泛素特异性蛋白酶在头颈部鳞状细胞癌中的研究进展
Research Progress of Ubiquitin-Specific Pep-tidases in Head and Neck Squamous Cell Carcinoma
DOI: 10.12677/ACM.2022.12101388, PDF, HTML, XML, 下载: 307  浏览: 411 
作者: 张雅丽:内蒙古医科大学,内蒙古 呼和浩特;内蒙古自治区妇幼保健院,内蒙古 呼和浩特;崔晓波*:内蒙古医科大学,内蒙古 呼和浩特
关键词: 去泛素化酶泛素特异性蛋白酶头颈部鳞状细胞癌Deubiquitinases Ubiquitin-Specific Peptidases Head and Neck Squamous Cell Carcinoma
摘要: 头颈部鳞状细胞癌(head and neck squamous cell carcinoma, HNSCC)是一种高度侵袭性和增殖性的肿瘤,其五年生存率较低,主要原因是对HNSCC的发病机制认识不清,缺乏有效的治疗手段。泛素特异性蛋白酶(ubiquitin-specific peptidases, USPs)是去泛素化酶家族的主要成员,能够识别特定蛋白质的泛素化信号,从而使靶蛋白去泛素化,进而参与细胞增殖、分化、凋亡和迁移等多种生物学功能。在这篇综述中,我们将对一些USPs在HNSCC发生发展中的作用进行阐述,为HNSCC的诊断和靶向治疗奠定基础。
Abstract: Head and neck squamous cell carcinoma (HNSCC) is a highly invasive and proliferative tumor with a low five-year survival rate, mainly due to the poor understanding of the pathogenesis of HNSCC and the lack of effective treatment. The ubiquitin-specific peptidases (USPs) are the main member of the deubiquitinase family. The USPs involve in multiple biological processes including cell proliferation, differentiation, apoptosis and migration by specially recognizing and removing ubiquitin chain of target proteins. In this review, we will elaborate on the role of some USPs in tumorigenesis and progression of HNSCC, in order to lay the foundation for the diagnosis and targeted therapy of HNSCC.
文章引用:张雅丽, 崔晓波. 泛素特异性蛋白酶在头颈部鳞状细胞癌中的研究进展[J]. 临床医学进展, 2022, 12(10): 9596-9604. https://doi.org/10.12677/ACM.2022.12101388

1. 引言

头颈部鳞状细胞癌(head and neck squamous cell carcinoma, HNSCC)是国际上第六大常见恶性肿瘤,包括舌癌(tongue squamous cell carcinoma, TSCC)、口腔癌(oral squamous cell carcinoma, OSCC)、喉癌(laryngeal squamous cell carcinoma, LSCC)和鼻咽癌(nasopharyngeal carcinoma, NPC),占头颈部肿瘤的90%,其年发病人数约为60万,具有高发病率的特点。此外,HNSCC发病部位多,病理类型复杂,易发生淋巴结转移及复发等,因而其又具有高异质性、高转移及高复发的特点 [1] [2]。HNSCC发病原因复杂,初步研究结果显示不良的生活习惯,慢性刺激,病毒感染等均是其进展的诱因。目前,科学家根据HNSCC发病因素的不同将其分为两类:HPV (人类乳头瘤状病毒,human papillomaviruses, HPV)阳性及HPV阴性。临床上,HPV感染被认为是HPV阳性HNSCC发病的主要诱因。而流行病学统计发现,吸烟与饮酒是引发HPV阴性肿瘤的主要因素 [3]。近年来,随着基因组、RNA测序技术,蛋白质组学及肿瘤精准治疗等的研究推进,HNSCC进展的分子机制逐渐被解析。国内外研究显示:细胞周期关键调控基因TP53、CDKN2A及CCND1的突变或异常表达;细胞生长调控的主要基因EGFR的功能突变;细胞死亡调控相关基因:PIK3CA及PTEN的突变引起的功能异常;表观调控关键基因KMT2D,NSD1功能改变引起的组蛋白甲基化调控紊乱及WNT信号通路中关键基因FAT1、AJUBA及NOTCH1等的突变,均在HNSCC的进展过程中起到重要作用。然而,科学家发现因HNSCC发病原因的复杂性及肿瘤间的高异质性,调控HNSCC进展的分子机理复杂。以上基因的异常突变与表达依然难以解释所有HNSCC进展,针对以上部分基因设计或探寻的分子靶向治疗药物也被证实效果有限,因而HNSCC依然具有高死亡率的特点,其死亡率为40%~50% [4] [5] [6] [7]。

泛素化是真核生物细胞内蛋白质的一种翻译后修饰,可以发挥多种生物学功能,参与蛋白质降解、细胞信号转导、细胞增殖凋亡、细胞周期等 [8]。泛素分子在泛素激活酶(ubiquitin activating enzyme) E1、泛素结合酶(ubiquitin conjugating enzyme) E2、泛素连接酶(ubiquitin ligase enzyme) E3的共同作用下,使底物蛋白质发生泛素化,并被引导进入26S蛋白酶体进行降解 [9]。细胞内超过80%的蛋白质通过泛素介导的泛素–蛋白酶体系统进行不可逆性降解,是真核生物细胞内参与蛋白降解,维持蛋白质稳定性的核心调节系统。其中,在此过程中催化泛素分子与底物蛋白断裂的酶有多种多样,并被统称为去泛素化酶(DUBs)。DUBs主要通过水解泛素羧基末端的酯键、肽键或异肽键,将泛素分子特异性从连接有泛素的蛋白质或者前体蛋白上水解下来 [10] [11]。到目前为止,已经有100多个人类DUBs被鉴定,这些DUBs主要由6个亚家族组成:OUT去泛素化酶(OTUs)、泛素特异性蛋白酶(USPs)、泛素C端水解酶(UCHs)、JAB1/MPN/Mov34金属酶(JAMMs)、Machado-Joseph病蛋白酶(MJDs)和与泛素相互作用的新型DUB家族(MINDYs) [12]。其中,USPs、OTUs、MJDs、UCHs和MINDYs是半胱氨酸依赖性蛋白酶,序列中含有催化活性的三联残基,JAMMs是一种金属依赖性蛋白酶 [13] [14],催化中心序列由两个组氨酸残基、一个天冬氨酸残基与二价锌离子共同构成 [15]。DUBs作为许多细胞过程和癌症发生发展的关键调节因子越来越受到关注。

USPs作为去泛素化酶家族中种类最多且结构最具多样化的亚家族,其家族成员共有高度保守的USP结构域,可以识别泛素分子,驱动自身向催化活性状态过渡。近年来,越来越多的研究发现,USPs底物蛋白包含多种癌基因和抑癌基因,USPs的活性异常可以参与肿瘤的发生发展,并且与肿瘤的不良预后相关 [8]。比如,作为癌基因,USP2在乳腺癌、宫颈癌、胶质瘤和前列腺癌组织中的表达水平明显高于相应的癌旁组织 [16] [17] [18];抑制USP7能够降解具有癌蛋白作用的E3连接酶原癌基因鼠双微体-2 (mouse double minute 2 homolog, MDM2),从而导致肿瘤抑制蛋白p53在多种癌症中被重新激活 [19] [20];作为抑癌基因,CYLD被认为是抑制肝癌、皮肤癌和结肠癌发生或转移的肿瘤抑制因子 [21] [22] [23];USP33在肺癌中作为抑癌蛋白发挥作用,其激动剂可以成为化疗药物研究的新方向等 [24]。因此,USPs在肿瘤发生发展过程中起到至关重要的作用。下面我们将对USPs在HNSCC发生发展中的调控机制作一个系统性综述。

2. USP22

USP22属于“Polycomb/肿瘤干细胞信号”家族的一员 [25],是一种保守的泛素水解酶,位于人类基因组17号染色体,在哺乳动物中普遍表达,主要定位于细胞核。USP22的羧基端包含半胱氨酸盒(Cysteine, Cys Box)和组氨酸盒(Histidine, His Box),具有泛素水解酶活性,是细胞周期调控的重要组成部分,其主要功能是通过组蛋白泛素化(H2A和H2B)间接影响染色质结构,从而调节众多基因的转录活化并广泛影响生物学功能 [26]。同时,USP22具有癌症干细胞的蛋白特征,可以促进形成侵袭性肿瘤生长的各种蛋白质 [27]。USP22的致癌能力已在HNSCCs中得到进一步证实。具体而言,USP22的表达随着口腔癌变的进展而增加,从非癌黏膜到原发癌,从癌到淋巴结转移。USP22表达阳性的口腔鳞癌患者的预后明显比USP22表达阴性的患者差 [28] [29];在鼻咽癌组织中USP22的阳性表达率高于其在鼻咽黏膜炎症组织中的表达,并且USP22蛋白阴性表达的患者临床预后较USP22阳性表达患者好 [30];在舌癌组织中降低USP22的表达可影响细胞周期蛋白依赖性激酶抑制剂CDKI/Rb信号通路,使P21和P27CDKI的表达水平升高,Rb蛋白的表达降低,从而抑制舌癌细胞增殖;李丽娟用免疫组化实验发现USP22在喉癌组织中表达上调,且与喉癌的恶性程度、侵袭转移及预后紧密相关 [31] [32]。

3. USP9X

USP9X位于人类基因组X染色体p11.4位点,由2554个氨基酸残基组成,是USPs家族中的一员,通过调节多种信号通路参与细胞凋亡的过程,它与胰腺癌、肝癌、结直肠癌、脊髓性肌萎缩、齿龈鳞癌、前列腺癌等肿瘤的发生发展有关 [33] [34] [35] [36] [37]。Nanayakkar等人发现USP9X通过雷帕霉素靶蛋白(mTOR)途径的PI3K/Akt信号通路促进HNSCC细胞的增殖 [38] [39]。USP9X水平调控舌癌细胞增殖通过下游转录因子HES-1 (Notch途径) [40],在舌癌细胞中体外转染siUSP9X后,处于G0/G1期的细胞的比例降低,而处于S和G2/M期的细胞比例升高。USP9X在体外表达降低后,癌细胞增殖会不同程度的变慢,但USP9X的缺失可能对肿瘤细胞生长有害,其在原发性肿瘤细胞中的丢失可能会加速继发性肿瘤的发展 [41]。冯燚源等人发现USP9X可以用于评估鼻咽癌患者的预后,鼻咽癌的恶性程度越高,USP9X的阳性检出率越高,且有研究 [26] 表明,USP9X的低表达可以增强肿瘤对化疗药物的敏感性 [42]。

4. USP7

USP7位于人类基因组16号染色体上,于1997年首次被发现,是USPs家族中的一个重要成员。USP7可以调节各种肿瘤相关基因的表达,如p53和Ki-67 [43] [44],它与肺癌、结肠癌、前列腺癌、乳腺癌、神经母细胞瘤、膀胱癌、肝癌、喉癌和口腔鳞癌等肿瘤的发生发展有关 [45]。

Jing等人发现Ki-67高表达的口腔鳞癌患者总体生存不良和无病生存的风险显著增加 [46]。此外,Celentano等人发现侵袭转移相关因子基质金属蛋白酶2 (MMP2)的特异性靶向作用被证明可以促进口腔鳞癌的迁移和侵袭,在口腔癌组织中高表达 [47];血管生成也参与了口腔鳞癌的进展。血管内皮生长因子及其受体是血管生成的主要因子,血管内皮生长因子高度表达,被认为是口腔鳞癌进展的标志 [48]。Yang等人发现USP7及其相关基因Ki-67、MMP2和VEGF在口腔鳞癌组织中的表达增强,USP7具有促进细胞增殖、抑制细胞凋亡、促进细胞迁移和侵袭、激活Akt/ERK信号通路等作用 [49]。Zhang等人发现EZH2可以通过影响细胞骨架聚合而在肿瘤侵袭和转移中发挥作用,而不依赖于其组蛋白甲基转移酶的活性 [50]。P53的改变可能参与了EZH2的异常表达,EZH2的异常表达可能在口腔鳞癌的发生发展中起一定作用 [51]。P53可以抑制EZH2的启动子,抑制EZH2的过表达。另一方面,EZH2的低表达可有效延长细胞周期的G2/M期,阻碍细胞增殖。USP7和EZH2通过P53的相互作用机制促进喉癌的侵袭和转移 [52]。

5. USP13

USP13位于人类基因组3号染色体上,由约2592个碱基组成基因编码区,编码由863个氨基酸组成的蛋白质。结构分析表明,USP13蛋白质的主要功能性结构域包含4个泛素相关(ubiquitin-associated, UBA)结构域和1个泛素特异性加工蛋白酶(ubiquitin specific processing protease, UBP)结构域。泛素特异性加工蛋白酶结构域USP13的UBP结构域包含1个催化位点、1个锌指结构域和2个UBA结构域 [53]。USP13具有抑制肿瘤生长和促进肿瘤生长的双重作用,并且其作为肿瘤治疗的一种潜在分子靶点已被广泛研究。USP13在黑色素瘤、成胶质细胞瘤、肺癌、卵巢癌等大多癌症高表达,促进癌症发生发展,且与患者生存率、预后等相关。而在乳腺癌、膀胱癌等中,USP13表达量有明显的降低。USP13在黑色素瘤、非小细胞型肺癌、卵巢癌和肝癌等一些实体瘤中表达上调,在膀胱癌、乳腺癌、结直肠癌及口腔鳞癌等肿瘤细胞中下调,并与肿瘤的预后相关 [54]。据报道USP13具有去泛素化和稳定PTEN的功能,可抑制乳腺癌 [55] 的肿瘤发生和糖酵解。此外,在膀胱癌中,USP13的缺失导致了PTEN的下调,促进了膀胱癌细胞的增殖、侵袭和迁移能力,从而发挥抑癌作用 [56]。另有研究表明AKT通路参与了USP13相关的肿瘤。USP13缺失可通过下调PTEN来增加AKT磷酸化并促进乳腺癌细胞生长 [55]。抑制USP13表达可增加卵巢肿瘤细胞对AKT抑制剂的敏感性,从而抑制肿瘤进展 [57]。在非小细胞肺癌中,抑制USP13表达可通过AKT/MAPK通路抑制肺癌细胞增殖和肿瘤生长 [58]。Qu等人发现过表达USP13可通过PTEN/AKT信号通路下调糖酵解相关蛋白GLUT1和HK2的表达,进而抑制口腔鳞癌细胞的糖酵解和乳酸生成 [59]。

6. USP14

USP14编码基因定位于人类染色体18p11.32,是靠近端粒处的功能基因,其上游具有富含G的序列,如高度保守的GGAGG序列。在距离USP14基因5’端26 kb处有一长约19 kb的重复序列,此外它还靠近2个分别长为407 bp和1136 bp的端粒重复序列。从cDNA序列分析,USP14基因编码区含有1485个碱基,此外在其5’端启动子上游有一个719个碱基的非编码区,同时在其3’端也有1337个碱基构成的非编码区,这些非编码区主要参与基因的表达调控 [60]。USP14是一种被证实与多种癌症的发生和发展有关的去泛素化酶。在肿瘤异种移植小鼠中,敲低USP14的舌癌相较对照组生长缓慢。在舌癌组织中,USP14的表达高于癌旁组织,体外实验发现敲低USP14的表达可以抑制舌癌细胞的增殖与迁移 [61],体内外实验结果一致表明USP14可以促进舌鳞癌的增殖与侵袭。USP14的抑制剂bA-125会引起泛素化蛋白的大量增加,触发肿瘤细胞的凋亡,激活半胱氨酸天冬氨酸蛋白酶-3 (caspase3)以产生caspase3与聚二磷酸腺苷核糖聚合酶PARP-1的剪切体,从而引起肿瘤细胞凋亡 [62]。

7. USP4

USP4位于人类基因组3号染色体上,USP4是从靶蛋白上裂解泛素起到去泛素化的作用,参与了体内肿瘤形成的多种信号通路的调控。先前的研究表明,USP4在肺癌、结肠癌、甲状腺癌和尿道癌等多种癌症中过度表达。此外,USP4被证明是Wnt信号通路的负调控因子,而Wnt信号通路具有致瘤活性 [63] [64]。最近,Xiao等人报道USP4靶向TRAF2和TRAF6去泛素化,抑制TNF-α诱导的癌细胞迁移。Hou等人证明USP4在HNSCC中上调,并通过免疫共沉淀实验发现USP4与受体相互作用蛋白1 (RIPI)可相互作用,以去除RIPI中K63连接的泛素分子以稳定RIPI的表达,从而负调节RIPI泛素化介导NF-κB的活化及促进肿瘤坏死因子TNF-α诱导的细胞凋亡(TNF是细胞凋亡的主要介质),起到抑制HNSCC细胞凋亡的作用 [65] [66]。

8. USP28

USP28编码基因定位于人类染色体11q23.2,全长由1077个氨基酸组成,分子量约为122.5 kDa。USP28是研究最多的DUB之一,控制着肿瘤进展的关键事件。USP28在多种肿瘤细胞中高表达,USP28的一个核心功能与其抑制SCFFBXW7的肿瘤抑制活性和促进几种细胞周期相关蛋白的稳定有关,如c-Myc和Cyclin E。因此,USP28的活性与促进增殖、癌症发生和转移有关 [67]。Prieto-Garcia等人发现鳞癌细胞通过USP28维持ΔNp63的蛋白质稳定性,USP28能够结合并促进∆Np63的去泛素化。基因或化学抑制USP28可影响鳞状细胞癌的增殖,并影响不同的鳞状细胞癌细胞中上皮靶基因的表达,从而抑制∆Np63的沉默作用。这些结果在喉癌的小鼠模型中也得到了证实,因为USP28的基因缺失阻碍了鳞癌的生长。喉鳞状细胞癌组织中USP28和∆Np63的表达具有很强的相关性,USP28水平升高的患者预后不良 [68]。

除了通过∆Np63蛋白稳定来维持上皮特性和促进肿瘤生长外,USP28的致癌活性也可能与其他信号通路有关。事实上,USP28控制着ATR/ATM信号传导因子和介质的稳定性,例如Claspin和p53BP1,它们对于精细调控DNA复制、S期检查点和响应DSB的G2/M停滞很重要 [69] [70]。USP28也可以通过组蛋白H2A去泛素化调控p53、p21以及p16INK4A。已有研究结果表明,USP28可能调节不同的致癌途径,每一条途径都可能有助于维持SCC的肿瘤表型 [71]。

头颈部恶性肿瘤的绝大多数病理表现为鳞状细胞癌,基于头颈部解剖结构的复杂性和暴露患者器官功能的重要性,有70%左右的患者在出现浸润和转移时诊断已为晚期,预后及生存率均不够理想 [7]。从而探究HNSCC的发病机制对提供新的治疗思路和方法具有重要意义。近年来,USPs在肿瘤中的功能以及USPs在肿瘤靶向治疗中潜在临床价值的相关研究受到广泛关注。虽然USPs调控下游效应机制及功能尚不清晰,但作为治疗HNSCC的潜在靶点,并且随着去泛素化酶在HNSCC中的作用机制及功能研究的逐步加深,有助于研制针对不同USPs的特异性抑制剂或激活剂,并应用于HNSCC的早期诊断标记和靶向治疗成为可能。

参考文献

[1] Solomon, B., Young, R.J. and Rischin, D. (2018) Head and Neck Squamous Cell Carcinoma: Genomics and Emerging Biomarkers for Immunomodulatory Cancer Treatments. Seminars in Cancer Biology, 52, 228-240.
https://doi.org/10.1016/j.semcancer.2018.01.008
[2] Johnson, D.E., et al. (2020) Head and Neck Squamous Cell Carcinoma. Nature Reviews Disease Primers, 6, Article No. 92.
https://doi.org/10.1038/s41572-020-00224-3
[3] Jou, A. And, J. (2017) Hess, Epidemiology and Molecular Bi-ology of Head and Neck Cancer. Oncology Research and Treatment, 40, 328-332.
https://doi.org/10.1159/000477127
[4] Alsahafi, E., et al. (2019) Clinical Update on Head and Neck Cancer: Mo-lecular Biology and Ongoing Challenges. Cell Death & Disease, 10, Article No. 540.
https://doi.org/10.1038/s41419-019-1769-9
[5] The Cancer Genome Atlas Network (2015) Comprehensive Ge-nomic Characterization of Head and Neck Squamous Cell Carcinomas. Nature, 517, 576-582.
https://doi.org/10.1038/nature14129
[6] Leemans, C.R., Snijders, P.J.F. and Brakenhoff, R.H. (2018) The Molec-ular Landscape of Head and Neck Cancer. Nature Reviews Cancer, 18, 269-282.
https://doi.org/10.1038/nrc.2018.11
[7] Resteghini, C., et al. (2018) Big Data in Head and Neck Cancer. Current Treatment Options in Oncology, 19, Article No. 62.
https://doi.org/10.1007/s11864-018-0585-2
[8] Csizmadia, T. and Low, P. (2020) The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy. International Journal of Molecular Sciences, 21, Article No. 4196.
https://doi.org/10.3390/ijms21124196
[9] Collins, G.A. and Goldberg, A.L. (2017) The Logic of the 26S Proteasome. Cell, 169, 792-806.
https://doi.org/10.1016/j.cell.2017.04.023
[10] Komander, D., Clague, M.J. and Urbe, S. (2009) Breaking the Chains: Structure and Function of the Deubiquitinases. Nature Reviews Molecular Cell Biology, 10, 550-563.
https://doi.org/10.1038/nrm2731
[11] Mevissen, T.E.T. and Komander, D. (2017) Mechanisms of Deubiquitinase Specificity and Regulation. Annual Review of Biochemistry, 86, 159-192.
https://doi.org/10.1146/annurev-biochem-061516-044916
[12] Abdul Rehman, S.A., et al. (2016) MINDY-1 Is a Member of An Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Molecular Cell, 63, 146-155.
https://doi.org/10.1016/j.molcel.2016.05.009
[13] Reyes-Turcu, F.E., K.H. Ventii, and Wil-kinson, K.D. (2009) Regulation and Cellular Roles of Ubiquitin-Specific Deubiquitinating Enzymes. Annual Review of Biochemistry, 78, 363-397.
https://doi.org/10.1146/annurev.biochem.78.082307.091526
[14] Nijman, S.M., et al. (2005) A Genomic and Functional Inventory of Deubiquitinating Enzymes. Cell, 123, 773-786.
https://doi.org/10.1016/j.cell.2005.11.007
[15] Hu, M., Li, P., Li, M., Li, W., Yao, T., Wu, J.W., Gu, W., Cohen, R.E. and Shi, Y. (2002) Crystal Structure of a UBP-Family Deubiquitinating Enzyme in Isolation and in Complex with Ubiquitin Aldehyde. Cell, 111, 1041-1054.
https://doi.org/10.1016/S0092-8674(02)01199-6
[16] Qu, Q., et al. (2015) USP2 Promotes Cell Migration and Invasion in Triple Negative Breast Cancer Cell Lines. Tumor Biology, 36, 5415-5423.
https://doi.org/10.1007/s13277-015-3207-7
[17] Graner, E., Tang, D., Rossi, S., Baron, A., Migita, T., Weinstein, L.J., Lechpammer, M., Huesken, D., Zimmermann, J., Signoretti, S. and Loda, M. (2004) The Isopeptidase USP2a Reg-ulates the Stability of Fatty Acid Synthase in Prostate Cancer. Cancer Cell, 5, 253-261.
https://doi.org/10.1016/S1535-6108(04)00055-8
[18] Boustani, M.R., et al. (2016) Overexpression of Ubiqui-tin-Specific Protease 2a (USP2a) and Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) in Human Gliomas. Journal of the Neurological Sciences, 363, 249-252.
https://doi.org/10.1016/j.jns.2016.03.003
[19] Turnbull, A.P., et al. (2017) Molecular Basis of USP7 Inhibition by Selective Small-Molecule Inhibitors. Nature, 550, 481-486.
https://doi.org/10.1038/nature24451
[20] Wang, Z., et al. (2019) USP7: Novel Drug Target in Cancer Therapy. Frontiers in Pharmacology, 10, Article No. 427.
https://doi.org/10.3389/fphar.2019.00042
[21] Pannem, R.R., et al. (2014) CYLD Controls C-MYC Expression through the JNK-Dependent Signaling Pathway in Hepatocellular Carcinoma. Carcinogenesis, 35, 461-468.
https://doi.org/10.1093/carcin/bgt335
[22] Massoumi, R., et al. (2006) Cyld Inhibits Tumor Cell Proliferation by Blocking Bcl-3-Dependent NF-κB Signaling. Cell, 125, 665-677.
https://doi.org/10.1016/j.cell.2006.03.041
[23] Zhang, J., et al. (2006) Impaired Regulation of NF-κB and Increased Susceptibility to Colitis-Associated Tumorigenesis in CYLD-Deficient Mice. Journal of Clinical Investigation, 116, 3042-3049.
https://doi.org/10.1172/JCI28746
[24] Chen, Y., et al. (2018) Reduced Expression of Deubiquitinase USP33 Is Associated with Tumor Progression and Poor Prognosis of Gastric Adenocarcinoma. Medical Science Monitor, 24, CLR3496-3505.
https://doi.org/10.12659/MSM.908075
[25] Melo-Cardenas, J., Xu, Y., Wei, J., et al. (2018) USP22 Deficiency Leads to Myeloid Leukemia upon Oncogenic Kras Activation through a PU 1-Dependent Mechanism. Blood, 132, 423-434.
https://doi.org/10.1182/blood-2017-10-811760
[26] Koutelou, E., Wang, L., Schibler, A.C., et al. (2019) USP22 Controls Multiple Signaling Pathways That Are Essential for Vasculature Formation in the Mouse Placenta. Development, 146, Dev174037.
https://doi.org/10.1242/dev.174037
[27] Lai, K.P., Chen, J. and Tse, W.K.F. (2020) Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy. International Journal of Molecular Sciences, 21, Article No. 2548.
https://doi.org/10.3390/ijms21072548
[28] Liu, T., Liu, J., Chen, Q., Jin, S., Mi, S., Shao, W., Kudo, Y., Zeng, S. and Qi, G. (2019) Expression of USP22 and the Chromosomal Passenger Complex Is An Indicator of Malig-nant Progression in Oral Squamous Cell Carcinoma. Oncology Letters, 17, 2040-2046.
https://doi.org/10.3892/ol.2018.9837
[29] Dou, Y., Lin, J., Shu, H., Jiang, N. (2014) Role of Ubiquitin-Specific Peptidase 22 in Carcinogenesis of Human Pharyngeal Squamous Cell Carcinoma. Molecular Medicine Reports, 10, 2973-2978.
https://doi.org/10.3892/mmr.2014.2589
[30] 莫文法. 鼻咽癌组织中USP22和C-Myc的表达及临床意义[J]. 继续医学教育, 2019, 33(8): 130-132.
[31] Zhuang, Y.J., Liao, Z.W., Yu, H.W., Song, X.L., Liu, Y., Shi, X.Y., Lin, X.D. and Zhou, T.C. (2015) ShRNA-Mediated Silencing of the Ubiquitin-Specific Protease 22 Gene Restrained Cell Progression and Affected the Akt Pathway in Nasopharyngeal Carcinoma. Cancer Biology & Therapy, 16, 88-96.
https://doi.org/10.4161/15384047.2014.987029
[32] 李丽娟, 温树信, 王斌全, 高伟, 张文, 孟晓敏, 等. 肿瘤干细胞标记物USP22蛋白在喉鳞状细胞癌中的表达及预后分析[J]. 中华耳鼻咽喉头颈外科杂志, 2014, 49(6): 479-482.
[33] Harris, D.R., Mims, A. and Bunz, F. (2012) Genetic Disruption of USP9X Sensitizes Colorectal Cancer Cells to 5-Fluorouracil. Cancer Biology & Therapy, 13, 1319-1324.
https://doi.org/10.4161/cbt.21792
[34] Cox, J.L., Wilder, P.J., Wuebben, E.L., Ouellette, M.M., Hollingsworth, M.A. and Rizzino, A. (2014) Context-Dependent Function of the Deubiquitinating Enzyme USP9X in Pancreatic Ductal Adenocarcinoma. Cancer Biology & Therapy, 15, 1042-1052.
https://doi.org/10.4161/cbt.29182
[35] Liu, H., Chen, W., Liang, C., et al. (2015) WP1130 Increases Doxorubicin Sensitivity in Hepatocellular Carcinoma Cells through Usp9x-Dependent P53 Degradation. Cancer Letters, 361, 218-225.
https://doi.org/10.1016/j.canlet.2015.03.001
[36] Peng, J., Hu, Q., Liu, W., et al. (2013) USP9X Expression Cor-relates with Tumor Progression and Poor Prognosis in Esophageal Squamous Cell Carcinoma. Diagnostic Pathology, 8, Article No. 177.
https://doi.org/10.1186/1746-1596-8-177
[37] Perez-Mancera, P.A., Rust, A.G., Van Der Weyden, L., et al. (2012) The Deubiquitinase USP9X Suppresses Pancreatic Ductal Adenocarcinoma. Nature, 486, 266-270.
https://doi.org/10.1038/nature11114
[38] Wang, M.L., Panasyuk, G., Gwalter, J., Nemazanyy, I., Fenton, T., Filo-nenko, V. and Gout, I. (2008) Regulation of Ribosomal Protein S6 Kinases by Ubiquitination. Biochemical and Biophys-ical Research Communications, 369, 382-387.
https://doi.org/10.1016/j.bbrc.2008.02.032
[39] Panasyuk, G., Nemazanyy, I., Filonenko, V. and Gout, I. (2008) Ribosomal Protein S6 Kinase 1 Interacts with and Is Ubiquitinated by Ubiquitin Ligase ROC1. Biochemical and Bio-physical Research Communications, 369, 339-343.
https://doi.org/10.1016/j.bbrc.2008.02.016
[40] Nanayakkara, D.M., Nguyen, M.N. and Wood, S.A. (2016) Deubiquitylating Enzyme, USP9X, Regulates Proliferation of Cells of Head and Neck Cancer Lines. Cell Proliferation, 49, 494-502.
https://doi.org/10.1111/cpr.12273
[41] Khan, O.M., Carvalho, J., Spencer-Dene, B., et al. (2018) The Deubiquitinase USP9X Regulates FBW7 Stability and Suppresses Colorectal Cancer. Journal of Clinical Investigation, 128, 1326-1337.
https://doi.org/10.1172/JCI97325
[42] 冯燚源, 杨晶, 张雪, 李珊珊, 李源泉, 杨洪斌. USP9X与MCL-1在鼻咽癌中表达及预后分析[J]. 中国老年学杂志, 2022, 42(7): 1584-1587.
[43] Everett, R.D., Meredith, M., Orr, A., Cross, A., Kathoria, M. and Parkinson, J. (1997) A Novel Ubiquitin-Specific Protease Is Dynamically As-sociated with the PML Nuclear Domain and Binds to a Herpesvirus Regulatory Protein. The EMBO Journal, 16, 1519-1530.
https://doi.org/10.1093/emboj/16.7.1519
[44] Zhou, J., Wang, J., Chen, C., Yuan, H., Wen, X. and Sun, H. (2018) USP7: Target Validation and Drug Discovery for Cancer Therapy. Medicinal Chemistry, 14, 3-18.
https://doi.org/10.2174/1573406413666171020115539
[45] 周芨, 邓世山, 刘海. USP7在喉癌组织中的表达及其临床意义[J]. 中国耳鼻咽喉颅底外科杂志, 2015, 21(1): 27-30.
[46] Jing, Y., Yang, Y., Hao, F., et al. (2018) Higher Ki67 Expression in Fibroblast Like Cells at Invasive Front Indicates Better Clinical Outcomes in Oral Squamous Cell Carcinoma Patients. Bioscience Reports, 38, BSR20181271.
https://doi.org/10.1042/BSR20181271
[47] Celentano, A., Yap, T., Paolini, R., Yiannis, C., Mirams, M., Koo, K., McCullough, M. and Cirillo, N. (2021) Inhibition of Matrix Metalloproteinase-2 Modulates Malignant Behaviour of Oral Squamous Cell Carcinoma Cells. Journal of Oral Pathology & Medicine, 50, 323-332.
https://doi.org/10.1111/jop.12992
[48] Mărgăritescu, C., Pirici, D., Stîngă, A., Simionescu, C., Raica, M., Mogo-antă, L., Stepan, A. and Ribatti, D. (2010) VEGF Expression and Angiogenesis in Oral Squamous Cell Carcinoma: An Immunohistochemical and Morphometric Study. Clinical and Experimental Medicine, 10, 209-214.
https://doi.org/10.1007/s10238-010-0095-4
[49] Yang, X., Jin, J., Yang, J., Zhou, L., Mi, S. and Qi, G. (2021) Expression of Ubiquitin-Specific Protease 7 in Oral Squamous Cell Carcinoma Promotes Tumor Cell Proliferation and Invasion. Genetics and Molecular Biology, 44, e20210058.
https://doi.org/10.1590/1678-4685-gmb-2021-0058
[50] Hwang, C.F., Huang, H.Y., Chen, C.H., Chien, C.Y., Hsu, Y.C., Li, C.F. and Fang, F.M. (2012) Enhancer of Zeste Homolog 2 Overexpression in Nasopharyngeal Carcinoma: An Independent Poor Prognosticator That Enhances Cell Growth. International Journal of Radiation Oncology, Biology, Physics, 82, 597-604.
https://doi.org/10.1016/j.ijrobp.2010.11.062
[51] Shiogama, S., Yoshiba, S., Soga, D., Motohashi, H. and Shintani, S. (2013) Aberrant Expression of EZH2 Is Associated with Pathological Findings and P53 Alteration. Anticancer Re-search, 33, 4309-4317.
[52] Zhang, M.J., Chen, D.S., Li, H., Liu, W.W., Han, G.Y. and Han, Y.F. (2019) Clinical Sig-nificance of USP7 and EZH2 in Predicting Prognosis of Laryngeal Squamous Cell Carcinoma and Their Possible Func-tional Mechanism. International Journal of Clinical and Experimental Pathology, 12, 2184-2194.
[53] Scortegagna, M., Subtil, T., Qi, J., Kim, H., Zhao, W., Gu, W., Kluger, H. and Ronai, Z.A. (2011) USP13 Enzyme Regulates Siah2 Ligase Stability and Activity Via Noncatalytic Ubiquitin-Binding Domains. Journal of Biological Chemistry, 286, 27333-27341.
https://doi.org/10.1074/jbc.M111.218214
[54] 陶守松, 刘凯, 李亚婷, 王婷, 葛志强, 詹轶群, 尹荣华, 任广明, 杨晓明. 去泛素化酶USP13在癌症中的研究进展[J]. 军事医学, 2021, 45(1): 76-80.
[55] Zhang, J., Zhang, P., Wei, Y., et al. (2013) Deubiquitylation and Stabilization of PTEN by USP13. Nature Cell Biology, 15, 1486-1494.
https://doi.org/10.1038/ncb2874
[56] Man, X., Piao, C., Lin, X., et al. (2019) USP13 Functions as a Tumor Sup-pressor by Blocking the NF-κB-Mediated PTEN Downregulation in Human Bladder Cancer. Journal of Experimental & Clinical Cancer Research, 38, Article No. 259.
https://doi.org/10.1186/s13046-019-1262-4
[57] Han, C., Yang, L., Choi, H.H., et al. (2016) Amplification of USP13 Drives Ovarian Cancer Metabolism. Nature Communications, 7, Arti-cle No. 13525.
https://doi.org/10.1038/ncomms13525
[58] Wu, Y., Zhang, Y., Liu, C., et al. (2019) Amplification of USP13 Drives Non-Small Cell Lung Cancer Progression Mediated by AKT/MAPK Signaling. Biomedicine & Phar-macotherapy, 114, Article ID: 108831.
https://doi.org/10.1016/j.biopha.2019.108831
[59] 屈直. USP13在口腔鳞癌中的作用及其分子机制[D]: [博士学位论文]. 沈阳: 中国医科大学, 2020.
[60] Goidts, V., Szamalek, J.M., Hameister, H., et al. (2004) Segmental Du-plication Associated with the Human-Specific Inversion of Chromosome 18: A Further Example of the Impact of Seg-mental Duplications on Karyotype and Genome Evolution in Primates. Human Genetics, 115, 116-122.
https://doi.org/10.1007/s00439-004-1120-z
[61] Chen, X., Wu, J., Chen, Y., Ye, D., Lei, H., Xu, H., Yang, L., Wu, Y. and Gu, W. (2016) Ubiquitin-Specific Protease 14 Regulates Cell Proliferation and Apoptosis in Oral Squamous Cell Carcinoma. The International Journal of Biochemistry & Cell Biology, 79, 350-359.
https://doi.org/10.1016/j.biocel.2016.08.038
[62] Jiang, L., Sun, Y., Wang, J., He, Q., Chen, X., Lan, X., Chen, J., Dou, Q.P., Shi, X. and Liu, J. (2019) Proteasomal Cysteine Deubiquitinase Inhibitor B-AP15 Suppresses Migration and Induces Apoptosis in Diffuse Large B Cell Lymphoma. Journal of Experimental & Clinical Cancer Research, 38, Article No. 453.
https://doi.org/10.1186/s13046-019-1446-y
[63] Zhao, B., Schlesiger, C., Masucci, M.G. and Lindsten, K. (2009) The Ubiquitin Specific Protease 4 (USP4) Is a New Player in the Wnt Signalling Pathway. Journal of Cellular and Mo-lecular Medicine, 13, 1886-1895.
https://doi.org/10.1111/j.1582-4934.2008.00682.x
[64] Klaus, A. and Birchmeier, W. (2008) Wnt Signalling and Its Impact on Development and Cancer. Nature Reviews Cancer, 8, 387-398.
https://doi.org/10.1038/nrc2389
[65] Hou, X., Wang, L., Zhang, L., Pan, X. and Zhao, W. (2013) Ubiqui-tin-Specific Protease 4 Promotes TNF-α-Induced Apoptosis by Deubiquitination of RIP1 in Head and Neck Squamous Cell Carcinoma. FEBS Letters, 587, 311-316.
https://doi.org/10.1016/j.febslet.2012.12.016
[66] Xiao, N., Li, H., Luo, J., et al. (2012) Ubiquitin-Specific Prote-ase 4 (USP4) Targets TRAF2 and TRAF6 for Deubiquitination and Inhibits TNF-Induced Cancer Cell Migration. Bio-chemical Journal, 441, 979-986.
https://doi.org/10.1042/BJ20111358
[67] Wang, X., Liu, Z., Zhang, L., et al. (2018) Targeting Deubiquitinase USP28 for Cancer Therapy. Cell Death & Disease, 9, Article No. 186.
https://doi.org/10.1038/s41419-017-0208-z
[68] Prieto-Garcia, C., Hartmann, O., Reissland, M., et al. (2020) Maintaining Protein Stability of ∆Np63 Via USP28 Is Required by Squamous Cancer Cells. EMBO Molecular Medicine, 12, e11101.
https://doi.org/10.15252/emmm.201911101
[69] Zhang, D., Zaugg, K., Mak, T.W. and Elledge, S.J. (2006) A Role for the Deubiquitinating Enzyme USP28 in Control of the DNA-Damage Response. Cell, 126, 529-542.
https://doi.org/10.1016/j.cell.2006.06.039
[70] Bassermann, F., Frescas, D., Guardavaccaro, D., Busino, L., Peschiaroli, A. and Pagano, M. (2008) The Cdc14B-Cdh1-Plk1 Axis Controls the G2 DNA-Damage-Response Check-point. Cell, 134, 256-267.
https://doi.org/10.1016/j.cell.2008.05.043
[71] Benevolo, M., Musio, A., Vocaturo, A., et al. (2012) Claspin as a Biomarker of Human Papillomavirus-Related High Grade Lesions of Uterine Cervix. Journal of Translational Medicine, 10, Article No. 132.
https://doi.org/10.1186/1479-5876-10-132