天然禾草中三种内生真菌对非生物胁迫耐性的比较研究
Responses of Three Endophyte Fungi Species Isolated from Natural Grass to Abiotic Stresses
DOI: 10.12677/br.2012.11001, PDF, HTML, XML,  被引量 下载: 3,627  浏览: 14,329  国家自然科学基金支持
作者: 魏茂英*, 尹立佳, 贾彤, 朱敏杰*, 高玉葆:南开大学生命科学学院
关键词: Neotyphodium内生真菌生理天然禾草抗逆性
Neotyphodium; Endophyte; Physiology; Natural Grass; Resistance
摘要: 从天然禾草羽茅和羊草中分离获得3种不同的内生真菌,即Neotyphodium gansuense、 Neotyphodium sibiricum和Neotyphodium sp.。在不同的温度、盐分和渗透胁迫条件下比较3种内生真菌的生长状况,并以分离自高羊茅中的模式菌株Neotyphodium coenophialum为对照。结果表明,3种内生真菌与模式菌株的最适生长温度均为25℃,但模式菌株N. coenophialum在32℃时没有生长,而从天然禾草中分离获得的内生真菌在10℃-32℃温度范围内均可生长。当PEG浓度超过15%时,3种内生真菌与模式菌株均不能生长,N. sp.在10%时仍长势良好,与N. coenophialum相似,而N. sibiricum和N. gansuense在10%PEG浓度时,生长受到显著抑制。在盐分处理时,N. sp.和N. gansuense在0.3 mol/L的NaCl浓度下,生长受到显著抑制;而N. sibiricum在1.5 mol/L的NaCl浓度时生长才受到显著抑制,但耐盐性均不及N. coenophialum,后者在3.0 mol/L的NaCl浓度下还可以生长。总体看来,从天然禾草中获得的3种内生真菌与模式菌株相比较,耐高温的能力更强;耐渗透胁迫的能力只有羊草中的N. sp.与模式菌株接近,而羽茅中的两种菌株的耐渗透胁迫能力却显著低于模式菌株;对于不同的盐浓度胁迫,3种菌株的耐盐性都显著低于模式菌株。不同种类内生真菌在渗透胁迫方面的耐性与其宿主植物表现相一致。
Abstract: Biological and physiological characteristics of three Neotyphodium species, isolated from native grasses, were compared with the model endophyte Neotyphodium coenophialum, isolated from tall fescues, under different temperature, water and salt conditions. Three Neotyphodium species included Neotyphodium gansuense, Neotyphodium sibiricum and Neotyphodium sp, among which N. sp was isolated from Leymus chinensis while the other two species were isolated from Achanatherum sibiricum. The results showed that the optimal temperature for the four endophytes was 25˚C. The model endophyte N. coenophialum was un-able to grow at 32˚C, but the other endophytes were able to grow at 10˚C - 32˚C. Four fungi could not grow when the PEG concentration was 15%. For N. sp., it tended to increase when PEG concentration was 10%, and this situation is similar to N. coenophialum. For N. gansuense and N. sibiricum, the growth was not in-fluenced till the PEG concentration was up to 10%. Under the treatment of NaCl, the biomass of N. sibiricum and N. coenophialum significantly increased, but the growth of N. gansuense and N. sp. were significantly re-strained at 0.3mol/L NaCl. N. sibiricum was unable to grow at 1.5mol/L NaCl, but N. coenophialum can still grow under 3 mol/L NaCl. As a result, three species of endophytes which were isolated from native grasses can tolerate high temperature than the model endophyte. For the ability of resistance to osmotic stress, only N. sp. is similar to the model endophyte and two endophytes from A. sibiricum was significantly lower than model endophyte. For different salt stress, the tolerance of three native species was significantly lower than the model species.
文章引用:魏茂英, 尹立佳, 贾彤, 朱敏杰, 高玉葆. 天然禾草中三种内生真菌对非生物胁迫耐性的比较研究[J]. 植物学研究, 2012, 1(1): 1-7. http://dx.doi.org/10.12677/br.2012.11001

参考文献

[1] O. Petrini. Fungal endophytes of tree leaves. In: J. H. Andrews, S. S. Hirano, Eds, Microbial Ecology of Leaves. New York: Springer-Verlag, 1991: 179-197.
[2] R. H. White, M. C. Engelke, S. J. Morton, et al. Acremonium endophyte effects on tall fescue drought tolerance. Crop Science, 1992, 6(32): 1392-1396.
[3] S. G. Assuero, J. A. Tognetti, M. R. Colabelli, et al. Endophyte infection accelerates morpho-physiological responses to water deficit in tall fescue. New Zealand Journal of Agricultural Rea- search, 2006, 49(4): 359-370.
[4] A. A. Elmi, C. P. West. Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytologist, 1995, 131(1): 61-67.
[5] F. Bayat, A. Mirlohi and M. Khodambashi. Effects of endophytic fungi on some drought tolerance mechanisms of tall fescue in a hydroponics culture. Russian Journal of Plant Physiology, 2009, 56(4): 510-516.
[6] 杜永吉, 王祺, 韩烈保. 内生真菌Neotyphodium typhinum感染对高羊茅光合特性的影响[J]. 生态环境学报, 2009, 18(2): 590-594.
[7] M. R. Sabzalian, A. Mirlohi. Neotyphodium endophytes trigger salt resistance in tall and meadow Fescues. Journal of Plant Nutrition and Soil Science, 2010, 173(6): 952-957.
[8] D. P. Belesky, J. M. Fedders. Does endophyte influence regrowth of tall fescue? Annals of Botany, 1996, 78(4): 499-505.
[9] P. C. Lyons, J. J. Evans and C. W. Bacon. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiology, 1990, 92(3): 726-732.
[10] E. C. Whiting, A. Khan and W. D. Gubler. Effect of temperature and water potential on survival and mycelial growth of Phaeomoniella chlamydospora and Phaeoacremonium spp. Plant Disease, 2001(85): 195-201.
[11] 李婷, 黄艺, 黄志基. 重金属胁迫下外生菌根真菌Boletus edulis重金属积累分配与生长微环境变化[J]. 生态环境, 2005, 14(6): 870-875.
[12] L. M. Carvalho, P. M. Correia and M. A. Martins-loucao. Arbu- scular mycorrhizal fungal propagules in a salt marsh. Mycorr- hiza, 2004(14): 165-170.
[13] K. S. Subramanian, C. Charest, L. M. Dwyer, et al. Effects of arbuscular mycorrhizae on leaf water potential, sugar content, and P content during drought and recovery of maize. Canadian Journal of Botany, 1997, 75(9): 1582-1591.
[14] K. S. Subramanian, C. Charest, L. M. Dwyer, et al. Arbuscular mycorrhizas and water relations in maize under drought stress at tasselling. New Phytologist, 1995, 129(4): 643-650.
[15] 黄艺, 姜学艳, 季海波等. 过量钠盐胁迫对种外生菌根真菌生长和钠元素积累的影响[J]. 微生物学通报, 2004, 31(3): 45- 49.
[16] 黄艺, 姜学艳, 梁振春等. 外生菌根真菌接种和施磷对油松幼苗抗盐性的影响[J]. 生态环境, 2004, 13(4): 622-625.
[17] 南志标, 李春杰. 禾草——内生真菌共生体在草地农业系统中的作用[J]. 生态学报, 2004, 24(3): 605-616.
[18] C. J. Li, Z. B. Nan and F. Li. Biological and physiological char- acteristics of Neotyphodium gansuense symbiotic with Achna-therum inebrians. Microbiological Research, 2008, 163(4): 431-440.
[19] G. P. Cheplick. Effect of simulated acid rain on the mutualism between tall fescue (Festuca arundinacea) and an endophytic fungus (Acremoniumco enophialum). International Journal of Plant Sciences, 1993, 154 (1): 134-143.
[20] 张欣, 李熠, 魏宇昆等. 内蒙古中东部草原羽茅Epichloe属内生真菌的分布及rDNA-ITS序列系统发育[J]. 生态学报, 2007, 27(7): 2904-2910.
[21] 王银华, 任安芝, 魏宇昆等. 内蒙古中东部草原羽茅内生真菌的分类[J]. 菌物学报, 2008, 27(6): 841-851.
[22] 张欣. 内蒙古中东部草原羽茅种群内生真菌的多样性及与宿主植物协同进化的研究[D]. 南开大学博士学位论文, 2009.
[23] C. Li, Z. Nan, V. H. Paul, et al. A new Neotyphodium species symbiotic with drunken horse grass Achnatherum inebrians in China. Mycotaxon, 2004, 90(1): 141-147.
[24] O. Chazen, W. Hartung and P. M. Neumann. The different effects of PEG 6000 and NaCI on leaf development are asso- ciated with differential inhibition of root water transport. Plant, Cell & Environment, 1995, 18(7): 727-735.
[25] Z. B. Nan, C. J. Li. Neotyphodium in native grasses in China and observations on endophyte host interaction. In: V. H. Paul, P. D. Dapprich, Eds., Proceedings of the 4th International Neoty- phodium Grass Interactions Symposium, Soest, 2000: 41-50.
[26] J. F. White, G. Morgan-Jones. Endophyte-host associations in forage grasses. X. Cultural studies on some species of Acremo- nium sect. albo-lanosa, including a new species, A. starrii. My- cotaxon, 1987, 30: 87-95.
[27] A. Morte, C. Lovisolo and A. Schubert. Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense-Terfezia claveryi. Mycorrhiza, 2000, 10(3): 115-119.
[28] Y. F. Zhang, P. Wang, Y. F. Yang, et al. Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare sa- line-alkaline soil: Implication on vegetation restoration of ex- tremely degraded land. Journal of Arid Environments, 2011, 75(9): 773-778.