reticulum Stress Signaling Pathway Regulation. Biomedicine & Pharmacotherapy, 121, Article ID: 109518.
https://doi.org/10.1016/j.biopha.2019.109518
[9] Nie, J., Ta, N., Liu, L., et al. (2020) Activation of CaMKII via ER-Stress Me-diates Coxsackievirus B3-Induced Cardiomyocyte Apoptosis. Cell Biology International, 44, 488-498.
https://doi.org/10.1002/cbin.11249
[10] Han, D., Lerner, A.G., Vande Walle, L., et al. (2009) IRE1alpha Kinase Activation Modes Control Alternate Endoribonuclease Outputs to Determine Divergent Cell Fates. Cell, 138, 562-575.
https://doi.org/10.1016/j.cell.2009.07.017
[11] Yoshida, H., Matsui, T., Yamamoto, A., et al. (2001) XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription Factor. Cell, 107, 881-891.
https://doi.org/10.1016/S0092-8674(01)00611-0
[12] Ye, J., Rawson, R.B., Komuro, R., et al. (2000) ER Stress Induces Cleav-age of Membrane-Bound ATF6 by the Same Proteases That Process SREBPs. Molecular Cell, 6, 1355-1364.
https://doi.org/10.1016/S1097-2765(00)00133-7
[13] Xu, X., Lai, Y. and Hua, Z.C. (2019) Apoptosis and Apoptotic Body: Dis-ease Message and Therapeutic Target Potentials. Bioscience Reports, 39, BSR20180992.
https://doi.org/10.1042/BSR20180992
[14] Thon, M., Hosoi, T. and Ozawa, K. (2016) Dehydroascorbic Acid-Induced Endo-plasmic Reticulum Stress and Leptin Resistance in Neuronal Cells. Biochemical and Biophysical Research Communications, 478, 716-720.
https://doi.org/10.1016/j.bbrc.2016.08.013
[15] Iurlaro, R. and Muñoz-Pinedo, C. (2016) Cell Death Induced by Endoplasmic Reticulum Stress. The FEBS Journal, 283, 2640-2652.
https://doi.org/10.1111/febs.13598
[16] Tsukano, H., Gotoh, T., Endo, M., et al. (2010) The Endoplasmic Reticulum Stress-C/EBP Homologous Protein Pathway-Mediated Apoptosis in Macrophages Contrib-utes to the Instability of Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1925-1932.
https://doi.org/10.1161/ATVBAHA.110.206094
[17] Marciniak, S.J., Yun, C.Y., Oyadomari, S., et al. (2004) CHOP Induces Death by Promoting Protein Synthesis and Oxidation in the Stressed Endoplasmic Reticulum. Genes & Development, 18, 3066-3077.
https://doi.org/10.1101/gad.1250704
[18] Liu, C.L., He, Y.Y., Li, X., et al. (2014) Inhibition of Serine/Threonine Protein Phos-phatase PP1 Protects Cardiomyocytes from Tunicamycin-Induced Apoptosis and I/R through the Upregulation of p-eIF2α. Internation-al Journal of Molecular Medicine, 33, 499-506.
https://doi.org/10.3892/ijmm.2013.1603
[19] Mkrtchian, S. (2015) Targeting Unfolded Protein Response in Cancer and Diabetes. Endocrine-Related Cancer, 22, C1-C4.
https://doi.org/10.1530/ERC-15-0106
[20] Chen, H., Yang, H., Pan, L., Wang, W., Liu, X., et al. (2016) The Molecular Mecha-nisms of XBP-1 Gene Silencing on IRE1α-TRAF2-ASK1-JNK Pathways in Oral Squamous Cell Carcinoma under Endoplasmic Re-ticulum Stress. Biomedicine & Pharmacotherapy, 77, 108-113.
https://doi.org/10.1016/j.biopha.2015.12.010
[21] Bravo, R., Gutierrez, T., Paredes, F., et al. (2012) Endoplasmic Reticulum: ER Stress Regulates Mitochondrial Bioenergetics. The International Journal of Biochemistry & Cell Biology, 44, 16-20.
https://doi.org/10.1016/j.biocel.2011.10.012
[22] Liu, M., Wang, Y., Zhu, Q., et al. (2018) Protective Effects of Circulating Mi-crovesicles Derived from Ischemic Preconditioning on Myocardial Ischemia/Reperfusion Injury in Rats by Inhibiting Endoplasmic Re-ticulum Stress. Apoptosis: An International Journal on Programmed Cell Death, 23, 436-448.
https://doi.org/10.1007/s10495-018-1469-4
[23] Yue, R., Lv, M., Lan, M., et al. (2022) Irisin Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury via Attenuating AMPK Mediated Endoplasmic Reticulum Stress. Scientific Reports, 12, Article No. 7415.
https://doi.org/10.1038/s41598-022-11343-0
[24] Yang, Y., Chen, T., Liu, J., et al. (2022) Integrated Chemical Profiling, Net-work Pharmacology and Pharmacological Evaluation to Explore the Potential Mechanism of Xinbao Pill against Myocardial Ischae-mia-Reperfusion Injury. Pharmaceutical Biology, 60, 255-273.
https://doi.org/10.1080/13880209.2022.2025859
[25] Lu, Y., Li, S.Y. and Lou, H. (2022) Patchouli Alcohol Protects against Myocardial Ischaemia-Reperfusion Injury by Regulating the Notch1/Hes1 Pathway. Pharmaceutical Biology, 60, 949-957.
https://doi.org/10.1080/13880209.2022.2064881
[26] Zhang, Y., Zhao, Q., Li, X., et al. (2021) Dexmedetomidine Reversed Hy-poxia/Reoxygenation Injury-Induced Oxidative Stress and Endoplasmic Reticulum Stress-Dependent Apoptosis of Cardiomyocytes via SIRT1/CHOP Signaling Pathway. Molecular and Cellular Biochemistry, 476, 2803-2812.
https://doi.org/10.1007/s11010-021-04102-8
[27] Yang, Y.P., Zhao, J.Q., Gao, H.B., et al. (2021) Tannic Acid Alleviates Lipo-polysaccharide-Induced H9C2 Cell Apoptosis by Suppressing Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress. Mo-lecular Medicine Reports, 24, Article No. 535.
https://doi.org/10.3892/mmr.2021.12174
[28] Shi, H., Yu, Y., Wang, Y., et al. (2021) Inhibition of Calpain Alleviates Apoptosis in Coxsackievirus B3-Induced Acute Virus Myocarditis through Suppressing Endo-plasmic Reticulum Stress. International Heart Journal, 62, 900-909.
https://doi.org/10.1536/ihj.20-803
[29] Qian, Z., Zhu, L., Li, Y., et al. (2021) Icarrin Prevents Cardiomyocyte Apoptosis in Spontaneously Hypertensive Rats by Inhibiting Endoplasmic Reticulum Stress Pathways. The Journal of Pharmacy and Pharmacology, 73, 1023-1032.
https://doi.org/10.1093/jpp/rgaa016
[30] Fang, Y., Duan, C., Chen, S., et al. (2021) Tanshinone-IIA Inhibits Myocardial Infarct via Decreasing of the Mitochondrial Apoptotic Signaling Pathway in Myocardiocytes. International Journal of Molecular Medicine, 48, Article No. 158.
https://doi.org/10.3892/ijmm.2021.4991
[31] Chang, W.T., Lin, Y.W., Ho, C.H., et al. (2021) Dapagliflozin Suppresses ER Stress and Protects Doxorubicin-Induced Cardiotoxicity in Breast Cancer Patients. Archives of Toxicology, 95, 659-671.
https://doi.org/10.21203/rs.3.rs-51771/v1
[32] Xia, H., Zhao, H., Yang, W., et al. (2022) MiR-195-5p Represses Inflammation, Apoptosis, Oxidative Stress, and Endoplasmic Reticulum Stress in Sepsis-Induced Myocardial Injury by Targeting Activating Tran-scription Factor 6. Cell Biology International, 46, 243-254.
https://doi.org/10.1002/cbin.11726
[33] Zhao, L., Jiang, S., Wu, N., et al. (2021) MiR-17-5p-Mediated Endoplasmic Reticulum Stress Promotes Acute Myocardial Ischemia Injury through Targeting Tsg101. Cell Stress & Chaperones, 26, 77-90.
https://doi.org/10.1007/s12192-020-01157-2
[34] Wang, Y., Zhen, D., Fu, D., et al. (2021) 1,8-Cineole Attenuates Cardiac Hy-pertrophy in Heart Failure by Inhibiting the miR-206-3p/SERP1 Pathway. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 91, Article ID: 153672.
https://doi.org/10.1016/j.phymed.2021.153672
[35] Qiu, Z., Chen, W., Liu, Y., et al. (2021) LncRNA AC061961.2 Overexpression Inhibited Endoplasmic Reticulum Stress Induced Apoptosis in Dilated Cardiomyopathy Rats and Cardiomyocytes via Activating wnt/β-catenin Pathway. Journal of Receptor and Signal Transduction, 41, 494-503.
https://doi.org/10.1080/10799893.2020.1828915
[36] Li, J., Xie, J., Wang, Y.Z., et al. (2021) Overexpression of lncRNA Dancr Inhibits Apoptosis and Enhances Autophagy to Protect Cardiomyocytes from Endoplasmic Reticulum Stress Injury via Sponging mi-croRNA-6324. Molecular Medicine Reports, 23, Article No. 116.
https://doi.org/10.3892/mmr.2020.11755