糖尿病肾病及其危险因素的研究进展
Advances in the Study of Diabetic Kidney Disease and Its Risk Factors
DOI: 10.12677/ACM.2022.12101314, PDF, HTML, XML, 下载: 197  浏览: 545 
作者: 时天鹭, 刘云霞:西安医学院研究生处,陕西 西安;西安市第九医院内分泌科,陕西 西安;牛 瑜, 王述进*:西安市第九医院内分泌科,陕西 西安
关键词: 糖尿病肾病危险因素Diabetic Kidney Disease (DKD) Risk Factors
摘要: 糖尿病肾病(DKD)是糖尿病最常见的微血管并发症之一,其已经成为需要肾脏替代治疗的终末期肾脏病的首要原因,严重影响患者的生活质量并增加社会医疗负担。多种危险因素可通过不同机制参与DKD的发生和发展,如血糖、血压、血脂、尿酸可增加氧化应激、激活肾素血管紧张素醛固酮系统、损害肾小球滤过屏障,内脏脂肪增多引起异位脂肪沉积、加重胰岛素抵抗,吸烟增加促纤维化细胞因子的表达,贫血引起组织缺氧加重肾纤维化等。这些危险因素大多可以通过积极治疗及改变生活方式得到改善。因此,早期识别DKD的危险因素并综合管理对降低其发病率和死亡率起决定性作用。这篇综述总结了DKD的定义、分期、危险因素及对可改变危险因素的管理,可为临床提供指导。
Abstract: Diabetic kidney disease (DKD) is one of the most common microvascular complications of diabetes mellitus, and it has become the leading cause of end-stage renal disease requiring renal replace-ment therapy, which seriously affects the quality of life of patients and increases the medical bur-den of the society. Multiple risk factors can be involved in the development and progression of DKD through various mechanisms, such as blood glucose, blood pressure, lipids, and uric acid can in-crease oxidative stress, activate the renin angiotensin aldosterone system, damage the glomerular filtration barrier, increased visceral fat causes ectopic fat deposition, aggravate insulin resistance; smoking increases the expression of profibrotic cytokines, anemia causes tissue hypoxia aggravates renal fibrosis, etc. Most of these risk factors can be improved by active treatment and lifestyle changes. Therefore, the early identification of risk factors for DKD and their integrated management can play a decisive role in reducing its morbidity and mortality. This review summarizes the defini-tion, staging, risk factors and management of modifiable risk factors for DKD to provide clinical guidance.
文章引用:时天鹭, 牛瑜, 刘云霞, 王述进. 糖尿病肾病及其危险因素的研究进展[J]. 临床医学进展, 2022, 12(10): 9086-9094. https://doi.org/10.12677/ACM.2022.12101314

1. 引言

全球成年人糖尿病和糖耐量受损的患病率逐年上升,2019年大约有4.63亿人患有糖尿病,预计到2045年,糖尿病患病人数将增至7亿人 [1]。糖尿病肾病(diabetic kidney disease, DKD)是指由糖尿病引起的慢性肾脏病(chronic kidney disease, CKD),是糖尿病最常见、最严重的微血管并发症之一。其临床特征为持续性尿白蛋白排泄增加和(或)肾小球滤过率(glomerular filtration rate, GFR)进行性下降最终发展为终末期肾脏疾病(end-stage renal disease, ESRD),DKD已经超过慢性肾小球肾炎成为ESRD的首要原因,严重影响患者的生活质量并增加社会医疗负担 [2]。

确诊DKD的“金标准”是肾活检,病理特点包括肾小球硬化、基底膜增厚、肾间质纤维化等。但肾活检属于有创检查,不推荐常规应用,临床上通常采用随机尿白蛋白/肌酐比值(urinary albumin creatinine ratio, UACR) ≥ 30 mg/g、估算肾小球滤过率(estimated glomerular filtration rate, eGFR) < 60 ml∙min−1∙(1.73 m2)−1诊断DKD [2]。DKD的临床分期采用2020年改善全球肾脏病预后组织(KDIGO)发布的慢性肾脏病糖尿病管理临床实践指南中提出的GA分期法:按GFR分为G1~G5期、按蛋白尿分为A1~A3期 [3]。

研究发现,与单纯2型糖尿病患者相比,合并DKD患者的死亡率高50% [4]。因此,识别和管理DKD的危险因素至关重要。DKD的发生发展与多种危险因素有关,其中一些危险因素不可改变,还有一些可通过严格管理改变的危险因素,本文就DKD危险因素最新研究进展进行综述,旨在早期识别相关危险因素并积极预防和管理,为临床提供指导。

2. DKD的危险因素

2.1. 不可改变因素

2.1.1. 年龄

糖尿病的患病率随着年龄的增长而增加。我国逐渐进入老龄化社会,据统计,2019年我国 ≥ 65岁人口约1.76亿,占中国总人口的12.6%,其中糖尿病患者约3550万,占全球老年糖尿病患者的25%,位居首位 [5]。而年龄越大,患DKD的风险越高。研究发现,随着年龄增长,蛋白尿显著增加、eGFR显著下降 [6] [7]。年龄每增加5~10岁,DKD的风险增加了38% [8]。一项纳入1398名2型糖尿病患者,按年龄分层探讨与DKD关系的研究发现年龄 < 60岁的患者占46.2%,年龄 ≥ 60岁的患者占52.8%,并且发现eGFR的下降比蛋白尿的发生更为显著。原因可能是由于随着年龄增长肾功能出现生理衰退,而且老年人易合并其他慢性疾病如高血压、冠心病、脑血管病变等也会加剧肾功能的损伤 [9]。

2.1.2. 病程

越来越多的证据表明,糖尿病病程越长,患DKD的风险越高。研究发现,糖尿病病程 > 5年与DKD显著相关,而 < 5年通常与IgA肾病、膜性肾病等非DKD有关 [10]。英国前瞻性糖尿病研究发现,从新诊断糖尿病开始,糖尿病病程5年、10年、15年、20年、25年进展为DKD的风险分别为17.3%、24.9%、28.0%、34.3%、38.3%,呈显著递增趋势 [11]。也有研究指出1型糖尿病患者极少在病程10年内出现大量蛋白尿,但在病程10年之后蛋白尿逐渐增加,并经过长达22年的随访发现强化治疗可使超过一半人群恢复至微量白蛋白尿或正常白蛋白尿 [12]。因此,虽然糖尿病病程不能改变,但是通过积极血糖管理可使蛋白尿下降,有助于减轻肾损害。

2.1.3. 性别

大多数研究证实男性与DKD的关系更加密切。研究发现,DKD在男性中的患病率高于女性,与女性相比,男性的平均eGFR较低,蛋白尿发生率较高,然而,≥60岁的女性eGFR < 30 ml∙min−1∙(1.73 m2)−1发生率比同龄男性高 [13]。可能与性激素有关,雌激素可以通过改善肌酐清除率、减轻肾小球硬化、肾间质纤维化和减少蛋白尿对肾脏起保护作用,而雄激素可诱导足细胞损伤,促进炎症和肾间质纤维化,加速DKD的发展 [14] [15]。绝经后的老年女性雌激素降低,因此雌激素对其保护作用减弱。动物研究发现,给糖尿病小鼠中补充雌激素能够抑制肾小球硬化和减少蛋白尿,进一步证实雌激素对DKD的保护作用 [16]。另外,脂肪组织分布在性别方面存在差异,女性的脂肪通常积聚在臀部和股部,呈“梨形”,男性则更易积聚在腹部和内脏,呈“苹果形” [17]。而已有研究证实,内脏脂肪增加的糖尿病患者与蛋白尿增加有关 [18]。但也有研究发现DKD的发生在性别方面无显著差异 [19],甚至有研究指出女性发生DKD的风险更高 [7]。研究结论不同可能归因于样本量、年龄分层等因素。因此,有必要对性别与DKD的关系进行更深一步研究。

2.1.4. 遗传因素

糖尿病家族史为DKD发生的独立危险因素 [20]。越来越多的证据表明,基因多态性在DKD发生发展起着重要作用。在青年人中的成年发病型糖尿病(maturity-onset diabetes mellitus of the young, MODY)汉族人群中,COL4A3基因变异的患者肾功能较差、蛋白尿水平更高 [21]。动物试验确定DACH1为肾脏疾病的风险基因,在糖尿病小鼠肾损伤模型中发现,在肾脏特异性敲除DACH1的小鼠中观察到肾小管中低水平的DACH1表达加剧了肾脏纤维化,更易出现肾病 [22]。在糖尿病及其微血管并发症的表观遗传学背景研究中,microRNA是小的内源性非编码单链RNA,lncRNA是长链非编码RNA,可调控基因表达。miR-34a在DKD的发生发展中起着关键作用,下调miR-34a可抑制系膜细胞增殖、缓解肾小球肥大 [23]。在DKD小鼠中lncRNA表达发生显著变化,与糖尿病组小鼠相比,DKD小鼠有160条lncRNA表达上调,99条lncRNA表达下调,lncRNA8、lncRNA15、lncRNA16可能参与DKD的进展 [24]。与遗传因素相比,表观遗传学具有可逆性,可为DKD提供诊断标志物并为治疗提供新靶点。

2.2. 可改变因素

2.2.1. 血糖

高血糖是导致DKD进展的主要可改变因素,因为血糖控制不佳可引起内皮功能障碍和氧化应激增加导致肾脏病理生理结构发生改变,包括肾小球和肾小管基底膜增厚、肾小球硬化和肾小管萎缩 [25] [26]。糖化血红蛋白(HbA1c)是评估患者近8~12周平均血糖水平的重要指标。在新诊断的2型糖尿病患者中,英国前瞻性糖尿病研究表明,平均HbA1c每降低1%,患DKD的风险降低21% [27]。因此,糖尿病患者应尽可能控制血糖达标。研究表明,强化血糖治疗可降低DKD发生风险,然而严格的血糖控制可能会造成“弊大于利”,如低血糖、死亡率风险增加 [28]。HbA1c具体控制在多少能使患者获益最大仍然存在争议。有研究指出糖尿病患者HbA1c控制目标 < 7.0%时,对延缓DKD进展有临床意义,但对于肾功能较差的患者,HbA1c水平低于6.5%和高于8.0%时,死亡率明显增加 [29]。可见预防和管理DKD的血糖应分层管理。降糖策略应根据患者疾病的严重程度、并发症的多少、预期寿命的长短、出现低血糖的风险等因素综合考虑。对肾功能较好、并发症较少、预期寿命较长、低血糖风险较低的患者可严格控制HbA1c < 6.5%,但对肾功能较差、依从性差、并发症较多、预期寿命较短、低血糖风险较高的患者,适当放宽血糖控制目标(HbA1c < 8%)获益更大 [3]。

2.2.2. 血压

高血压是DKD另一个重要的危险因素。对于相关机制,肾素血管紧张素醛固酮系统激活、内皮功能障碍、炎症和氧化应激等均与肾功能损伤相关 [30]。研究血压不同变量发现,与DKD进展有关的不是舒张压和平均动脉压,而是收缩压和脉压;该研究进一步分析了收缩压和脉压的血压变异性,即一定时间内血压的波动程度,发现血压波动越大,患者发生DKD的风险越高 [31]。研究发现收缩压每升高10~20 mmHg,DKD的风险增加21% [8]。降低收缩压有助于延缓DKD进展。然而强化降低收缩压可使eGFR显著下降,增加2型糖尿病患者发生DKD的风险 [32]。血压目标值究竟控制在多少是最佳的,有研究认为血压控制在140/85 mmHg对肾的保护作用最大 [33]。也有研究得出收缩压阈值为127 mmHg,一旦超过阈值蛋白尿的风险将显著增加 [34]。可能是由于研究人群的年龄、病程、基础疾病等各不相同,因此血压控制的目标值也不同。综上所述,临床工作者和患者在控制血压时,应更注重收缩压和脉压。应加强血压监测,避免波动过大,并根据患者自身状况维持合适的血压值以达到最大的保护作用。

2.2.3. 血脂

糖尿病合并脂代谢紊乱会增加DKD的风险。血脂异常,通常指甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白(LDL-C)升高或高密度脂蛋白(HDL-C)降低。脂代谢紊乱导致肾病的机制可能是由于脂质合成、摄取相对不平衡,脂质在肾组织中积聚,脂质沉积可通过增加氧化应激、释放炎症因子导致系膜细胞、内皮细胞损伤,从而导致肾小球硬化和肾小管损伤。脂质也可影响足细胞的功能,损害肾小球滤过屏障的完整性,从而导致蛋白尿的发生 [35]。研究发现,TG每增加1 mmol/L,患DKD的风险增加了42%,HDL-C每增加1 mmol/L,患DKD的风险降低了22% [8]。氧化低密度脂蛋白(ox-LDL)是LDL-C的氧化修饰,可促进肾小球、肾小管和足细胞损伤,导致蛋白尿和肾功能丧失,是DKD或ESKD的独立危险因素 [36]。最新一项研究认为传统的脂质指标可能不能完全反映DKD的风险,与传统的脂质指标相比,载脂蛋白A1 (ApoA1)、载脂蛋白B (ApoB)和脂质比值显得更重要,在2型糖尿病患者多种脂质指标中发现LDL-c/ApoB比值与DKD的关系最为密切,LDL-c/ApoB与eGFR、UACR显著相关,且比值越低,发生DKD的风险越高 [37]。因此目前不仅要关注传统的血脂指标,对载脂蛋白及脂质比值与DKD的相关性有必要进行更深入的研究。

2.2.4. 尿酸

尿酸(UA)是嘌呤代谢形成的终产物,当UA合成过多或排泄减少在体内蓄积即会出现高尿酸血症。高尿酸血症不仅会引起痛风,而且可导致肾功能损害,加速DKD的发展。机制与高尿酸血症可使一氧化氮降低,加剧炎症反应,并通过增加氧化应激导致内皮功能障碍有关 [38]。一项对包括422名平均病程15年的糖尿病患者随访43个月的研究发现初始即有高尿酸血症(男性SUA ≥ 420 μmol/l,女性 ≥ 360 μmol/l)的患者DKD患病率更高、进展为DKD的速度更快 [39]。也有研究发现UA水平升高发生蛋白尿的风险增加,并得出使DKD发生风险增加的UA临界值为6.9 mg/dL (410.55 μmol/l) [40]。对青少年2型糖尿病高尿酸血症与DKD的关系研究发现,较高的UA水平是尿白蛋白排泄增加的独立风险因素 [41]。日本一项对2型糖尿病患者血清UA水平与蛋白尿发生发展之间关系的前瞻性研究发现,不仅较高水平UA与蛋白尿的进展有关,较低水平UA与蛋白尿进展也有相关性,但UA水平与eGFR变化没有相关性 [42]。综上可知,高尿酸血症是DKD进展和恶化的危险因素,降低UA水平对DKD进展有潜在的益处,但是过低的UA水平保护作用不增反而下降?其结论仍需大样本试验进一步证实。

2.2.5. 肥胖

肥胖是DKD的独立危险因素,据流行病学估计全球有6.037亿成年人患有肥胖症 [43]。世界卫生组织通常根据体质指数(BMI)定义肥胖。BMI每增加5 kg/m2,患DKD的风险增加16% [8]。但BMI区分脂肪分布有限,不是衡量肥胖的最佳指标。研究发现相对BMI,代表中心性肥胖的腰臀比和腰围/身高比值与DKD更具相关性 [44]。且目前越来越多的学者更加关注内脏脂肪和皮下脂肪,内脏脂肪增加可使脂肪在肝脏、心脏、胰腺等器官堆积,称“异位脂肪沉积”,可诱发胰岛素抵抗,而皮下脂肪可防止“异位脂肪沉积” [17]。研究发现,在2型糖尿病患者中,内脏脂肪增加与UACR呈正相关,可作为筛查DKD的指标 [18]。另有研究指出内脏脂肪与皮下脂肪的比值越高,发生DKD的风险越大 [45]。因此,在临床上,我们不仅要评估患者肥胖的程度,更重要的是评估肥胖的类型,尽可能减少内脏脂肪。肥胖患者可通过改变生活方式控制体重,推荐患者合理膳食并进行每周至少150分钟中等强度的体力活动,对改善胰岛素抵抗、控制血糖、减少并发症有重要作用 [3]。

2.2.6. 吸烟

吸烟是DKD发生的危险因素。据流行病学统计,全球每年大约有700万人死于吸烟,预计到2030年,死亡人数将达到830万人 [46]。主要是由于烟草烟雾能增加炎症和诱导氧化应激,从而损害内皮功能,最终发展为肾小球硬化,促进DKD的发生 [47]。也可增加促纤维化细胞因子TGF-β和细胞外基质蛋白纤维连接蛋白的表达促进DKD的进展 [48]。研究发现,吸烟的糖尿病患者患DKD的风险增加了49% [8]。吸烟和DKD风险呈剂量–反应关系,与从不吸烟的糖尿病患者相比,轻度吸烟、中度吸烟、重度吸烟者的危害是递增的 [49]。不仅仅是主动吸烟者,目前越来越多的人群暴露于二手烟中,据统计,2004年全球约33%的非吸烟男性、35%的女性和40%的儿童接触到二手烟 [50]。而接触二手烟人群eGFR下降的风险明显高于未接触二手烟者 [51]。动物实验证明,暴露于烟草烟雾的糖尿病小鼠可促进DKD的进展 [48]。建议吸烟的糖尿病患者尽早戒烟。研究发现,当前吸烟的糖尿病患者的血糖控制始终比曾经吸烟(戒烟时间超3个月)和从不吸烟的人更差,与从不吸烟者的糖尿病患者相比,当前吸烟者DKD风险增加了36% [52],然而曾经吸烟与从不吸烟的糖尿病患者发生DKD的风险没有显著差异。可见戒烟能改善现有肾病的进展,但戒烟超过多长时间可使DKD的风险显著下降,仍需更深入的研究。无论如何,戒烟带来的长期益处是毋庸置疑的,因此,应加强对吸烟患者的健康教育,提高其健康意识,鼓励其戒烟并倡导禁止在公共场所吸烟,从而更好的预防DKD的发生。

2.2.7. 贫血

贫血是DKD的常见并发症,也是DKD进展的危险因素。研究表明,贫血可通过缺氧诱导因子(HIF-1)的产生造成肾组织缺氧,加重肾纤维化,对预测DKD有重要价值 [53]。血清促红细胞生成素(EPO)缺乏是贫血发生肾损伤的重要因素。研究发现,与高EPO组相比,低EPO组患者的eGFR下降速度明显更快 [54]。对糖尿病大鼠注射EPO可抑制炎症反应和氧化应激改善肾间质纤维化,延缓DKD的进展 [55]。因此贫血可作为一个重要的治疗靶点延缓DKD的发生。

2.2.8. 维生素D缺乏

维生素D属于类固醇脂溶性维生素,主要通过紫外线照射产生。维生素D缺乏不仅可导致佝偻病、骨软化症等疾病,而且会加速DKD的进展。对评估2型糖尿病患者血清25羟维生素D水平与DKD的相关性研究发现,维生素D浓度 < 50 nmol/L组与维生素D ≥ 50 nmol/L组患者相比,DKD患病率增加约21% [56]。对维生素D摄入不足的患者,可适当补充,因为维生素D可通过抑制肾素血管紧张素系统激活,延缓肾小球硬化从而对DKD起保护作用 [56]。一项包括20项随机对照试验的荟萃分析研究表明,补充维生素D或其类似物可以减少尿蛋白排泄,但对增加eGFR方面没有明显相关性 [57]。然而,目前对DKD相关的维生素D缺乏或充足的临床阈值还没有确切的定论,需要更多的研究去证实。

3. 结语

综上所述,糖尿病患者进展为DKD的过程需多种危险因素协同参与,本文大多数文献报告称老龄、病程长、男性、有糖尿病家族史、高血糖、高血压、高脂血症、高尿酸血脂、肥胖、吸烟、贫血、维生素D缺乏的患者更易出现DKD。当出现两种或两种以上危险因素共存时,危害性更大。此外,种族差异、有认知障碍、焦虑抑郁、糖尿病其他并发症等也可能对DKD的进展有一定影响。这些危险因素大多是可以通过规范管理改变的。因此,临床医生应更机敏地识别糖尿病患者可能存在的危险因素并给予恰当的指导,以充分预防并改善患者的预后。

利益冲突

所有作者均声明不存在利益冲突。

参考文献

[1] Saeedi, P., Petersohn, I., Salpea, P., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Pro-jections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Re-search and Clinical Practice, 157, Article ID: 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[2] 中华医学会肾脏病学分会专家组. 糖尿病肾脏疾病临床诊疗中国指南[J]. 中华肾脏病杂志, 2021, 37(3): 255-304.
[3] De Boer, I.H., Caramori, M.L., Chan, J.C.N., et al. (2020) KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney International, 98, S1-S115.
https://doi.org/10.1016/j.kint.2020.06.019
[4] Gonzalez-Perez, A., Saez, M., Vizcaya, D., et al. (2021) Incidence and Risk Factors for Mortality and End-Stage Renal Disease in People with Type 2 Diabetes and Diabetic Kidney Dis-ease: A Population-Based Cohort Study in the UK. BMJ Open Diabetes Research and Care, 9, e002146.
https://doi.org/10.1136/bmjdrc-2021-002146
[5] 国家老年医学中心, 中华医学会老年医学分会, 中国老年保健协会糖尿病专业委员会. 中国老年糖尿病诊疗指南(2021年版) [J]. 中华糖尿病杂志, 2021, 13(1): 14-46.
[6] Russo, G.T., De Cosmo, S., Viazzi, F., et al. (2018) Diabetic Kidney Disease in the Elderly: Prevalence and Clinical Correlates. BMC Geriatrics, 18, Article No. 38.
https://doi.org/10.1186/s12877-018-0732-4
[7] Roy, S., Schweiker-Kahn, O., Jafry, B., et al. (2021) Risk Factors and Comorbidities Associated with Diabetic Kidney Disease. Journal of Primary Care & Community Health, 12, Article ID: 21501327211048556.
https://doi.org/10.1177/21501327211048556
[8] Jiang, W., Wang, J., Shen, X., et al. (2020) Establishment and Validation of a Risk Prediction Model for Early Diabetic Kidney Disease Based on a Systematic Review and Me-ta-Analysis of 20 Cohorts. Diabetes Care, 43, 925-933.
https://doi.org/10.2337/dc19-1897
[9] Farah, R.I., Al-Sabbagh, M.Q., Momani, M.S., et al. (2021) Diabetic Kid-ney Disease in Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Study. BMC Nephrology, 22, Article No. 223.
https://doi.org/10.1186/s12882-021-02429-4
[10] Wang, J., Han, Q., Zhao, L., et al. (2019) Identification of Clini-cal Predictors of Diabetic Nephropathy and Non-Diabetic Renal Disease in Chinese Patients with Type 2 Diabetes, with Reference to Disease Course and Outcome. Acta Diabetologica, 56, 939-946.
https://doi.org/10.1007/s00592-019-01324-7
[11] Adler, A.I., Stevens, R.J., Manley, S.E., et al. (2003) Develop-ment and Progression of Nephropathy in Type 2 Diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney International, 63, 225-232.
https://doi.org/10.1046/j.1523-1755.2003.00712.x
[12] De Boer, I.H., Afkarian, M., Rue, T.C., et al. (2014) Renal Outcomes in Patients with Type 1 Diabetes and Macroalbuminuria. Journal of the American Society of Nephrology, 25, 2342-2350.
https://doi.org/10.1681/ASN.2013091004
[13] Yu, M.K., Lyles, C.R., Bent-Shaw, L.A., et al. (2012) Risk Factor, Age and Sex Differences in Chronic Kidney Disease Prevalence in a Diabetic Cohort: The Pathways Study. American Journal of Nephrology, 36, 245-251.
https://doi.org/10.1159/000342210
[14] Valdivielso, J.M., Jacobs-Cacha, C. and Soler, M.J. (2019) Sex Hormones and Their Influence on Chronic Kidney Disease. Current Opinion in Nephrology and Hypertension, 28, 1-9.
https://doi.org/10.1097/MNH.0000000000000463
[15] Giandalia, A., Giuffrida, A.E., Gembillo, G., et al. (2021) Gender Differences in Diabetic Kidney Disease: Focus on Hormonal, Genetic and Clinical Factors. International Journal of Molecular Sciences, 22, Article No. 5808.
https://doi.org/10.3390/ijms22115808
[16] Inada, A., Inada, O., Fujii, N.L., et al. (2016) Adjusting the 17β-Estradiol-to-Androgen Ratio Ameliorates Diabetic Nephropathy. Journal of the American Society of Nephrology, 27, 3035-3050.
https://doi.org/10.1681/ASN.2015070741
[17] Ibrahim, M.M. (2010) Subcutaneous and Visceral Adipose Tissue: Structural and Functional Differences. Obesity Reviews, 11, 11-18.
https://doi.org/10.1111/j.1467-789X.2009.00623.x
[18] 华艳龙, 张林. 内脏脂肪面积在糖尿病肾病危险因素筛查中的应用价值[J]. 中国基层医药, 2020, 27(5): 605-607.
[19] Khanam, P.A., Hoque, S., Begum, T., et al. (2017) Microvascular Complications and Their Associated Risk Factors in Type 2 Diabetes Mellitus. Diabetes Diabetes & Met-abolic Syndrome, 11, S577-S581.
https://doi.org/10.1016/j.dsx.2017.04.007
[20] Wang, Y., Zhao, L., Zhang, J., et al. (2019) Implications of a Family History of Diabetes and Rapid EGFR Decline in Patients with Type 2 Diabetes and Biopsy-Proven Diabetic Kidney Dis-ease. Frontiers in Endocrinology, 10, Article No. 855.
https://doi.org/10.3389/fendo.2019.00855
[21] Wang, Y., Zhang, J., Zhao, Y., et al. (2018) COL4A3 Gene Variants and Diabetic Kidney Disease in Mody. Clinical Journal of the American Society of Nephrology, 13, 1162-1171.
https://doi.org/10.2215/CJN.09100817
[22] Doke, T., Huang, S., Qiu, C., et al. (2021) Transcriptome-Wide Association Analysis Identifies DACH1 as a Kidney Disease Risk Gene That Contributes to Fibrosis. Journal of Clinical Investigation, 131, e141801.
https://doi.org/10.1172/JCI141801
[23] Zhang, L., He, S., Guo, S., et al. (2014) Down-Regulation of Mir-34a Al-leviates Mesangial Proliferation in Vitro and Glomerular Hypertrophy in Early Diabetic Nephropathy Mice by Targeting Gas1. Journal of Diabetes and Its Complications, 28, 259-264.
https://doi.org/10.1016/j.jdiacomp.2014.01.002
[24] 梁田田, 王惠珍, 柒春芳, 等. 糖尿病和糖尿病肾病小鼠肾组织中长链非编码RNA的差异表达[J]. 中华肾脏病杂志, 2019, 35(2): 127-135.
[25] Tommerdahl, K.L., Shapiro, A.L.B., Nehus, E.J., et al. (2022) Early Microvascular Complications in Type 1 and Type 2 Diabetes: Recent Developments and Updates. Pediatric Nephrology, 37, 79-93.
https://doi.org/10.1007/s00467-021-05050-7
[26] Deng, L., Aibibula, W., Talat, Z., et al. (2021) The Association between Glycaemic Control during Hospitalization and Risk of Adverse Events: A Retrospective Cohort Study. Endo-crinology, Diabetes & Metabolism, 4, e00268.
https://doi.org/10.1002/edm2.268
[27] Stratton, I.M., Cull, C.A., Adler, A.I., et al. (2006) Additive Effects of Gly-caemia and Blood Pressure Exposure on Risk of Complications in Type 2 Diabetes: A Prospective Observational Study (UKPDS 75). Diabetologia, 49, 1761-1769.
https://doi.org/10.1007/s00125-006-0297-1
[28] Fullerton, B., Jeitler, K., Seitz, M., et al. (2014) Intensive Glucose Control versus Conventional Glucose Control for Type 1 Diabetes Mellitus. Cochrane Database of Systematic Reviews, No. 2, Article No: CD009122.
https://doi.org/10.1002/14651858.CD009122.pub2
[29] Shurraw, S., Hemmelgarn, B., Lin, M., et al. (2011) As-sociation between Glycemic Control and Adverse Outcomes in People with Diabetes Mellitus and Chronic Kidney Dis-ease: A Population-Based Cohort Study. Archives of Internal Medicine, 171, 1920-1927.
https://doi.org/10.1001/archinternmed.2011.537
[30] Patel, D.M., Bose, M. and Cooper, M.E. (2020) Glucose and Blood Pressure-Dependent Pathways—The Progression of Diabetic Kidney Disease. International Journal of Molecular Sciences, 21, 2218.
https://doi.org/10.3390/ijms21062218
[31] 陈雪, 周倩倩, 徐慧君, 等. 不同血压变量及其变异性对2型糖尿病肾病的影响[J]. 中华内分泌代谢杂志, 2021, 37(7): 624-630.
[32] Beddhu, S., Greene, T., Boucher, R., et al. (2018) Intensive Systolic Blood Pressure Control and Incident Chronic Kidney Disease in People with and without Diabetes Mellitus: Secondary Analyses of Two Randomised Controlled Trials. The Lancet Diabetes & En-docrinology, 6, 555-563.
https://doi.org/10.1016/S2213-8587(18)30099-8
[33] De Cosmo, S., Viazzi, F., Piscitelli, P., et al. (2016) Blood Pressure Status and the Incidence of Diabetic Kidney Disease in Patients with Hypertension and Type 2 Diabetes. Journal of Hypertension, 34, 2090-2098.
https://doi.org/10.1097/HJH.0000000000001045
[34] Xu, J., Xue, Y., Chen, Q., et al. (2022) Identifying Distinct Risk Thresholds of Glycated Hemoglobin and Systolic Blood Pressure for Rapid Albuminuria Progression in Type 2 Diabetes from Nhanes (1999-2018). Frontiers in Medicine, 9, Article ID: 928825.
https://doi.org/10.3389/fmed.2022.928825
[35] Russo, G., Piscitelli, P., Giandalia, A., et al. (2020) Atherogenic Dyslipidemia and Diabetic Nephropathy. Journal of Nephrology, 33, 1001-1008.
https://doi.org/10.1007/s40620-020-00739-8
[36] Roumeliotis, S., Georgianos, P.I., Roumeliotis, A., et al. (2021) Oxidized Ldl Modifies the Association between Proteinuria and Deterioration of Kidney Function in Proteinuric Diabetic Kidney Disease. Life, 11, Article No. 504.
https://doi.org/10.3390/life11060504
[37] Lu, C.F., Liu, W.S., Chen, Z.H., et al. (2022) Comparisons of the Rela-tionships between Multiple Lipid Indices and Diabetic Kidney Disease in Patients with Type 2 Diabetes: A Cross-Sectional Study. Frontiers in Endocrinology, 13, Article ID: 888599.
https://doi.org/10.3389/fendo.2022.888599
[38] Lee, T.S., Lu, T.M., Chen, C.H., et al. (2021) Hyperuricemia In-duces Endothelial Dysfunction and Accelerates Atherosclerosis by Disturbing the Asymmetric Dimethylarg-inine/Dimethylarginine Dimethylaminotransferase 2 Pathway. Redox Biology, 46, Article ID: 102108.
https://doi.org/10.1016/j.redox.2021.102108
[39] Bartakova, V., Kuricova, K., Pacal, L., et al. (2016) Hyperurice-mia Contributes to the Faster Progression of Diabetic Kidney Disease in Type 2 Diabetes Mellitus. Journal of Diabetes and Its Complications, 30, 1300-1307.
https://doi.org/10.1016/j.jdiacomp.2016.06.002
[40] Lai, Y.J., Chen, Y.Y., Ku, P.W., et al. (2021) Association between Uric Acid Level and Incidence of Albuminuria in Patients with Type 2 Diabetes Mellitus: A 4.5-Year Cohort Study. Medicine, 100, e27496.
https://doi.org/10.1097/MD.0000000000027496
[41] Bjornstad, P., Laffel, L., Lynch, J., et al. (2019) Elevated Serum Uric Acid Is Associated with Greater Risk for Hypertension and Diabetic Kidney Diseases in Obese Adolescents with Type 2 Diabetes: An Observational Analysis from the Treatment Options for Type 2 Diabetes in Adolescents and Youth (Today) Study. Diabetes Care, 42, 1120-1128.
https://doi.org/10.2337/dc18-2147
[42] Hayashino, Y., Okamura, S., Tsujii, S., et al. (2016) Association of Serum Uric Acid Levels with the Risk of Development Or Progression of Albuminuria among Japanese Patients with Type 2 Diabetes: A Prospective Cohort Study [Diabetes Distress and Care Registry At Tenri (Ddcrt 10)]. Acta Diabetologica, 53, 599-607.
https://doi.org/10.1007/s00592-015-0825-x
[43] The GBD 2015 Obesity Collaborators (2017) Health Effects of Overweight and Obesity in 195 Countries Over 25 Years. New England Journal of Medicine, 377, 13-27.
https://doi.org/10.1056/NEJMoa1614362
[44] 龙洁儿, 刘振杰, 丁美祝, 等. 肥胖与糖尿病肾病相关性研究的Meta分析[J]. 中国中西医结合肾病杂志, 2021, 22(1): 29-33.
[45] Wang, Y., Chen, F., Wang, J., et al. (2019) The Relationship between Increased Ratio of Visceral-to-Subcutaneous Fat Area and Renal Outcome in Chinese Adults with Type 2 Diabetes and Diabetic Kidney Disease. Canadian Journal of Diabetes, 43, 415-420.
https://doi.org/10.1016/j.jcjd.2018.08.199
[46] Yang, J.J., Yu, D., Wen, W., et al. (2019) Tobacco Smoking and Mortality in Asia: A Pooled Meta-Analysis. JAMA Network Open, 2, e191474.
https://doi.org/10.1001/jamanetworkopen.2019.1474
[47] Jiang, S., Quan, D.V., Sung, J.H., et al. (2019) Cigarette Smoke Inhalation Aggravates Diabetic Kidney Injury in Rats. Toxicology Research, 8, 964-971.
https://doi.org/10.1039/c9tx00201d
[48] Obert, D.M., Hua, P., Pilkerton, M.E., et al. (2011) Environmental To-bacco Smoke Furthers Progression of Diabetic Nephropathy. The American Journal of the Medical Sciences, 341, 126-130.
https://doi.org/10.1097/MAJ.0b013e3181f6e3bf
[49] Feodoroff, M., Harjutsalo, V., Forsblom, C., et al. (2015) Smoking and Progression of Diabetic Nephropathy in Patients with Type 1 Diabetes. Acta Diabetologica, 53, 525-533.
https://doi.org/10.1007/s00592-015-0822-0
[50] Öberg, M., Jaakkola, M.S., Woodward, A., et al. (2011) World-wide Burden of Disease from Exposure to Second-Hand Smoke: A Retrospective Analysis of Data from 192 Countries. The Lancet, 377, 139-146.
https://doi.org/10.1016/S0140-6736(10)61388-8
[51] Jhee, J.H., Joo, Y.S., Kee, Y.K., et al. (2019) Secondhand Smoke and CKD. Clinical Journal of the American Society of Nephrology, 14, 515-522.
https://doi.org/10.2215/CJN.09540818
[52] Braffett, B.H., Rice, M.M., Young, H.A., et al. (2019) Mediation of the Association of Smoking and Microvascular Complications by Glycemic Control in Type 1 Diabetes. PLOS ONE, 14, e0210367.
https://doi.org/10.1371/journal.pone.0210367
[53] Ito, K., Yokota, S., Watanabe, M., et al. (2021) Anemia in Dia-betic Patients Reflects Severe Tubulointerstitial Injury and Aids in Clinically Predicting a Diagnosis of Diabetic Nephrop-athy. Internal Medicine, 60, 1349-1357.
https://doi.org/10.2169/internalmedicine.5455-20
[54] Fujita, Y., Doi, Y., Hamano, T., et al. (2019) Low Erythro-poietin Levels Predict Faster Renal Function Decline in Diabetic Patients with Anemia: A Prospective Cohort Study. Sci-entific Reports, 9, Article No. 14871.
https://doi.org/10.1038/s41598-019-51207-8
[55] Eren, Z., Gunal, M.Y., Ari, E., et al. (2016) Pleiotropic and Renoprotective Effects of Erythropoietin Beta on Experimental Diabetic Nephropathy Model. Nephron, 132, 292-300.
https://doi.org/10.1159/000444649
[56] 王晓红, 左淑丽. 血清25羟基维生素D水平与糖尿病微血管病变的关系及临床意义[J]. 中国综合临床, 2020, 36(6): 496-500.
[57] Wang, Y., Yang, S., Zhou, Q., et al. (2019) Effects of Vitamin D Supplementation on Renal Function, Inflammation and Glycemic Control in Patients with Diabetic Nephropa-thy: A Systematic Review and Meta-Analysis. Kidney and Blood Pressure Research, 44, 72-87.
https://doi.org/10.1159/000498838