血管源性脑白质高信号与全身免疫炎症指数的相关性研究进展
Research Progress on the Correlation between White Matter Hyperintensity of Presumed Vascular Origin and Systemic Immune-Inflammation Index
摘要: 血管源性脑白质高信号(white matter hyperintensities, WMH)常见于老年人群中。目前其发病机制尚不明确,随着研究的不断深入,发现炎症反应在WMH的发生、发展中起着十分重要的作用。因此,基于各种血细胞计数比率的炎症标志物可成为预测WMH发生、发展的有效指标,而包含中性粒细胞、淋巴细胞及血小板的全身免疫炎症指数(systemic immune-inflammation index, SII)能客观、稳定、系统地反应机体全身炎症及免疫状态。此外,我国的老龄化程度越来越高,WMH的患病率也将逐渐增加,而SII的检测对机体的侵袭性小、获取及保存简便、准确度及成本效益高,易在临床推广运用。因此,本文就WMH与SII相关性的临床研究进展进行综述。
Abstract: White matter hyperintensity of presumed vascular origin (WMH) are common in older adults. At present, its pathogenesis is still unclear. With the developing of research, it is discovered that in-flammatory response plays a vital role in the occurrence and development of WMH. Therefore, in-flammatory markers based on various blood cell count ratios can become effective indicators for predicting the occurrence and development of WMH, and the systemic immune-inflammation index (SII) including neutrophils, lymphocytes and platelets can objectively, stably, systemically respond to the body’s systemic inflammation and immune status. In addition, our country’s aging degree is getting higher and higher, and the prevalence of WMH will gradually increase. However, the detec-tion of SII is less invasive to the body and easy to obtain and store. Furthermore, it has high accura-cy and cost-effectiveness, and is easy to be applied in clinical practice. Therefore, this article reviews the clinical research progress on the relationship between WMH and SII.
文章引用:钟诚兴, 拜承萍. 血管源性脑白质高信号与全身免疫炎症指数的相关性研究进展[J]. 临床医学进展, 2022, 12(10): 9589-9595. https://doi.org/10.12677/ACM.2022.12101387

1. 引言

血管源性脑白质高信号(white matter hyperintensities, WMH)是脑小血管病(cerebral small vessel disease, CSVD)的一种特征性影像学标志,是脑室旁或深部白质的缺血性改变,在老年人群中多见。在磁共振成像中,T2加权像(T2 weighted imaging, T2WI)或液体衰减翻转恢复序列(fluid attenuation inversion recovery, FLAIR)显示为双侧侧脑室旁或皮层下或深部的白质高信号影,T1加权像(T1 weighted imaging, T1WI)为等信号或稍低信号影 [1]。随着高场强磁共振影像(magnetic resonance imaging, MRI)等影像学技术的不断发展,WMH的诊出率显著增加。WMH发病率高且其发生、进展会导致认知功能下降、精神情感异常、运动平衡功能障碍等临床表现,增加痴呆、卒中发生的风险并与卒中患者不良预后关系密切 [1] [2] [3]。目前WMH的发病机制尚存在较多争议,而炎症反应是其可能的潜在发病机制之一,有关其与WMH的研究越来越多。目前已经提出了多种基于各种血细胞计数比率的有效炎症标志物,其中包括全身免疫炎症指数(systemic immune-inflammation index, SII) [4],使用中性粒细胞、淋巴细胞及血小板计数就可容易求出SII,其公式为SII = 血小板计数 × 中性粒细胞计数/淋巴细胞计数。迄今为止,SII已被证实与癌症、痴呆、动脉粥样硬化、中风、心血管疾病和WMH存在有相关性 [5]。因此,了解WMH与SII的关系对于预防WMH的发生、发展具有重大的意义。

2. WMH的定义及流行病学

血管源性脑白质高信号(white matter hyperintensities, WMH)又可称脑白质病变(white matter lesions, WMLs)或脑白质疏松(leukoaraiosis, LA)。LA是加拿大神经病学家Hachinski Hachinski [6] 在神经影像学上关于白质病变的专业的诊断术语,leuko意指白质,aroisosis意指稀疏,是指在大脑深部观察到白质中异常的缺血性改变。通常磁共振检测出WMH的敏感性优于CT,WMH在CT平扫表现为低密度,较正常的CT值低5~10 HU,而在T2WI和FLAIR序列上表现为高信号,T1WI序列上为等信号或低信号。有研究 [7] 按其解剖及发病的病灶位置与脑室表面的距离将WMH区分为脑室周围白质高信号(periventricular WMH, PVWMH)和深部白质高信号(deep WMH, DWMH)。PVWMH定义为距脑室表面10 mm以内的WMH,距脑室表面的离大于10 mm的WMH定义为DWMH。Ki等人的研究 [7] 发现PVWMH和DWMH可能具有不同的致病机制,PVWMH可能更多地由血流动力学决定,而DWMH可能更多归因于小血管病变。此外,有研究 [8] 发现病灶在大脑的不同部位,WMH的进展情况也不同。DWMH的体积增大要显著超过PVWMH;且进展最快的白质病灶在额部,而进展最慢的则在枕部。因为WMH是CSVD的一种特征性影像学标志,其主要是指血管源性的脑白质病变,因此需与其他原因引起白质脱髓鞘改变如多发性硬化、脑白质营养不良、视神经脊髓炎、结节病、遗传性伴皮质下梗死、CO中毒、放射性脑病、慢性阻塞性肺疾病等相鉴别 [9]。

流行病学调查显示,WMH好发于亚洲老年人群(28.4%~78.5%) [10],而我国正处于人口老龄化的时代,WMH的高患病率给整个社会及家庭带来了巨大的负担。有研究 [1] 发现WMH在成年时期就已经开始积累,将近有一半的人在40岁时就已经出现WMH,在60岁以上的老年人群中患病率甚至高到95%。但由于与WMH相关的一些研究存在研究设计、人群、年龄范围、种族及样本量大小的不同,因此WMH的患病率在3%到95%不等 [11] [12] [13]。目前已经证实WMH的发病率与年龄存在有相关性,许多60岁以上的老年人群基本都有一定程度的WMH,并且随着年龄的不断增长,WMH的发病率也逐渐上升。近年来,我国一项研究发现 [14],在研究人群中40岁以上检测出WMH的占比为58.3%,且80岁以上患病人群的比例达到81.8%;此外,不同性别的发病率也有差异,女性的发病率要高于男性(分别为62%和55.3%)。一项基于健康老年人群为研究对象的纵向研究中发现 [15]:随着年龄增加,WMH体积也逐渐变大,每年WMH的体积增长在4.4%~37.2%不等。此外,在一项鹿特丹扫描研究中也发现 [16],约39%研究人群在3至4年内WMH体积出现了进展性的变化;然而,也有研究人员得出了不同的结论,他们的研究发现随着年龄的增长,WMH严重程度有所减轻。在一项以缺血性脑卒中人群为研究对象的前瞻性研究中 [17],约1/3的患者表现出WMH体积增加,但有约1/5的患者的WMH体积随时间的推移而呈现出消退的现象;在国外的一项研究中 [18] 也表明了一些轻型卒中患者的WMH是可消退的并且WMH消退的患者其卒中再发率显著下降。综上所述,WMH体积的变化具有临床相关性,且WMH的体积是可逆的。迄今为止,在WMH的危险因素中,除了年龄及性别外,种族也可能是不可控的因素之一,而其他因素包括高血压、肥胖、高血脂、空腹血糖、吸烟等可通过低盐、低脂饮食及戒烟。体育锻炼等进行控制。

3. WMH的临床意义及发病机制

3.1. WMH的临床意义

WMH通常被认为是CSVD的一种典型影像学特征。但目前WMH对早期诊断CSVD的敏感性和特异性方面尚有待进一步的研究与验证。WMH可以出现在无临床表现的正常老年人中,但WMH绝非是作为一种无害的弥漫性白质病变,其所引起的临床表现因人而异,对于不同程度的WMH会引发哪些临床症状尚无明确界定,但目前相关临床表现多表现为白质病变累及解剖部位的功能缺失所致。迄今为止,关于WMH与认知功能、脑卒中的相关研究相对较多,而对于其他临床症状的研究相对较少。

有研究表明 [19],WMH体积与机体的认知障碍呈正相关,且WMH与大脑的信息处理速度和执行功能下降明显相关,与其他认知领域也存在一定相关性,WMH体积的进展可以预测认知能力下降、轻度认知障碍和痴呆发生的风险。许多阿尔茨海默病(Alzheimer’s disease, AD)患者的MRI往往存在不同程度的WMH,其可能会加重AD患者的认知障碍。因此可知WMH和认知之间的关联是确切的。但关于不同脑区对各种认知域影响的相关研究还相对较少,需要进一步的临床研究和探索。

最近的一项Meta分析 [20] 发现WMH与更高卒中的风险、脑卒中、痴呆甚至死亡存在相关性。此外,有研究表明,WMH与脑血管疾病的发生发展有明显的相关性。Kuller等 [21] 人对大量的心血管健康受试者进行了脑白质高信号MRI检查,并分析了脑白质病变。平均随访7年后,随着WMH的进展,卒中的相对风险显著增加。此外,一项研究 [22] 评估了在亚洲人群中WMH的严重程度与复发性血管事件风险之间的关系,发现WMH与复发性缺血性、出血性卒中和其他复发性复杂血管事件存在相关性。Helenius等 [23] 人发现重度WMH与卒中患者的NIHSS评分独立相关,这表明WMH可加重卒中患者的临床症状。因此,早期进行白质评估可以更好地判断后期脑卒中发生的风险。

3.2. WMH的发病机制

尽管WMH广泛存在人群中,但WMH的发病机制尚存在较多争议。目前相关的潜在发病机制 [24] - [30] 如下:炎症反应、缺血与低灌注、屏障与内皮功能障碍、淋巴系统功能障碍和遗传因素。不同类型的WMH发病机制可能不同。PVWMH其病理特征支持其起源于室管膜层的损伤,而其动脉供血的解剖特征支持其起源于缺血。所以,PVWMH可归因于缺血和室管膜层,其中关于皮质下的WMH的研究发现大部分原因是长期的慢性缺血。因此,需要更多的研究来确定不同类型的WMH是否有不同的发病机制,从而为WMH提供新的靶向治疗。

4. SII的定义、计算方法及临床应用

全身免疫炎症指数(systemic immune-inflammation index, SII)它是一种包含外周血小板、中性粒细胞和淋巴细胞计数的一种新的基于血细胞计数组成比的新型全身免疫炎症标志物,其可表明患者的炎症反应加重,免疫反应降低,具有更强的稳定性且简单易获得且有较低的成本效益。2014年复旦大学中山医院肝癌研究所伯虎等 [31] 研究人员初次提出了SII作为一种新的炎症标志物用来评估肝细胞癌(HCC)手术患者的预后。SII定义如下:SII = P × N/L,其中P指术前外周血小板计数、N指术前中性粒细胞计数和L指术前淋巴细胞计数。SII结合了各种炎症细胞的共同作用,评价疾病的炎症水平,进一步阐明病理生理机制的变化,被认为是反映全身免疫炎症状态和预后的有效指标 [32]。最近的研究 [5] [33] [34] [35] [36] 发现SII对直肠癌、非小细胞性肺癌、胰腺癌、胃癌等肿瘤及痴呆、动脉粥样硬化、中风、心血管疾病和WMH的进展和预后存在有相关性。伯虎等 [31] 研究发现SII可有效评估HCC患者的预后;金子琪等人十年的随访研究 [37] 发现SII升高与脑卒中和死亡的风险呈正相关。有研究 [38] 发现SII水平上升往往提示不良预后,因此,SII对相关疾病的诊断、治疗以及长期预后具有重要的指导价值,值得在临床上进行推广应用。

5. SII与WMH的相关性

在WMH相关的潜在发病机制中炎症反应机制占有相当重要的地位 [39];在正常的情况下,炎症是机体本身对感染和损伤的一种保护性反应,然而,炎症也可能对正常组织产生不利影响。炎症可从多个方面如:内皮功能障碍、动脉粥样硬化等影响大小动脉的血管壁,进而影响WMH的发生、发展。近年来,越来越多的研究证实WMH患者体内存在炎症反应和炎症因子水平的升高,炎症因子可能在WMH的发病机制中发挥重要作用。目前外周血标本的炎症标志物测定侵袭性小、获取及保存简便、准确度及成本效益高,较其他体液标志物更适合作为研究标本,而SII作为一种新型的全身免疫炎症标志物,反映了P、L、N计数的变化,较其他的指标更具稳定性和客观性,SII的增高可客观地体现出了机体正处于免疫抑制状态,增加了感染的风险 [40]。近年来的研究 [41] 发现系统性炎性因子基线水平可以预测CSVD的严重程度,而WMH是CSVD的特征性影像表现之一。此外,一项鹿特丹扫描研究 [42] 发现与C-反应蛋白水平较低者相比,PVWMH在较高的C-反应蛋白水平者的进展更明显。最近有一项研究 [43] 以大量的健康人群为研究对象,来探讨SII与WMH的相关性,结果显示在多变量线性回归分析中,SII与WMH体积显著相关。这可能是在慢性炎症条件下,活化的中性粒细胞和血小板导致血脑屏障破坏,此外炎症与动脉粥样硬化密切相关,可能影响动脉的血管壁导致低灌注损伤,进而加快WMH的发生发展。

6. 总结与展望

综上,WMH是CSVD的一种特征影像学表现,在老年人群中常见,与脑卒中的发生、再发、转归不良以及死亡风险显著相关,还会加速认知功能下降,因其发病隐匿且患病率高而成为近年来的研究热点,并且成为了人类健康发展的重大公共卫生问题,加重了社会和家庭的负担,因此,从WMH的本质上探索其病理生理机制,明确WMH的发病机制并尽早干预有着十分重要的意义,是影响患者长期预后的关键所在。目前SII作为一种稳定、简便易获取的新型全身免疫炎症标志物,已经引起了国内外的众多研究者的关注与重视,但目前仍需有大样本量、科学严谨且高质量的前瞻性研究设计来明确SII在WMH中的预测价值,其特异性和敏感性有待于严谨科学的临床研究进一步验证。此外,将来的研究重点需要对中性粒细胞、淋巴细胞和血小板的数值进行动态的检测,来进一步探讨SII在不同时间点的变化对于WMH的发生、发展及预后的临床实际价值并以期为WMH提供有效的早期干预措施。

参考文献

[1] Wardlaw, J.M., Smith, E.E., Biessels, G.J., Cordonnier, C., et al. (2013) Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution. The Lancet Neurology, 12, 822-838.
https://doi.org/10.1016/S1474-4422(13)70124-8
[2] TerTelgte, A., van Leijsen, E.M.C., Wiegertjes, K., et al. (2018) Cerebral Small Vessel Disease: From a Focal to a Global Perspective. Nature Reviews Neurology, 14, 387-398.
https://doi.org/10.1038/s41582-018-0014-y
[3] Patel, B. and Markus, H.S. (2011) Magnetic Resonance Imaging in Cerebral Small Vessel Disease and Its Use as a Surrogate Disease Marker. International Journal of Stroke, 6, 47-59.
https://doi.org/10.1111/j.1747-4949.2010.00552.x
[4] Gong, P., Liu, Y., Gong, Y., Chen, G., et al. (2021) The Association of Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio, and Lymphocyte to Monocyte Ratio with Post-Thrombolysis Early Neurological Outcomes in Patients with Acute Ischemic Stroke. Journal of Neuroinflammation, 18, Article No. 51.
https://doi.org/10.1186/s12974-021-02090-6
[5] Nam, K.W., Kwon, H.M., Jeong, H.Y., et al. (2022) Systemic Immune-Inflammation Index Is Associated with White Matter Hyperintensityvolume. Scientific Reports, 12, Article No. 7379.
https://doi.org/10.1038/s41598-022-11575-0
[6] Hachinski, V.C., Potter, P. and Merskey, H. (1987) Leu-ko-Araiosis. Archives of Neurology, 44, 21-23.
https://doi.org/10.1001/archneur.1987.00520130013009
[7] Kim, K.W., MacFall, J.R. and Payne, M.E. (2008) Classification of White Matter Lesions on Magnetic Resonance Imaging in Elderly Persons. Biological Psychiatry, 64, 273-280.
https://doi.org/10.1016/j.biopsych.2008.03.024
[8] Sachdev, P., Wen, W., Chen, X., et al. (2007) Pro-gression of White Matter Hyperintensities in Elderly Individuals over 3 Years. Neurology, 68, 214-222.
https://doi.org/10.1212/01.wnl.0000251302.55202.73
[9] Chen, X., Wang, J., Shan, Y., et al. (2019) Cerebral Small Vessel Disease: Neuroimaging Markers and Clinical Implication. Journal of Neurology, 266, 2347-2362.
https://doi.org/10.1007/s00415-018-9077-3
[10] Hiremath, N., Kate, M., Mohimen, A., et al. (2020) Risk Factors of White Matter Hyperintensities in South Asian Patients with Transient Ischemic Attack and Minor Stroke. Neuroradi-ology, 62, 1279-1284.
https://doi.org/10.1007/s00234-020-02429-5
[11] deLeeuw, F.E., de Groot, J.C., Achten, E., et al. (2001) Preva-lence of Cerebral White Matter Lesions in Elderly People: A Population Based Magnetic Resonance Imaging Study: The Rotterdam Scan Study. Journal of Neurology, Neurosurgery and Psychiatry, 70, 9-14.
https://doi.org/10.1136/jnnp.70.1.9
[12] Wen, W., Sachdev, P.S., Li, J.J., et al. (2009) White Matter Hyperintensi-ties in the Forties: Their Prevalence and Topography in an Epidemiological Sample Aged 44 - 48. Human Brain Mapping, 30, 1155-1167.
https://doi.org/10.1002/hbm.20586
[13] Launer, L.J., Berger, K., Breteler, M.M., et al. (2006) Regional Variability in the Prevalence of Cerebral White Matter Lesions: An MRI Study in 9 European Countries (CASCADE). Neuroepide-miology, 26, 23-29.
https://doi.org/10.1159/000089233
[14] Lin, Q., Huang, W.Q., Ma, Q.L., et al. (2017) Incidence and Risk Factors of Leukoaraiosis from 4683 Hospitalized Patients: A Cross-Sectional Study. Medicine, 96, e7682.
https://doi.org/10.1097/MD.0000000000007682
[15] Jorgensen, D.R., Shaaban, C.E., Wiley, C.A., et al. (2018) A Population Neuroscience Approach to the Study of Cerebral Small Vessel Disease in Midlife and Late Life: An Invited Review. The American Journal of Physiology-Heart and Circulatory Physiology, 314, H1117-H1136.
https://doi.org/10.1152/ajpheart.00535.2017
[16] vanDijk, E.J., Prins, N.D., Vrooman, H.A., et al. (2008) Pro-gression of Cerebral Small Vessel Disease in Relation to Risk Factors and Cognitive Consequences: Rotterdam Scan Study. Stroke, 39, 2712-2719.
https://doi.org/10.1161/STROKEAHA.107.513176
[17] Cho, A.H., Kim, H.R., Kim, W., et al. (2015) White Mat-ter Hyperintensity in Ischemic Stroke Patients: It May Regress Overtime. Journal of Stroke, 17, 60-66.
https://doi.org/10.5853/jos.2015.17.1.60
[18] Etherton, M.R., Wu, O. and Rost, N.S. (2016) Recent Advances in Leukoaraiosis: White Matter Structural Integrity and Functional Outcomes after Acute Ischemic Stroke. Current Cardi-ology Reports, 18, Article No. 123.
https://doi.org/10.1007/s11886-016-0803-0
[19] Chen, H., Huang, L., Yang, D., et al. (2019) Nodal Global Effi-ciency in Front-Parietal Lobe Mediated Periventricular White Matter Hyperintensity (PWMH)-Related Cognitive Impair-ment. Frontiers in Aging Neuroscience, 11, Article No. 347.
https://doi.org/10.3389/fnagi.2019.00347
[20] Debette, S., Schilling, S., Duperron, M.G., et al. (2019) Clinical Significance of Magnetic Resonance Imaging Markers of Vascu-lar BrainInjury: A Systematic Review and Meta-Analysis. JAMA Neurology, 76, 81-94.
https://doi.org/10.1001/jamaneurol.2018.3122
[21] Kuller, L.H., Longstreth, W.T., Arnold, A.M., et al. (2004) White Matter Hyperintensity on Cranial Magnetic Resonance Imaging: A Predictor of Stroke. Stroke, 35, 1821-1825.
https://doi.org/10.1161/01.STR.0000132193.35955.69
[22] Park, J.H., Heo, S.H., Lee, M.H., et al. (2019) White Matter Hyperintensities and Recurrent Stroke Risk in Patients with Stroke with Small-Vessel Disease. European Journal of Neurology, 26, 911-918.
https://doi.org/10.1111/ene.13908
[23] Helenius, J., Goddeau, R.P., et al. (2016) Impact of Leukoaraiosis Burden on Hemispheric Lateralization of the National Institutes of Health Stroke Scale Deficit in Acute Ischemic Stroke. Stroke, 47, 24-30.
https://doi.org/10.1161/STROKEAHA.115.011771
[24] Swardfager, W., Yu, D., Ramirez, J., et al. (2017) Pe-ripheral Inflammatory Markers Indicate Microstructural Damage within Periventricular White Matter Hyperintensities in Alzheimer’s Disease: A Preliminary Report. Alzheimer’s Dement, 7, 56-60.
https://doi.org/10.1016/j.dadm.2016.12.011
[25] Lin, J., Wang, D., Lan, L., Fan, Y., et al. (2017) Multiple Factors Involved in the Pathogenesis of White Matter Lesions. BioMed Research International, 2017, Article ID: 9372050.
https://doi.org/10.1155/2017/9372050
[26] Moody, D.M., Brown, W.R., Challa, V.R., et al. (1995) Periventricular Venous Collagenosis: Association with Leukoaraiosis. Radiology, 194, 469-476.
https://doi.org/10.1148/radiology.194.2.7824728
[27] Lan, L.F., Zheng, L., Yang, X., et al. (2015) Peroxisome Proliferator-Activated Receptor-γ Agonist Pioglitazone Ameliorates White Matter Lesion and Cognitive Impairment in Hypertensive Rats. CNS Neuroscience & Therapeutics, 21, 410-416.
https://doi.org/10.1111/cns.12374
[28] Atwood, L.D., Wolf, P.A., Heard-Costa, N.L., et al. (2004) Genetic Varia-tion in White Matter Hyperintensity Volume in the Framingham Study. Stroke, 35, 1609-1613.
https://doi.org/10.1161/01.STR.0000129643.77045.10
[29] Huisa, B.N., Caprihan, A., Thompson, J., et al. (2015) Long-Term Blood-Brain Barrier Permeability Changes in Binswanger Disease. Stroke, 46, 2413-2418.
https://doi.org/10.1161/STROKEAHA.115.009589
[30] Brown, W.R., Moody, D.M., Challa, V.R., et al. (2002) Venous Collagenosis and Arteriolar Tortuosity in Leukoaraiosis. Journal of the Neurological Sciences, 204, 159-163.
https://doi.org/10.1016/S0022-510X(02)00283-6
[31] Hu, B., Yang, X.R., Xu, Y., et al. (2014) Systemic Im-mune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clinical Cancer Research, 20, 6212-6222.
https://doi.org/10.1158/1078-0432.CCR-14-0442
[32] Topcuoglu, M.A., Pektezel, M.Y., Yilmaz, E., et al. (2021) Systemic Inflammation Indices in Patients with Acute Ischemic Stroke Treated with Intravenous Tissue Plasminogen Ac-tivator: Clinical Yield and Utility. Angiology, 72, 279-284.
https://doi.org/10.1177/0003319720969997
[33] Eraslan, E., Adas, Y.G., Yildiz, F., et al. (2021) Systemic Immune-Inflammation Index (SII) Predicts Pathological Complete Re-sponseto Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Journal of College of Physicians and Surgeons Pakistan, 30, 399-404.
https://doi.org/10.29271/jcpsp.2021.04.399
[34] Keit, E., Coutu, B., Zhen, W., et al. (2021) Systemic Inflammation Is Associated with Inferior Disease Control and Survival in Stage III Non-Small Cell Lung Cancer. Annals of Translational Medicine, 9, Article No. 227.
https://doi.org/10.21037/atm-20-6710
[35] Fu, S., Yan, J., Tan, Y., et al. (2021) Prognostic Value of Systemic Immune-Inflammatory Index in Survival Outcome in Gastric Cancer: A Meta-Analysis. Journal of Gastrointestinal On-cology, 12, 344-354.
https://doi.org/10.21037/jgo-20-252
[36] Bittoni, A., Pecci, F., Mentrasti, G., et al. (2021) Systemic Im-mune-Inflammation Index: A Prognostic Tiebreaker among All in Advanced Pancreatic Cancer. Annals of Translational Medicine, 9, Article No. 251.
https://doi.org/10.21037/atm-20-3499
[37] Jin, Z., Wu, Q., Chen, S., Gao, J., et al. (2021) The Associations of Two Novel Inflammation Indexes, SII and SIRI with the Risks for Cardiovascular Diseases and All-Cause Mortality: A Ten-Year Follow-Up Study in 85,154 Individuals. Journal of Inflammation Research, 14, 131-140.
https://doi.org/10.21037/atm-20-3499
[38] Adiguzel, A., Arsava, E.M. and Topcuoglu, M.A. (2022) Temporal Course of Peripheral Inflammation Markers and Indexes Following Acute Ischemic Stroke: Prediction of Mortality, Functional Outcome, and Stroke-Associated Pneumonia. Neurological Research, 44, 224-231.
https://doi.org/10.1080/01616412.2021.1975222
[39] 侯赋成, 殷梅. 脑白质病变的病理学及发病机制的研究进展[J]. 临床神经病学杂志, 2018, 31(4): 310-313.
[40] 韩博, 吴舜, 何先东, 等. 基于免疫细胞计数的系统性炎症反应指数在预测肾透明细胞癌患者预后中的作用研究[J]. 免疫学杂志, 2020, 36(2): 160-164+184.
[41] Low, A., Mak, E., Rowe, J.B., et al. (2019) Inflammation and Cerebral Small Vessel Disease: A Systematic Review. Ageing Research Reviews, 53, Article ID: 100916.
https://doi.org/10.1016/j.arr.2019.100916
[42] vanDijk, E.J., Prins, N.D., Vermeer, S.E., et al. (2005) C-Reactive Protein and Cerebral Small-Vessel Disease: The Rotterdam Scan Study. Circulation, 112, 900-905.
https://doi.org/10.1161/CIRCULATIONAHA.104.506337
[43] Raggi, P., Genest, J., Giles, J.T., et al. (2018) Role of Inflammation in the Pathogenesis of Atherosclerosis and Therapeutic Interventions. Ath-erosclerosis, 276, 98-108.
https://doi.org/10.1016/j.atherosclerosis.2018.07.014