甲状腺激素与肾脏功能关系的研究进展
Research Progress on the Relationship between Thyroid Hormone and Renal Function
DOI: 10.12677/ACM.2022.12101330, PDF, HTML, XML, 下载: 220  浏览: 472  国家自然科学基金支持
作者: 刘正鑫:大理大学第一附属医院,云南 大理;李利华*:大理大学第一附属医院老年病科,云南 大理
关键词: 甲状腺激素甲状腺功能亢进症甲状腺功能减退症肾脏功能慢性肾脏病Thyroid Hormone Hyperthyroidism Hypothyroidism Renal Function Chronic Kidney Disease
摘要: 甲状腺激素是促进机体正常生长、发育必不可少的激素。肾脏不仅参与甲状腺激素的代谢与清除,还是甲状腺激素作用的重要靶器官。甲状腺激素通过影响肾脏生长发育、血流动力学、肾小球滤过率以及水、电解质代谢平衡等影响肾脏功能。肾脏疾病也可引起甲状腺功能异常。明确甲状腺激素与肾脏功能之间的关系对肾脏疾病和甲状腺疾病的诊治具有重要临床意义。
Abstract: Thyroid hormone is essential for normal growth and development of the body. The kidney is not only involved in the metabolism and clearance of thyroid hormone but is also an important target organ for the action of thyroid hormone. Thyroid hormones affect renal function by affecting renal growth and development, hemodynamics, glomerular filtration rate, and the balance of water and electrolyte metabolism. Kidney disease can also cause thyroid dysfunction. Clarifying the relation-ship between thyroid hormone and renal function has important clinical significance for the diag-nosis and treatment of renal disease.
文章引用:刘正鑫, 李利华. 甲状腺激素与肾脏功能关系的研究进展[J]. 临床医学进展, 2022, 12(10): 9194-9199. https://doi.org/10.12677/ACM.2022.12101330

1. 引言

甲状腺激素(Thyroid hormone, TH)对机体大部分组织的生长、发育和代谢都起着重要调节作用。肾脏不仅参与TH的代谢与清除,还是TH作用的重要靶器官。TH通过直接或间接作用影响肾脏生长发育、血流动力学、肾小球滤过率(Glomerular filtration rate, GFR)以及水、电解质代谢平衡。甲状腺疾病及其带来的TH分泌异常可以使肾脏发生多种病理生理改变,从而出现蛋白尿、肾功能不全等。肾脏疾病也可通过多种机制引起甲状腺功能异常。深入了解TH与肾脏功能之间的关系对肾脏疾病和甲状腺疾病的诊治有重要临床意义。本文旨在对TH与肾脏功能关系的研究进展进行综述。

2. TH对肾脏功能的影响

2.1. TH对肾脏生长发育的影响

TH在肾脏生长发育中起重要作用。TH可影响蛋白质合成和细胞生长。研究发现,患先天性甲状腺功能减退症(Hypothyroidism,简称甲减)的儿童肾脏重量较正常儿童低,肾脏和泌尿道异常(如肾缺如、异位肾、肾盂积水等)的患病率较高 [1]。动物实验研究发现,在患有甲减的新生大鼠中,肾脏的重量和体积以及肾小球体积减小,肾小管的直径变小,长度缩短;在TH水平高的动物中,肾脏占体重及占躯体体积的百分比均增加 [2],但这些改变的机制尚不完全清楚。Kobori等人发现氯沙坦可缓解TH过高引起的肾脏肥大,并提出这可能是由于TH增强了肾素mRNA的表达,激活了肾素–血管紧张素系统,使具有细胞增殖作用的血管紧张素II水平增加,从而导致肾脏肥大 [3]。然而,严重甲状腺功能亢进症(Hyperthyroidism,简称甲亢)时,基础代谢率增加,可导致蛋白质降解及肾脏萎缩 [4]。

2.2. TH对肾脏血流动力学及GFR的影响

甲减时,心肌细胞收缩力下降,心输出量减少,肾血流量减少;血管内皮舒张因子合成减少,导致动脉僵硬,全身血管阻力增加;对β-肾上腺素受体敏感性降低,肾素表达和释放减少,导致肾素–血管紧张素–醛固酮系统(Renin-angiotensin-aldosterone system, RAAS)系统活性下降;肾小球结构发生改变,如肾小球基膜增厚或系膜基质增宽,使肾血流量进一步减少,以上机制协同导致GFR降低,血清肌酐升高 [5]。相反,甲亢时,TH通过正性变时、变力作用,增加心率及心输出量;一氧化氮合成酶(Nitric oxide synthase, NOS)活性增加,一氧化氮合成增多,外周血管阻力降低,肾脏血管舒张 [6];β-肾上腺素受体的密度和活性增加 [7];三碘甲状腺原氨酸(Triiodothyronine, T3)增加肾素基因表达;此外,TH可增加血浆肾素、血管紧张素II及血管紧张素转化酶水平,肝脏合成血管紧张素原增加,血管紧张素II受体密度增加,这些均可导致RAAS系统活性增强 [8],从而导致肾小球入球小动脉舒张,出球小动脉收缩,肾小球内压增高;以上机制均导致肾血流量增加,GFR增加。GFR的增加和高代谢导致的整体肌肉质量降低使血清肌酐水平下降。

2.3. TH对肾脏水、电解质代谢的影响

TH主要通过影响尿液浓缩和稀释、肾小球滤过及肾小管重吸收来调节肾脏水、电解质代谢平衡。在患有甲减的大鼠中,钠–钾–腺嘌呤核苷三磷酸(Na+-K+-ATP)酶、钠/质子交换蛋白3和钠–氢(Na+-H+)交换体的活性降低,近端小管钠离子重吸收减少,尿液中钠和碳酸氢盐丢失 [9];Na+-K+-2Cl协同转运蛋白减少、水通道蛋白下调,肾髓质集合管被动转运水的渗透驱动力减弱 [10],以上机制均可导致尿液浓缩能力下降。此外,非渗透性抗利尿激素(Antidiuretic hormone, ADH)分泌增加,水重吸收增加;水通道蛋白2蛋白表达增加;肾小管远端液体输送减少,均可导致患甲减的大鼠在水负荷时尿液稀释能力受损 [11]。甲减时,肾小球毛细血管对蛋白质的通透性增加,从而导致蛋白尿 [12]。相反,甲亢时Na+-K+-ATP酶和Na+-H+交换体的活性增加,近端小管钠离子重吸收增多。甲亢时的高滤过也可能导致24小时尿蛋白增多。此外,甲亢时肾小管因超滤、肥大和增生等也可能引起肾小管损伤 [12]。

3. 甲状腺功能障碍与慢性肾脏病

慢性肾脏病(Chronic kidney disease, CKD)是各种原因引起的肾脏结构和功能障碍的疾病,可发展为慢性肾衰竭,引起水、电解质代谢及酸碱平衡紊乱(如代谢性酸中毒、钠水潴留、高钾血症等)和全身各系统症状(如心力衰竭、高血压、肾性贫血等),最终可能需要进行肾脏替代治疗(如血液透析或腹膜透析)或肾脏移植,其管理和治疗依然是临床医生的一个巨大挑战。随着人口老龄化,CKD的患病率也逐渐增加,已经成为一个常见且重要的公共卫生问题。CKD的病因在我国以原发性肾脏疾病、糖尿病肾病及高血压肾病多见,但对于这些疾病的干预并不能完全延缓肾脏功能进一步下降 [13] [14]。最近很多研究发现,CKD患者的甲状腺功能异常高发,且其患病率随着肾脏功能不全严重程度的增加而逐渐升高。德国慢性肾脏病研究发现,甲状腺功能轻到中度异常的CKD患者发生肾脏不良事件和全因死亡率的风险增加 [15]。而大多数甲状腺功能异常的肾脏表现在治疗后是可逆的。

3.1. 甲减与CKD

很多研究发现,在甲状腺功能障碍中,甲减,尤其是亚临床甲减是CKD患者中最常见的甲状腺疾病,其患病率随着GFR的下降而增加 [16] [17]。越来越多的证据表明,甲减是肾脏疾病患者发生CKD、CKD进展、心血管并发症和更高死亡率的危险因素 [18]。Ellervik C等的研究发现,甲减、促甲状腺激素(Thyroid stimulating hormone, TSH)和甲状腺过氧化物酶抗体(Thyroid peroxidase antibody, TPOAb)增加与GFR降低和CKD风险增加相关 [19]。还有研究发现,GFR与CKD中的甲减风险之间存在负相关关系 [20]。但是,也有研究认为,虽然甲减及亚临床甲减的GFR低于甲状腺功能正常者,但是甲状腺功能低下和CKD的患病率都随着年龄的增长而增加,在随访之后发现,甲状腺功能低下与肾脏功能恶化之间并无因果关系 [13] [21]。

3.2. 甲亢与CKD

虽然大部分研究认为与CKD相关性最强的是甲减,但是也有一些研究有不同的结论,认为与CKD相关的是甲亢。一项基于人群的研究发现,虽然在横断面上,较高的TSH水平与较低的GFR相关,但是在随访后发现,与肾功能下降、CKD风险增加相关的是甲亢而不是甲减 [22]。也有研究发现,甲亢与CKD可能并无直接关系,但是甲亢可以加速CKD的进展,并且可能掩盖了轻度肾功能损害 [23]。

4. 正常范围内TH水平对肾脏功能的影响

TH过高或过低都可使肾脏功能受到损害,但也有一些研究发现,即使在正常参考范围内,TH水平的变化也可影响肾脏功能,这可能与TH敏感性及外周活性降低有关 [24]。在一项中国的横断面研究中发现,TSH与GFR呈负相关,认为TSH可作为中国血糖及甲状腺功能正常的中年人群患CKD的独立危险因素 [25]。还有研究发现,在参考范围内,较高水平的TSH与GFR下降和CKD患病率增加相关 [26] [27] [28]。一项针对中国成年人的回顾性研究中认为,游离三碘甲状腺原氨酸(Free triiodothyronine, FT3)可作为CKD的早期生物标志物,游离甲状腺素(Free thyroxine, FT4)和TSH可作为CKD的晚期生物标志物 [29]。在一项针对2型糖尿病患者的研究中发现,较高的TSH和FT4、较低的FT3、甲状腺球蛋白抗体(Thyroglobulin antibody, TGAb)阳性与较高的尿白蛋白/肌酐比值(Albumin to creatinine ratio, ACR)、较低的GFR水平相关,较高的TSH和FT4、较低的FT3水平与肾脏疾病的患病率相关,其中,即使在正常参考范围内,较低的FT3也是与GFR降低最相关的因素 [30],并且有研究发现,FT3与GFR的相关关系与应用的GFR方程无关 [31]。Das G等的研究认为,即使在甲状腺功能正常范围内,血清TSH也与糖尿病患者的微量白蛋白尿呈正相关 [32]。但是,在一项前瞻性研究中认为,较高水平的FT4,而不是TSH或FT3,与CKD发生风险增加、GFR快速下降、并发症风险增加相关 [33]。我国的一项研究也认为与CKD患病风险增加相关的是较高的FT4,而不是FT3或TSH [34]。

5. 肾脏疾病对甲状腺功能的影响

甲状腺功能障碍可以引起肾脏功能损害,肾脏疾病也可引起甲状腺功能异常。如CKD患者最早和最常见的甲状腺功能异常是低T3 (尤其是总T3),这可能是由于CKD时的慢性代谢性酸中毒和慢性蛋白质营养不良等影响碘甲状腺原氨酸脱碘及T3与蛋白质结合 [35],或是由于炎症细胞因子如肿瘤坏死因子(Tumor necrosis factor alpha, TNF-α)和白细胞介素(Interleukin-1, IL-6)抑制5'-脱碘酶的表达 [36],导致外周组织T4向T3转化减少;还可能是由于T4内环脱碘酶激活导致T4转化为反三碘甲状腺原氨酸(reverse triiodothyronine, rT3)增加、下丘脑–垂体–甲状腺轴功能紊乱、肾脏对碘的清除受损导致碘在体内蓄积而引起碘阻滞效应(Wolf-Chaikof效应) [37] 等,最终导致低T3综合征。也有研究发现,未透析的CKD患者游离甲状腺激素(FT3, FT4)水平均明显降低,并且其降低与肾脏疾病的严重程度相关,并提出这种游离TH的降低可能是为了减少蛋白质损失和平衡能量稳态 [38]。

总之,TH既可以直接影响肾脏功能,也可以通过影响肾脏生长发育、血流动力学、肾小球滤过率以及水、电解质代谢平衡等间接影响肾脏功能。肾脏疾病也可引起甲状腺功能异常。虽然研究结果并不完全一致,但是我们可以大致确定TH和肾脏功能之间具有相关关系。在临床工作中,甲状腺功能的检测已经比较普遍,TH水平可能有助于预测CKD的发生和进展,甲状腺功能检测在CKD诊治过程中的作用应该被重视。解释TH和肾脏功能之间的关系仍然是临床医生的一个重要挑战,我们需要进行更多的研究,特别是更多的前瞻性研究,从而进一步明确TH水平和肾脏功能之间的因果关系,这对于指导临床诊治具有重要意义。此外,关于生理范围内不同TH水平与肾脏功能之间关系的研究在国内外都还较少,可以进一步研究和探讨生理范围内不同TH水平与肾脏功能之间的关系,这有利于我们发现导致肾脏功能下降的早期危险因素,以便及早进行干预,从而延缓肾脏功能的恶化及心血管并发症的发生。此外,CKD患者中甲状腺功能障碍是否均需要积极干预也还需要进一步的研究和探讨,从而为甲状腺疾病及肾脏疾病的诊治提供重要科学依据。

基金项目

感谢国家自然科学基金(81860084)对该项目的支持。

NOTES

*通讯作者。

参考文献

[1] Kumar, J., Gordillo, R., Kaskel, F.J., et al. (2009) Increased Prevalence of Renal and Urinary Tract Anomalies in Chil-dren with Congenital Hypothyroidism. The Journal of Pediatrics, 154, 263-266.
https://doi.org/10.1016/j.jpeds.2008.08.023
[2] Vargas, F., Moreno, J.M., Rodríguez-Gómez, I., et al. (2006) Vascular and Renal Function in Experimental Thyroid Disorders. European Journal of Endocrinology, 154, 197-212.
https://doi.org/10.1530/eje.1.02093
[3] Kobori, H., Ichihara, A., Miyashita, Y., et al. (1998) Mechanism of Hy-perthyroidism-Induced Renal Hypertrophy in Rats. Journal of Endocrinology, 159, 9-14.
https://doi.org/10.1677/joe.0.1590009
[4] Canavan, J.P., Holt, J., Easton, J., et al. (1994) Thyroid-Induced Changes in the Growth of the Liver, Kidney, and Diaphragm of Neonatal Rats. Journal of Cellular Physiology, 161, 49-54.
https://doi.org/10.1002/jcp.1041610107
[5] Iglesias, P., Bajo, M.A., Selgas, R., et al. (2017) Thyroid Dysfunction and Kidney Disease: An Update. Reviews in Endocrine and Metabolic Disorders, 18, 131-144.
https://doi.org/10.1007/s11154-016-9395-7
[6] Quesada, A., Sainz, J., Wangensteen, R., et al. (2002) Nitric Ox-ide Synthase Activity in Hyperthyroid and Hypothyroid Rats. European Journal of Endocrinology, 147, 117-122.
https://doi.org/10.1530/eje.0.1470117
[7] Haro, J.M., Sabio, J.M. and Vargas, F. (1992) Renal be-ta-Adrenoceptors in Thyroxine-Treated Rats. Journal of Endocrinological Investigation, 15, 605-608.
https://doi.org/10.1007/BF03344933
[8] Asmah, B.J., Wan Nazaimoon, W.M., Norazmi, K., et al. (1997) Plasma Renin and Aldosterone in Thyroid Diseases. Hormone and Metabolic Research, 29, 580-583.
https://doi.org/10.1055/s-2007-979105
[9] 黄钰. 甲状腺激素与肾脏病理生理在肾脏疾病中的作用[J]. 临床内科杂志, 2021, 38(2): 139-141.
[10] Cadnapaphornchai, M.A., Kim, Y.W., Gurevich, A.K., et al. (2003) Urinary Concentrating Defect in Hypothyroid Rats: Role of Sodium, Potassium, 2-Chloride Co-Transporter, and Aquaporins. Journal of the American Society of Nephrology, 14, 566-574.
https://doi.org/10.1097/01.ASN.0000053417.33945.63
[11] Chen, Y.C., Cadnapaphornchai, M.A., Yang, J., et al. (2005) Nonosmotic Release of Vasopressin and Renal Aquaporins in Impaired Urinary Dilution in Hypothyroidism. The American Journal of Physiology—Renal Physiology, 289, F672-F678.
https://doi.org/10.1152/ajprenal.00384.2004
[12] Basu, G. and Mohapatra, A. (2012) Interactions between Thyroid Disorders and Kidney Disease. Indian Journal of Endocrinology and Metabolism, 16, 204-213.
https://doi.org/10.4103/2230-8210.93737
[13] Meuwese, C.L., Van Diepen, M., Cappola, A.R., et al. (2019) Low Thyroid Function Is Not Associated with an Accelerated Deterioration in Renal Function. Nephrology Dialysis Trans-plantation, 34, 650-659.
https://doi.org/10.1093/ndt/gfy071
[14] 吴宇, 周晶晶, 姜世敏, 等. 慢性肾脏病病因构成及变化趋势分析[J]. 中华健康管理学杂志, 2021, 15(5): 442-445.
[15] Schultheiss, U.T., Steinbrenner, I., Nauck, M., et al. (2021) Thyroid Function, Renal Events and Mortality in Chronic Kidney Disease Patients: The German Chronic Kidney Disease Study. Clinical Kidney Journal, 14, 959-968.
https://doi.org/10.1093/ckj/sfaa052
[16] Lo, J.C., Chertow, G.M., Go, A.S., et al. (2005) Increased Prevalence of Subclinical and Clinical Hypothyroidism in Persons with Chronic Kidney Disease. Kidney International, 67, 1047-1052.
https://doi.org/10.1111/j.1523-1755.2005.00169.x
[17] Yuasa, R., Ohashi, Y., Saito, A., et al. (2020) Prevalence of Hypothyroidism in Japanese Chronic Kidney Disease Patients. Renal Failure, 42, 572-579.
https://doi.org/10.1080/0886022X.2020.1777162
[18] Rhee, C.M. (2016) The Interaction between Thyroid and Kidney Disease: An Overview of the Evidence. Current Opinion in Endocrinology, Diabetes and Obesity, 23, 407-415.
https://doi.org/10.1097/MED.0000000000000275
[19] Ellervik, C., Mora, S., Ridker, P.M., et al. (2020) Hypo-thyroidism and Kidney Function: A Mendelian Randomization Study. Thyroid, 30, 365-379.
https://doi.org/10.1089/thy.2019.0167
[20] Rhee, C.M., Kalantar-Zadeh, K., Streja, E., et al. (2015) The Relation-ship between Thyroid Function and Estimated Glomerular Filtration Rate in Patients with Chronic Kidney Disease. Nephrology Dialysis Transplantation, 30, 282-287.
https://doi.org/10.1093/ndt/gfu303
[21] Meuwese, C.L., Gussekloo, J., De Craen, A.J., et al. (2014) Thyroid Status and Renal Function in Older Persons in the General Population. The Journal of Clinical Endocrinology & Metabolism, 99, 2689-2696.
https://doi.org/10.1210/jc.2013-3778
[22] Chaker, L., Sedaghat, S., Hoorn, E.J., et al. (2016) The Association of Thyroid Function and the Risk of Kidney Function Decline: A Population-Based Cohort Study. European Journal of Endocrinology, 175, 653-660.
https://doi.org/10.1530/EJE-16-0537
[23] Sönmez, E., Bulur, O., Ertugrul, D.T., et al. (2019) Hyperthyroidism In-fluences Renal Function. Endocrine, 65, 144-148.
https://doi.org/10.1007/s12020-019-01903-2
[24] Yang, S., Lai, S., Wang, Z., et al. (2021) Thyroid Feedback Quantile-Based Index Correlates Strongly to Renal Function in Euthyroid Individuals. Annals of Medicine, 53, 1945-1955.
https://doi.org/10.1080/07853890.2021.1993324
[25] Sun, M.T., Hsiao, F.C., Su, S.C., et al. (2012) Thyrotropin as an Independent Factor of Renal Function and Chronic Kidney Disease in Normoglycemic Euthyroid Adults. Endocrine Research, 37, 110-116.
https://doi.org/10.3109/07435800.2011.640374
[26] Asvold, B.O., Bjøro, T. and Vatten, L.J. (2011) Association of Thyroid Function with Estimated Glomerular Filtration Rate in a Population-Based Study: The HUNT Study. Euro-pean Journal of Endocrinology, 164, 101-105.
https://doi.org/10.1530/EJE-10-0705
[27] Castro, I., Quisenberry, L., Calvo, R.M., et al. (2013) Septic Shock Non-Thyroidal Illness Syndrome Causes Hypothyroidism and Conditions for Reduced Sensitivity to Thyroid Hormone. Journal of Molecular Endocrinology, 50, 255-266.
https://doi.org/10.1530/JME-12-0188
[28] Tanaka, Y., Furusyo, N., Kato, Y., et al. (2018) Correlation between Thyroid Stimulating Hormone and Renal Function in Euthyroid Residents of Japan: Results from the Kyushu and Oki-nawa Population Study (KOPS). Journal of Atherosclerosis and Thrombosis, 25, 335-343.
https://doi.org/10.5551/jat.41251
[29] Li, J., Wu, X., Luo, M., et al. (2020) Association of Serum Thyroid Hor-mones with the Risk and Severity of Chronic Kidney Disease among 3563 Chinese Adults. Medical Science Monitor, 26, e922910.
https://doi.org/10.12659/MSM.922910
[30] Chen, Y., Zhang, W., Wang, N., et al. (2020) Thyroid Parameters and Kidney Disorder in Type 2 Diabetes: Results from the METAL Study. Journal of Diabetes Research, 2020, Article ID: 4798947.
https://doi.org/10.1155/2020/4798947
[31] Anderson, J.L.C., Gruppen, E.G., Van Tienhoven-Wind, L., et al. (2018) Glomerular Filtration Rate Is Associated with Free Triiodothyronine in Euthyroid Subjects: Comparison between Various Equations to Estimate Renal Function and Creatinine Clearance. European Journal of Internal Medicine, 48, 94-99.
https://doi.org/10.1016/j.ejim.2017.10.009
[32] Das, G., Taylor, P.N., Abusahmin, H., et al. (2019) Rela-tionship between Serum Thyrotropin and Urine Albumin Excretion in Euthyroid Subjects with Diabetes. Annals of Clin-ical Biochemistry, 56, 155-162.
https://doi.org/10.1177/0004563218797979
[33] Huang, X., Ding, L., Peng, K., et al. (2016) Thyroid Hormones Associate with Risk of Incident Chronic Kidney Disease and Rapid Decline in Renal Function: A Prospective Investiga-tion. Journal of Translational Medicine, 14, 336.
https://doi.org/10.1186/s12967-016-1081-8
[34] Wang, K., Xie, K., Gu, L., et al. (2018) Association of Thyroid Function with the Estimated Glomerular Filtration Rate in a Large Chinese Euthyroid Population. Kidney and Blood Pressure Research, 43, 1075-1083.
https://doi.org/10.1159/000491069
[35] Wiederkehr, M.R., Kalogiros, J. and Krapf, R. (2004) Correction of Meta-bolic Acidosis Improves Thyroid and Growth Hormone Axes in Haemodialysis Patients. Nephrology Dialysis Trans-plantation, 19, 1190-1197.
https://doi.org/10.1093/ndt/gfh096
[36] Zoccali, C., Tripepi, G., Cutrupi, S., et al. (2005) Low Triiodothyronine: A New Facet of Inflammation in End-Stage Renal Disease. Journal of the American Society of Nephrology, 16, 2789-2795.
https://doi.org/10.1681/ASN.2005040356
[37] Bando, Y., Ushiogi, Y., Okafuji, K., et al. (2002) Non-Autoimmune Primary Hypothyroidism in Diabetic and Non- Diabetic Chronic Renal Dysfunction. Experimental and Clinical Endocrinology & Diabetes, 110, 408-415.
https://doi.org/10.1055/s-2002-36427
[38] Srivastava, S., Rajput, J., Shrivastava, M., et al. (2018) Correlation of Thyroid Hormone Profile with Biochemical Markers of Renal Function in Patients with Undialyzed Chronic Kidney Disease. Indian Journal of Endocrinology and Metabolism, 22, 316-320.
https://doi.org/10.4103/ijem.IJEM_475_17