音乐即兴创作的认知及其神经机制
Cognitive and Neural Mechanisms of Musical Improvisation
摘要: 音乐创造性是人在特定的社会文化环境中基于情感、依托于音乐符号,在不断的实践过程中产生流畅、独特且有价值的音乐产品的能力。在认知神经科学领域,音乐即兴创作因其本身的实时动态性和简单易操作特点受到最多关注。音乐即兴创作是能力、思维、人格和环境的统一,其中聚合思维和发散思维在其中起着主导作用。具体地,默认网络的活动与发散思维有关,最常出现在想法产生阶段;而执行控制网络通常与聚合思维有关,最常出现在想法评估阶段。然而,以往研究较少从动态功能连接视角解析音乐创作过程的大脑活动模式。未来可以采取多种评估方式,使用长时程动态分析方法,运用超扫描方案来探究单人或团体音乐创作的认知神经机制,这对理清音乐创造性的内涵和本质有重要意义。
Abstract: Music creativeness is the ability of people to produce fluent, novel and valuable music products in the process of continuous practice based on emotion and music symbols in a specific social environment. In the field of cognitive neuroscience, music improvisation has attracted the most attention because of its real-time dynamics and convenience. Music improvisation is the unity of ability, thinking, personality and environment, in which convergent thinking and divergent thinking play a leading role. Specifically, the activity of the default network is related to divergent thinking, which occurs most often in the idea generation stage. Executive control networks are usually associated with convergent thinking and most often occur during the idea evaluation phase. However, few studies have analyzed the brain activity patterns of music creation process from the perspective of dynamic functional connectivity. In the future, a variety of evaluation methods can be adopted to explore the cognitive neural mechanism of solo or group music creation by using long-term dynamic analysis method and involving ultra-scanning scheme, which is of great significance to clarify the connotation and nature of music creativeness.
文章引用:刘丽君, 贺睿智, 陈群林 (2022). 音乐即兴创作的认知及其神经机制. 心理学进展, 12(10), 3311-3321. https://doi.org/10.12677/AP.2022.1210402

1. 引言

在心理学领域,关于创造性的本质,研究者主要集中对创造性的核心成分,即创造性思维,开展了大量的研究。其中,实验室中的创造性思维研究多是抽取和简化人类真实的创造性思维活动,例如发散思维任务,远距离联想任务等(Lee et al., 2014; Vartanian et al., 2020; Wu et al., 2015)。尽管简化的创造性任务或范式为探索创造性的本质提供了许多可能性,但这些测量或范式通过降低生态效度,以满足实验任务的预期观测。相比之下,艺术创造性(如音乐、文学和绘画创造性等)主要通过长时程任务以及实时记录设备来观测创作行为以及大脑神经活动模式,这为在真实情景中探究创造性思维过程的复杂动态性提供了有效途径。此外,音乐创造性因其时间动态性较强(即实时动态性输出)、生态效度较高,表现方式多样、可量化等优势,近年来成为备受关注的领域。本文主要关注音乐创造性的认知机制,并从静态以及动态的角度阐述了音乐创造性的神经机制,尤其是音乐即兴创作这一表现形式下的脑功能活动以及脑连接模式。

对于音乐创造性的界定,目前研究主要考虑思维表现、实践、以及环境几个方面(Elliott, 1995; Mazzola et al., 2011; Webster, 1994),并大致包含以下几点:第一,强调音乐产品的独创性和价值(Pichot et al., 2021; Weisberg, 2015)。音乐创作过程是认知、文化与创作的动态交互的统一,即音乐创造性作品不仅应该新颖独特,还需受到音乐规则的约束,符合社会的审美与认可。第二,音乐创造性不仅体现在动态的表演、即兴创作等,还有许多其他的形式例如音乐审美,音乐聆听等相对静态形式(Kostagiolas et al., 2017; Lavranos et al., 2016)。第三,音乐创造性涉及情感的卷入。研究表明情感体验可以协调,激发和促进音乐创造(Bashwiner et al., 2016)。不论是器乐演奏,音乐创作还是音乐鉴赏,情感的参与能让一首作品富有意境,更能感染他人(Woody & McPherson, 2010)。第四,注重音乐实践和练习。Pressing (1988, 1998)提出的音乐创造性的理论模型认为,通过练习,音乐家们会建立一个储存运动程序的数据库,使演奏更加灵活和自动化。综合以上观点,本文认为是音乐创造性是人在特定的社会文化环境中基于情感、依托于音乐符号,在不断的实践过程中产生流畅、独特且有价值的音乐产品的能力。

音乐创造性研究的特点主要体现在以下方面。首先,注重动态性(Beaty, 2015; Da Mota et al., 2020; Limb & Braun, 2008; Van Der Schyff et al., 2018)。人们通常会借助一些外在手段例如计时、调性和动态装置等记录当下的音乐表现,或使弹奏者在一个相对较长的时间跨度内不断完善修饰他们演奏的音乐结构内容(Nettl & Russell, 1998; Pressing, 1984)。其次,测量方式生态效度高。音乐创作使用的都是自然的生活刺激,例如一段节奏、一段旋律等,并且包含单人以及多人创作(Després, 2021; Dhakal et al., 2019; Donnay et al., 2014);再次,音乐创造性形式多样,例如涉及作曲、表演、即兴创作、聆听、分析等(Kostagiolas et al., 2017; Lavranos et al., 2016),且评价指标丰富,包括多种主观评价指标和客观指标(如“熵”)。总的来说,音乐创造性所具备的高生态效度以及丰富的表现形式和分析手段都为更好地测量探究创造性的认知神经机制提供了有利条件。

2. 音乐创造性的认知机制

通过音乐创造性这种高生态效度的创作表现形式,可以帮助我们更进一步了解创造性思维其底层的认知神经机制。以目前最广受使用的音乐创造性思维模型为例(见图1)。20世纪末Webster从心理学的视角提出了一个音乐创造性思维模型,后来经过不断修订(Webster, 2002, 2012, 2016),目前已被广泛认可(Coss, 2019; Webster & Williams, 2018)。最初的模型强调几个要点:第一,最终产生的作品是必不可少的,因为这是区别于白日梦、幻想等意识的存在,可以包括作曲作品、表演记录以及谱曲分析等。第二,该思维过程是在发散思维和聚合思维之间不断转换。其中发散思维是一种想象性思维,主要用于产生很多甚至是相互分歧的想法,而聚合思维是线性的和分析性的思维,主要用于产品的修订或整合。作者认为创作者需要概念理解、审美敏感性等个人技能,语境、过去经验等环境条件以及人格、动机等促进条件的相互作用。伟大作品的生成不仅需要个体内在能力和性格的驱动,而且更需要获得持续作曲、即兴创作、表演或聆听他人音乐创造性作品的机会。一般内部动机越强,对经验越开放,个体的创造性水平越高(Benedek et al., 2014; Eisenberg & Thompson, 2011)。但音乐创造性是有文化差异的,具体体现在不同国家思维方式、教育观念的不同,这可能在一定程度上加大了对音乐创造性研究的难度。虽然我们知道音乐创造性包含这些成分,但这些成分具体是如何影响创造性的,他们的内部神经机制是怎样的,至今并没有统一的概论。另外,该模型主要关注于创作之后的产品,而创作的过程由于其动态性而较少有研究关注。最后,我们不能只从一个角度理解音乐创造力,应注重对音乐创造性多种形式(例如即兴创作、表演、作曲、聆听等)的考察和探究。

Figure 1. The structure model of musical creative thinking (Webster, 2002)

图1. 音乐创造性思维结构模型(Webster, 2002)

Beaty (2015)认为音乐即兴创作是一个持续的过程,它可以实时自发地产生新颖且具有美学吸引力作品的同时评估和协调与情境相关的持续表现。相比于音乐创造性的其他形式,音乐即兴创作的时效性较高,且简单易操作,最常用于功能磁共振研究。但关于其认知机制方面,近些年较少有研究对其进行阐述。以早期经典的Pressing提出的模型为例,他认为音乐即兴创作由参照物和存储在特定领域知识库中的信息组成(Pressing, 1984, 1988, 1998)。参照物包括认知、感知或情绪加工过程,是一系列排练好的检索线索,在表演中可以最小化处理需求和指导创意产生,而信息包括描述性信息和程序性信息。在即兴创作过程中,参照物与信息交互作用共同完成创作任务。这一观点表明音乐可能如同语言一样在大脑中形成一种表征,这种表征以音乐片段或者程序性动作的方式进行储存。并且通过努力练习,音乐家们会形成一个储存运动程序的数据库,使演奏行为更加灵活和自动化(Pressing, 1988, 1998)。该模型虽然考虑到即兴表演的过程可能是高度自动化的,但忽略了有意识注意、工作记忆以及对刻板反应抑制的重要作用(Bengtsson et al., 2007)。在进行音乐即兴创作的过程中,个体需要实时地以音乐输出以及他人的行为反应作为反馈,抑制记忆中占优势的熟悉的音乐片段,结合自发性联想产生新的音符排列组合以及曲子走向。在这一过程中,工作记忆需要储存较多的音符信息,在音乐即兴创作中起着重要的作用。例如,有研究表明工作记忆容量与即兴创作水平呈正相关关系(Beaty et al., 2013; De Dreu et al., 2012),高工作记忆容量的被试在在音乐即兴创作系列任务中成绩越来越好(De Dreu et al., 2012)。

总的来说,音乐即兴创作作为测量音乐创造性的一种形式,主要有以下特点。首先,强调经验的作用,这些经验可能在头脑中以符号表征或动作表征的形式加以储存。音乐创作的过程就是在原有经验的基础上突破常规,产生新颖、独特且适宜的产品的过程。其次,强调音乐创作的语境和环境,即兴创作者需要根据周围的环境(例如集体创作中同伴的活动)来实时地调整自己的行为以产生新颖且适宜的作品。最后,强调创造性思维的重要性。音乐创造性涉及到“自下而上”的感知加工以及“自上而下”的控制加工的广泛参与。基于已有的能力以及创作经验,在符合音乐规则以及标准的条件下发散思维和聚合思维会不断的交互作用从而使个体输出创造性产品。然而,创造性思维在多大程度上依赖于这种自上而下和自下而上的过程,在关于音乐即兴创作的文献中以及在关于领域一般创造性认知的文献中仍然是一个争论点(Beaty et al., 2014; Jung et al., 2013)。尽管如此,利用不同水平的音乐家所做的实验中仍然揭示了有关于音乐即兴创作的几个核心的脑区和脑功能连接。

3. 音乐即兴创作的神经机制

首先,脑电技术(Electroencephalogram, EEG)被率先用于考察音乐创作的认知神经机制。其中最常研究的脑电波为alpha频段(9~13 Hz)和beta (13~30 Hz)频段,前者通常出现在闭眼放松、内部定向的注意状态时(Cohen, 2017; Klimesch et al., 2007),后者通常出现在清醒,外部定向的注意状态时(Gola et al., 2013; Spiegelhalder et al., 2012)。在音乐即兴创作任务中内侧前额叶皮质(medial prefrontal cortex, mPFC)会出现较高强度的alpha波现象(Camarda et al., 2018; Lopata et al., 2017; Sasaki et al., 2019)。研究者认为,mPFC中较高强度的alpha波可能与创造性任务相关的内部定向注意力以及顺序计划背后的复杂动作的协调有关(Beaty, 2015; Landau & Limb, 2017; Stevens & Zabelina, 2019)。例如,以往有研究对比有无经过专业即兴创作训练的音乐家的即兴创作水平发现,接受即兴训练的音乐家表演质量更高,并且在右侧额叶伴有更高的alpha波段活动(Lopata et al., 2017)。另外,在即兴创作任务中背外侧前额叶(dorsolateral prefrontal cortex, DLPFC)通常伴随着较高强度的beta波段活动(Beaty, 2015; de Manzano & Ullén, 2012; Sasaki et al., 2019)。研究者认为,DLPFC可能在即兴创作中起到自上而下的监控作用,在工作记忆中保留的最近演奏的音符,有助于个体从资源有限的音符库中选择恰当的原材料以此支持后续的音乐创作。

除EEG研究,涉及音乐创作的功能磁共振(functional magnetic resonance imaging, FMRI)研究逐年增多,这些研究主要关注在创作条件和非创作条件下大脑激活模式的差异。例如早期的研究者Limb和Braun (2008)使用功能磁共振成像来监测爵士乐钢琴家在即兴演奏和重复演奏乐段时的大脑活动。在即兴创作中,他们发现了mPFC的激活以及DLPFC中的失活。但早期研究忽视了创作的认知加工过程,根据创造性思维的双加工模型,创造性思维包含两个不同的认知过程:想法产生和想法评估。前者依赖于自发性的思维过程,基于记忆系统或利用已有知识产生大量的探索性想法;后者需要控制加工对想法的新颖性和适宜性进行评价、修正,过滤掉无意义的答案(Nijstad et al., 2010; Sowden et al., 2015)。根据音乐创造性认知模型,发散思维和聚合思维两个过程循环往复, 共同支持了创造性产品的产出。以往研究表明,发散思维、想法产生与默认网络密切相关(Gerlach et al., 2014; Jung et al., 2013; Spreng et al., 2010);而聚合思维、想法评估与默认和执行控制网络的联合有关,即需要对产生的想法集中注意和认知控制以此来符合特定任务要求(Ellamil et al., 2012; Jung et al., 2013)。

默认和控制网络的动态交互体现在一般创造性领域以及艺术表现的各种领域,例如音乐(Pinho et al., 2016),文学(Liu et al., 2015)和视觉艺术(Ellamil et al., 2012)。在有关音乐即兴创作的一项研究中,专业钢琴家需要在FMRI中使用钢琴键盘即兴演奏,实验分为情感(高兴/害怕)和音调(调性/无调性音高)两个条件。研究发现,与音调条件相比,在情绪条件下,右侧背外侧前额叶、背侧前运动皮层和顶叶下皮层的活动较低。此外,背外侧前额叶在情绪条件下与默认网络连接,在音调条件下与前运动网络连接。因此,研究结果支持了创造性解决问题的两种广泛的认知策略,分别依赖于外向和内省的神经回路(Pinho et al., 2016),并且该结果似乎也表明情绪参与的即兴创作与发散性思维更相关,而音调控制的即兴创作与控制性思维更相关。虽然该研究表明默认和执行控制网络对音乐即兴创作起着重要作用,但未直接探明音乐创造性的认知加工过程。而有关视觉艺术的一项研究中更直接地证明了双加工阶段的存在。在实验中,被试需要在核磁中根据某一提供的主题多次进行书籍封面设计。在想法生成阶段,被试需要画出或写下他们的想法;在想法评估阶段,被试需要画出或写出对他们想法的评价。结果发现,产生阶段伴随着默认网络子区更强的激活,评估阶段则引起了额顶控制网络子区和默认网络子区共同的激活,初步在艺术创造性领域揭示了创造性思维过程中想法产生和想法评估依赖各自特异的神经基础(Ellamil et al., 2012)。

当然,默认–执行控制网络的耦合可能与给定创造性任务的目标指向性有关(例如给定一个主题),该过程往往需要自上而下的加工来调节自发想法的产生。有研究表明,当即兴创作的环境限制更加严格,并且采取的是非专业、相对新手的被试时,默认网络的活动就会减弱,执行控制网络的活动就会增强(Bashwiner, 2018; Beaty, 2015),因为尚未达到高技能水平的音乐家可能需要更多的执行控制来调节行为。因此,根据过去的研究结果,我们发现熟练的即兴演奏者表现出在负责执行控制脑区中激活更少,而新手即兴演奏者在这些区域激活更多。另外,有研究者更进一步聚焦DLPFC,通过经颅直流电刺激(Transcranial direct current stimulation, tDCS)提供了因果证据,该研究发现对DLPFC的阳极经颅直流电刺激增强了新手音乐家的即兴演奏,但降低了专业音乐家的即兴演奏(Rosen et al., 2016)。而默认网络和执行控制网络的联合可能也会在某些情况下减弱,比如缺少明确的任务目标或者自上而下的限制时(Liu et al., 2015)。

音乐即兴创作还涉及与奖赏和情绪唤起有关的脑区,例如颞顶联合区(Temporoparietal junction, TPJ)被认为与奖励的调制有关(Liu et al., 2015)。已有研究发现(Berkowitz & Ansari, 2010),在即兴创作过程中,专业音乐家右侧TPJ活动减少,这可能是由于专业音乐家并不那么关注刺激本身带来的一种奖赏,因此抑制了刺激引起的注意力有关。除此以外,音乐即兴创作中还有一些其他的脑区,例如记忆提取网络、小脑、运动区域等。以往研究认为前运动皮层似乎与运动序列中空间方面联系最为密切(Bashwiner & Bacon, 2019; de Manzano & Ullén, 2012),相比之下,顺序和时间都更多地与辅助运动皮层相关(Cona & Semenza, 2017; de Manzano & Ullén, 2012)。Da Mota等人(2020)使用领先特征向量动力学分析的方法得出爵士乐即兴创作演奏者听觉、感觉运动和突显网络组成的大脑子状态在自由创作模式和受旋律限制创作模式条件下都显著地高于对照条件。

总的来说,音乐即兴创作存在想法产生和评估两个阶段,前者主要与自发思维相关的默认网络的活动有关,后者与聚合思维的相关的默认网络和执行控制网络的联合有关。同时,记忆、运动和奖赏区域也广泛地参在于音乐即兴创作过程中,这基本符合音乐创造性认知模型中聚合思维和发散思维的动态交互作用理论。尽管在创造性中有关于这些网络的参与存在一定的共识,但他们之间的动态交互神经机制仍不清楚,并且受到已有经验的影响,未有研究考察不同性质的材料对创作的影响。

4. 研究展望

综上所述,音乐创造性是能力、人格、思维和环境的交互统一。在这个过程中,领域一般性的能力(例如创造性思维、工作记忆,注意等)与领域特异性的能力相互作用。但是,以往研究大多仅局限于不同创作条件与对照条件之间的脑激活差异,较少从动态的角度考察音乐创造性的神经机制,以及较少采用多样和客观评估方法进行后续的分析。对此,本文主要从音乐创造性的评估和动态性,以及团体互动创作角度提出未来的研究方向和思路。

4.1. 音乐创造性的评估

在衡量音乐创造性的主观指标中,除最常使用的独创性维度外,灵活性(Dreu et al., 2011; Müller et al., 2016; Nijstad et al., 2010)、流畅性(Gorder, 1980; Silvia et al., 2013)、适宜性(Kupers & van Dijk, 2020; Long, 2014)和审美性(Han et al., 2021)也可以用来评价一首音乐作品,但后面几个维度研究地相对较少。除了这些主观指标,客观指标“熵”(entropy)也是音乐领域十分重要的参量。“熵”的本质是描述一个系统“内在的混乱程度”,在音乐学科中,熵可作为评估音乐序列的复杂度以及灵活性的客观指标。该指标通常包含三个类别:0阶旋律熵(考虑单个音符的分布),1阶旋律熵(考虑两个连续音高的二元组的分布)和LempelZiv复杂度度量(Doğanaksoy & Göloğlu, 2006)。以往使用“熵”在音乐创造性领域开展的研究有很多。例如,有研究表明,熟练的音乐家比非音乐家在音乐中的精准预测(Przysinda et al., 2017)和不确定性感知(Hansen & Pearse, 2014)更强;Daikoku (2019)调查发现音乐中的不确定性在作曲家的生命周期中呈上升的趋势,并认为人类对不确定性和新奇事物的偏好可能会调节人类大脑的创造力,使个体审美能力得以提高。另外,还有研究认为隐性统计知识有助于音乐创作和音乐即兴创作中的创造力(Daikoku, 2018; Pearce & Wiggins, 2012),而熵作为一种总体统计指标,也在其中发挥着重要的作用。以上研究均表明熵在音乐创造性中的广泛应用前景,但仅仅采用统计学指标“熵”来评价曲子的复杂度和灵活性,无法排除音乐符号随意排列组合的情况,另外无法计算一些高级手法和技巧,比如倒转、重复、镜像的使用,因此未来关于音乐创造性的测量研究不仅需使用共识性评估技术对维度进行主观评价,也可纳入类似于“熵”等客观指标。

4.2. 音乐创作的动态神经活动模式

虽然以往有关音乐创造性的研究较多,但是这些结果主要是通过将实验组即兴创作的大脑激活与对照组(如复现经典曲目)大脑激活相减的方式来衡量,就音乐即兴创作本身的持续动态性来看,基于时间动态性的脑功能连接分析更可能反映音乐创造性的本质。在脑影像领域,最常使用的动态方法包括使用滑动时间窗来计算变异性(variability),稳定性(stability)等指标,或通过网络分析来计算网络间和网络内模块化属性的时程变化。例如通过动态脑网络分析发现高创造性个体的大脑自发性神经活动具有灵活易变的特点(Sun et al., 2019; Beaty et al., 2018)。目前,在音乐创造性的神经影像研究中,少有研究考察个体在进行音乐创作中大脑功能网络连接是怎样发生变化的。这可能与大多研究采取钢琴键盘弹奏的方式,时间持续在十几秒,未能测量在一个相对较长时间内的活动有关。而较短时间内的创作可能受到优势记忆的影响较大,故产生一些简短的音乐片段,不能形成一个相对较完整的曲子。近年来,随着自然主义范式(naturalistic paradigms)的兴起以及分析方法的成熟(Sonkusare et al., 2019),Emily S. Finn认为融合静息态和任务态的实验设计将是人类神经影像研究“第三浪潮”(Finn et al., 2015; Rosenberg et al., 2016)。音乐创作作为一种生态效度较高的创造性研究范式,其任务条件的可控性、时程动态性、以及过程的可观测性满足“第三浪潮”的实验设计特征。结合前沿统计分析,如多体素模式分析(Multi-Voxel Pattern Analysis; MVPA)和隐半马尔可夫模型(Hidden semi-Markov model multivariate pattern analysis, HSMM; Anderson et al., 2016)等方法来探究音乐创作的动态神经机制,有助于解析创造性认知和艺术创作行为的复杂认知神经机制。

4.3. 音乐创作合作行为的认知神经机制

音乐交流和互动在音乐创作中起着重要的作用(Clarke & Doffman, 2017; Macdonald & Miell, 2000; Sawyer, 2006, 2014)。Kupers & van Dajk (2020)提出用团体即兴创作或团体作曲的方式来研究不同个体之间在音乐创作中的信息动态交流,但是此类研究的时间成本较高,并且面对面的互动创作难以在磁共振实验中实现,未来研究可以采用近红外技术(Near infra-red (NIR) spectroscopy)来探究音乐创作的合作行为。在以往有关信息传递的研究中,主导者和跟随者在对记叙事件或非记叙性事件有相同理解的情况下产生更高的DMN激活(Chien & Honey, 2020; Nguyen et al., 2022; Oren et al., 2017; Silbert et al., 2014),以此推断可能是由于两者构建了共享的心理表征(Zadbood et al., 2017),但是以音乐符号为载体的音乐信息的传播是否也具有相似的大脑激活模式还未有研究。此外,音乐创造性有多种表现形式,例如使用“trade fours”范式来探究即兴创作中的合作行为,或者经典的两人进行合作作曲等,但这类交流往往更侧重于横向交流。而现实中音乐创作行为是存在时间维度上纵向的关联。例如,一首原创下的音乐作品,不仅包括作曲和作词的合作行为,也包括第三者对最终作品的欣赏和分析。此外,不同于既有研究通过语义和文本分析来量化合作行为(Nguyen et al., 2022; Zadbood et al., 2017),如何量化音乐合作中的信息交流将是一个难点,可以考虑通过创作者的事后回溯报告来锁定合作行为的关键时间窗口进行分析,以期更加准确地找出音乐合作创造性的激活脑区与大脑功能连接模式。

参考文献

[1] Anderson, J. R., Pyke, A. A., & Fincham, J. M. (2016). Hidden Stages of Cognition Revealed in Patterns of Brain Activation. Psychological Science, 27, 1215-1226.
https://doi.org/10.1177/0956797616654912
[2] Bashwiner, D. (2018). The Neuroscience of Musical Creativity. In R. Jung & O. Vartanian (Eds.), The Cambridge Handbook of the Neuroscience of Creativity (pp. 495-516). Cambridge University Press.
https://doi.org/10.1017/9781316556238.029
[3] Bashwiner, D. M., & Bacon, D. (2019). Musical Creativity and the Motor System. Current Opinion in Behavioral Sciences, 27, 146-153.
https://doi.org/10.1016/j.cobeha.2018.12.005
[4] Bashwiner, D. M., Wertz, C. J., Flores, R. A., & Jung, R. E. (2016). Musical Creativity “Revealed” in Brain Structure: Interplay between Motor, Default Mode and Limbic Networks. Scientific Reports, 6, Article No. 20482.
https://doi.org/10.1038/srep20482
[5] Beaty, R. E. (2015). The Neuroscience of Musical Improvisation. Neuroscience & Biobehavioral Reviews, 51, 108-117.
https://doi.org/10.1016/j.neubiorev.2015.01.004
[6] Beaty, R. E., Chen, Q., Christensen, A. P., Qiu, J., Silvia, P. J., & Schacter, D. L. (2018). Brain Networks of the Imaginative Mind: Dynamic Functional Connectivity of Default and Cognitive Control Networks Relates to Openness to Experience. Human Brain Mapping, 39, 811-821.
https://doi.org/10.1002/hbm.23884
[7] Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The Roles of Associative and Executive Processes in Creative Cognition. Memory & Cognition, 42, 1186-1197.
https://doi.org/10.3758/s13421-014-0428-8
[8] Beaty, R. E., Smeekens, B. A., Silvia, P. J., Hodges, D. A., & Kane, M. J. (2013). A First Look at the Role of Domain-General Cognitive and Creative Abilities in Jazz Improvisation. Psychomusicology: Music, Mind, and Brain, 23, 262-268.
https://doi.org/10.1037/a0034968
[9] Benedek, M., Borovnjak, B., Neubauer, A. C., & Kruse-Weber, S. (2014). Creativity and Personality in Classical, Jazz and Folk Musicians. Personality and Individual Differences, 63, 117-121.
https://doi.org/10.1016/j.paid.2014.01.064
[10] Bengtsson, S. L., Csíkszentmihályi, M., & Ullén, F. (2007). Cortical Regions Involved in the Generation of Musical Structures during Improvisation in Pianists. Journal of Cognitive Neuroscience, 19, 830-842.
https://doi.org/10.1162/jocn.2007.19.5.830
[11] Berkowitz, A. L., & Ansari, D. (2010). Expertise-Related Deactivation of the Right Temporoparietal Junction during Musical Improvisation. Neuroimage, 49, 712-719.
https://doi.org/10.1016/j.neuroimage.2009.08.042
[12] Camarda, A., Salvia, É., Vidal, J., Weil, B., Poirel, N., Houdé, O. et al. (2018). Neural Basis of Functional Fixedness during Creative Idea Generation: An EEG Study. Neuropsychologia, 18, 4-12.
https://doi.org/10.1016/j.neuropsychologia.2018.03.009
[13] Chien, H. Y. S., & Honey, C. J. (2020). Constructing and Forgetting Temporal Context in the Human Cerebral Cortex. Neuron, 106, 675-686.E11.
https://doi.org/10.1016/j.neuron.2020.02.013
[14] Clarke, E. F., & Doffman, M. (Eds.) (2017). Distributed Creativity: Collaboration and Improvisation in Contemporary Music. Oxford University Press.
https://doi.org/10.1093/oso/9780199355914.001.0001
[15] Cohen, M. X. (2017). Where Does EEG Come from and What Does It Mean? Trends in Neurosciences, 40, 208-218.
https://doi.org/10.1016/j.tins.2017.02.004
[16] Cona, G., & Semenza, C. (2017). Supplementary Motor Area as Key Structure for Domain-General Sequence Processing: A Unified Account. Neuroscience & Biobehavioral Reviews, 72, 28-42.
https://doi.org/10.1016/j.neubiorev.2016.10.033
[17] Coss, R. G. (2019). Creative Thinking in Music: Student-Centered Strategies for Implementing Exploration into the Music Classroom. General Music Today, 33, 29-37.
https://doi.org/10.1177/1048371319840654
[18] Da Mota, P. A., Fernandes, H. M., Stark, E., Cabral, J., Heggli, O. A., Sousa, N. et al. (2020). The Dynamics of the Improvising Brain: A Study of Musical Creativity Using Jazz Improvisation. BioRxiv.
https://doi.org/10.1101/2020.01.29.924415
[19] Daikoku, T. (2018). Neurophysiological Markers of Statistical Learning in Music and Language: Hierarchy, Entropy and Uncertainty. Brain Sciences, 8, Article No. 114.
https://doi.org/10.3390/brainsci8060114
[20] Daikoku, T. (2019). Depth and the Uncertainty of Statistical Knowledge on Musical Creativity Fluctuate over a Composer’s Lifetime. Frontiers in Computational Neuroscience, 13, Article No. 27.
https://doi.org/10.3389/fncom.2019.00027
[21] De Dreu, C. K., Nijstad, B. A., Baas, M., Wolsink, I., & Roskes, M. (2012). Working Memory Benefits Creative Insight, Musical Improvisation, and Original Ideation through Maintained Task-Focused Attention. Personality and Social Psychology Bulletin, 38, 656-669.
https://doi.org/10.1177/0146167211435795
[22] de Manzano, Ö., & Ullén, F. (2012). Activation and Connectivity Patterns of the Presupplementary and Dorsal Premotor Areas during Free Improvisation of Melodies and Rhythms. Neuroimage, 63, 272-280.
https://doi.org/10.1016/j.neuroimage.2012.06.024
[23] Després, J. P. (2021). First-Person, Video-Stimulated Recall Method for Studying Musical Improvisation Strategies. Research Studies in Music Education, 44, 34-51.
https://doi.org/10.1177/1321103X20974803
[24] Dhakal, K., Norgaard, M., Adhikari, B. M., Yun, K. S., & Dhamala, M. (2019). Higher Node Activity with Less Functional Connectivity during Musical Improvisation. Brain Connectivity, 9, 296-309.
https://doi.org/10.1089/brain.2017.0566
[25] Doğanaksoy, A., & Göloğlu, F. (2006, September). On Lempel-Ziv Complexity of Sequences. In G. Gong, T. Helleseth, H. Y. Song, & K. Yang (Eds.), International Conference on Sequences and Their Applications (pp. 180-189). Springer.
https://doi.org/10.1007/11863854_15
[26] Donnay, G. F., Rankin, S. K., Lopez-Gonzalez, M., Jiradejvong, P., & Limb, C. J. (2014). Neural Substrates of Interactive Musical Improvisation: An fMRI Study of ‘Trading Fours’ in Jazz. PLOS ONE, 9, Article ID: e88665.
https://doi.org/10.1371/journal.pone.0088665
[27] Dreu, C. K. D., Nijstad, B. A., & Baas, M. (2011). Behavioral Activation Links to Creativity Because of Increased Cognitive Flexibility. Social Psychological and Personality Science, 2, 72-80.
https://doi.org/10.1177/1948550610381789
[28] Eisenberg, J., & Thompson, W. F. (2011). The Effects of Competition on Improvisers’ Motivation, Stress, and Creative Performance. Creativity Research Journal, 23, 129-136.
https://doi.org/10.1080/10400419.2011.571185
[29] Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and Generative Modes of Thought during the Creative Process. Neuroimage, 59, 1783-1794.
https://doi.org/10.1016/j.neuroimage.2011.08.008
[30] Elliott, D. J. (1995). Music Matters a New Philosophy of Music Education. Oxford University Press.
[31] Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M. et al. (2015). Functional Connectome Fingerprinting: Identifying Individuals Using Patterns of Brain Connectivity. Nature Neuroscience, 18, 1664-1671.
https://doi.org/10.1038/nn.4135
[32] Gerlach, K. D., Spreng, R. N., Madore, K. P., & Schacter, D. L. (2014). Future Planning: Default Network Activity Couples with Frontoparietal Control Network and Reward-Processing Regions during Process and Outcome Simulations. Social Cognitive and Affective Neuroscience, 9, 1942-1951.
https://doi.org/10.1093/scan/nsu001
[33] Gola, M., Magnuski, M., Szumska, I., & Wróbel, A. (2013). EEG Beta Band Activity Is Related to Attention and Attentional Deficits in the Visual Performance of Elderly Subjects. International Journal of Psychophysiology, 89, 334-341.
https://doi.org/10.1016/j.ijpsycho.2013.05.007
[34] Gorder, W. D. (1980). Divergent Production Abilities as Constructs of Musical Creativity. Journal of Research in Music Education, 28, 34-42.
https://doi.org/10.2307/3345051
[35] Han, J., Forbes, H., & Schaefer, D. (2021). An Exploration of How Creativity, Functionality, and Aesthetics Are Related in Design. Research in Engineering Design, 32, 289-307.
https://doi.org/10.1007/s00163-021-00366-9
[36] Hansen, N. C., & Pearce, M. T. (2014). Predictive Uncertainty in Auditory Sequence Processing. Frontiers in Psychology, 5, Article No. 1052.
https://doi.org/10.3389/fpsyg.2014.01052
[37] Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The Structure of Creative Cognition in the Human Brain. Frontiers in Human Neuroscience, 7, Article No. 330.
https://doi.org/10.3389/fnhum.2013.00330
[38] Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG Alpha Oscillations: The Inhibition–timing Hypothesis. Brain Research Reviews, 53, 63-88.
https://doi.org/10.1016/j.brainresrev.2006.06.003
[39] Kostagiolas, P., Lavranos, C., Martzoukou, K., & Papadatos, J. (2017). The Role of Personality in Musicians’ Information Seeking for Creativity. Information Research: An International Electronic Journal, 22, Paper No. 756.
[40] Kupers, E., & Van Dijk, M. (2020). Creativity in Interaction: The Dynamics of Teacher-Student Interactions during a Musical Composition Task. Thinking Skills and Creativity, 36, Article ID: 100648.
https://doi.org/10.1016/j.tsc.2020.100648
[41] Landau, A. T., & Limb, C. J. (2017). The Neuroscience of Improvisation. Music Educators Journal, 103, 27-33.
https://doi.org/10.1177/0027432116687373
[42] Lavranos, C., Kostagiolas, P., Korfiatis, N., & Papadatos, J. (2016). Information Seeking for Musical Creativity: A Systematic Literature Review. Journal of the Association for Information Science and Technology, 67, 2105-2117.
https://doi.org/10.1002/asi.23534
[43] Lee, C. S., Huggins, A. C., & Therriault, D. J. (2014). A Measure of Creativity or Intelligence? Examining Internal and External Structure Validity Evidence of the Remote Associates Test. Psychology of Aesthetics, Creativity, and the Arts, 8, 446-460.
https://doi.org/10.1037/a0036773
[44] Limb, C. J., & Braun, A. R. (2008). Neural Substrates of Spontaneous Musical Performance: An fMRI Study of Jazz Improvisation. PLOS ONE, 3, Article No. e1679.
https://doi.org/10.1371/journal.pone.0001679
[45] Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., & Braun, A. R. (2015). Brain Activity and Connectivity during Poetry Composition: Toward a Multidimensional Model of the Creative Process. Human Brain Mapping, 36, 3351-3372.
https://doi.org/10.1002/hbm.22849
[46] Long, H. (2014). More than Appropriateness and Novelty: Judges’ Criteria of Assessing Creative Products in Science Tasks. Thinking Skills and Creativity, 13, 183-194.
https://doi.org/10.1016/j.tsc.2014.05.002
[47] Lopata, J. A., Nowicki, E. A., & Joanisse, M. F. (2017). Creativity as a Distinct Trainable Mental State: An EEG Study of Musical Improvisation. Neuropsychologia, 99, 246-258.
https://doi.org/10.1016/j.neuropsychologia.2017.03.020
[48] Macdonald, R. A., & Miell, D. (2000). Creativity and Music Education: The Impact of Social Variables. International Journal of Music Education, os-36, 58-68.
https://doi.org/10.1177/025576140003600107
[49] Mazzola, G., Park, J., & Thalmann, F. (2011). Musical Creativity: Strategies and Tools in Composition and Improvisation. Springer Science & Business Media.
https://doi.org/10.1007/978-3-642-24517-6
[50] Müller, B. C., Gerasimova, A., & Ritter, S. M. (2016). Concentrative Meditation Influences Creativity by Increasing Cognitive Flexibility. Psychology of Aesthetics, Creativity, and the Arts, 10, 278-286.
https://doi.org/10.1037/a0040335
[51] Nettl, B., & Russell, M. (Eds.). (1998). in the Course of Performance: Studies in the World of Musical Improvisation. University of Chicago Press.
[52] Nguyen, M., Chang, A., Micciche, E., Meshulam, M., Nastase, S. A., & Hasson, U. (2022). Teacher-Student Neural Coupling during Teaching and Learning. Social Cognitive and Affective Neuroscience, 17, 367-376.
https://doi.org/10.1093/scan/nsab103
[53] Nijstad, B. A., De Dreu, C. K., Rietzschel, E. F., & Baas, M. (2010). The Dual Pathway to Creativity Model: Creative Ideation as a Function of Flexibility and Persistence. European Review of Social Psychology, 21, 34-77.
https://doi.org/10.1080/10463281003765323
[54] Oren, N., Shapira-Lichter, I., Lerner, Y., Tarrasch, R., Hendler, T., Giladi, N., & Ash, E. L. (2017). Schema Benefit vs. Proactive Interference: Contradicting Behavioral Outcomes and Coexisting Neural Patterns. Neuroimage, 158, 271-281.
https://doi.org/10.1016/j.neuroimage.2017.07.006
[55] Pearce, M. T., & Wiggins, G. A. (2012). Auditory Expectation: The Information Dynamics of Music Perception and Cognition. Topics in Cognitive Science, 4, 625-652.
https://doi.org/10.1111/j.1756-8765.2012.01214.x
[56] Pichot, N., Bonetto, E., Pavani, J. B., Arciszewski, T., Bonnardel, N., & Weisberg, R. W. (2021). The Construct Validity of Creativity: Empirical Arguments in Favor of Novelty as the Basis for Creativity. Creativity Research Journal, 34, 1-12.
https://doi.org/10.31234/osf.io/wtd8n
[57] Pinho, A. L., Ullén, F., Castelo-Branco, M., Fransson, P., & De Manzano, Ö. (2016). Addressing a Paradox: Dual Strategies for Creative Performance in Introspective and Extrospective Networks. Cerebral Cortex, 26, 3052-3063.
https://doi.org/10.1093/cercor/bhv130
[58] Pressing, J. (1984). Cognitive Processes in Improvisation. in Advances in Psychology, 19, 345-363.
https://doi.org/10.1016/S0166-4115(08)62358-4
[59] Pressing, J. (1988). Improvisation: Methods and Models. In J. A. Sloboda (Ed.), Generative Processes in Music (pp. 129-178). Oxford.
https://doi.org/10.1093/acprof:oso/9780198508465.003.0007
[60] Pressing, J. (1998). Error Correction Processes in Temporal Pattern Production. Journal of Mathematical Psychology, 42, 63-101.
https://doi.org/10.1006/jmps.1997.1194
[61] Przysinda, E., Zeng, T., Maves, K., Arkin, C., & Loui, P. (2017). Jazz Musicians Reveal Role of Expectancy in Human Creativity. Brain and Cognition, 119, 45-53.
https://doi.org/10.1016/j.bandc.2017.09.008
[62] Rosen, D. S., Erickson, B., Kim, Y. E., Mirman, D., Hamilton, R. H., & Kounios, J. (2016). Anodal TDCS to Right Dorsolateral Prefrontal Cortex Facilitates Performance for Novice Jazz Improvisers But Hinders Experts. Frontiers in Human Neuroscience, 10, Article No. 579.
https://doi.org/10.3389/fnhum.2016.00579
[63] Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X., Constable, R. T., & Chun, M. M. (2016). A Neuromarker of Sustained Attention from Whole-Brain Functional Connectivity. Nature Neuroscience, 19, 165-171.
https://doi.org/10.1038/nn.4179
[64] Sasaki, M., Iversen, J., & Callan, D. E. (2019). Music Improvisation Is Characterized by Increase EEG Spectral Power in Prefrontal and Perceptual Motor Cortical Sources and Can Be Reliably Classified from Non-Improvisatory Performance. Frontiers in Human Neuroscience, 13, Article No. 435.
https://doi.org/10.3389/fnhum.2019.00435
[65] Sawyer, R. K. (2006). Group Creativity: Musical Performance and Collaboration. Psychology of Music, 34, 148-165.
https://doi.org/10.1177/0305735606061850
[66] Sawyer, R. K. (2014). Group Creativity: Music, Theater, Collaboration. Psychology Press.
[67] Silbert, L. J., Honey, C. J., Simony, E., Poeppel, D., & Hasson, U. (2014). Coupled Neural Systems Underlie the Production and Comprehension of Naturalistic Narrative Speech. Proceedings of the National Academy of Sciences of the United States of America, 111, E4687-E4696.
https://doi.org/10.1073/pnas.1323812111
[68] Silvia, P. J., Beaty, R. E., & Nusbaum, E. C. (2013). Verbal Fluency and Creativity: General and Specific Contributions of Broad Retrieval Ability (Gr) Factors to Divergent Thinking. Intelligence, 41, 328-340.
https://doi.org/10.1016/j.intell.2013.05.004
[69] Sonkusare, S., Breakspear, M., & Guo, C. (2019). Naturalistic Stimuli in Neuroscience: Critically Acclaimed. Trends in Cognitive Sciences, 23, 699-714.
https://doi.org/10.1016/j.tics.2019.05.004
[70] Sowden, P. T., Pringle, A., & Gabora, L. (2015). The Shifting Sands of Creative Thinking: Connections to Dual-Process Theory. Thinking & Reasoning, 21, 40-60.
https://doi.org/10.1080/13546783.2014.885464
[71] Spiegelhalder, K., Regen, W., Feige, B., Holz, J., Piosczyk, H., Baglioni, C. et al. (2012). Increased EEG Sigma and Beta Power during NREM Sleep in Primary Insomnia. Biological Psychology, 91, 329-333.
https://doi.org/10.1016/j.biopsycho.2012.08.009
[72] Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default Network Activity, Coupled with the Frontoparietal Control Network, Supports Goal-Directed Cognition. Neuroimage, 53, 303-317.
https://doi.org/10.1016/j.neuroimage.2010.06.016
[73] Stevens, C. E., & Zabelina, D. L. (2019). Creativity Comes in Waves: An EEG-Focused Exploration of the Creative Brain. Current Opinion in Behavioral Sciences, 27, 154-162.
https://doi.org/10.1016/j.cobeha.2019.02.003
[74] Sun, J., Liu, Z., Rolls, E. T., Chen, Q., Yao, Y., Yang, W. et al. (2019). Verbal Creativity Correlates with the Temporal Variability of Brain Networks during the Resting State. Cerebral Cortex, 29, 1047-1058.
https://doi.org/10.1093/cercor/bhy010
[75] Van Der Schyff, D., Schiavio, A., Walton, A., Velardo, V., & Chemero, A. (2018). Musical Creativity and the Embodied Mind: Exploring the Possibilities of 4E Cognition and Dynamical Systems Theory. Music & Science, 1, Article ID: 2059204318792319.
https://doi.org/10.1177/2059204318792319
[76] Vartanian, O., Smith, I., Lam, T. K., King, K., Lam, Q., & Beatty, E. L. (2020). The Relationship between Methods of Scoring the Alternate Uses Task and the Neural Correlates of Divergent Thinking: Evidence from Voxel-Based Morphometry. NeuroImage, 223, Article ID: 117325.
https://doi.org/10.1016/j.neuroimage.2020.117325
[77] Webster, P. R. (1994). Measure of Creative Thinking in Music-II (MCTM-II). Administrative Guidelines. Unpublished Manuscript, Northwestern University.
[78] Webster, P. R. (2002). Creativity and Music Education: Creative Thinking in Music: Advancing a Model. Creativity and Music Education, 1, 33.
[79] Webster, P. R. (2012). Key Research in Music Technology and Music Teaching and Learning. Journal of Music, Technology Education, 4, 115-130.
https://doi.org/10.1386/jmte.4.2-3.115_1
[80] Webster, P. R. (2016). Towards Pedagogies of Revision: Guiding a Student’s Music Composition. In O. Odena (Ed.), Musical Creativity: Insights from Music Education Research (pp. 115-134). Routledge.
[81] Webster, P. R., & Williams, D. B. (2018). Technology’s Role for Achieving Creativity, Diversity and Integration in the American Undergraduate Music Curriculum: Some Theoretical, Historical and Practical Perspectives. Journal of Music, Technology & Education, 11, 5-36.
https://doi.org/10.1386/jmte.11.1.5_1
[82] Weisberg, R. W. (2015). On the Usefulness of “value” in the Definition of Creativity. Creativity Research Journal, 27, 111-124.
https://doi.org/10.1080/10400419.2015.1030320
[83] Woody, R. H., & McPherson, G. E. (2010). Emotion and Motivation in the Lives of Performers. In P. N. Juslin (Ed.), Handbook of Music and Emotion: Theory, Research, Applications (pp. 401-424). Oxford Academic.
https://doi.org/10.1093/acprof:oso/9780199230143.003.0015
[84] Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D. et al. (2015). A Meta-Analysis of Neuroimaging Studies on Divergent Thinking Using Activation Likelihood Estimation. Human Brain Mapping, 36, 2703-2718.
https://doi.org/10.1002/hbm.22801
[85] Zadbood, A., Chen, J., Leong, Y. C., Norman, K. A., & Hasson, U. (2017). How We Transmit Memories to Other Brains: Constructing Shared Neural Representations via Communication. Cerebral Cortex, 27, 4988-5000.
https://doi.org/10.1093/cercor/bhx202