双调和非线性SchrÖdinger方程的低正则算法
Low-Regularity Integrator for the Biharmonic NLS Equation
DOI: 10.12677/AAM.2022.1111796, PDF, HTML, 下载: 148  浏览: 226  国家自然科学基金支持
作者: 宁 翠:广东金融学院金融数学与统计学院,广东 广州
关键词: 双调和非线性Schro¨dinger方程低正则算法一阶收敛Biharmonic Nonlinear SchrÖdinger Equation Low-Regularity Integrator First Order Convergent
摘要: 本文研究了双调和非线性SchrÖdinger方程的具有一阶收敛的一种低正则算法, 得到的算法在损失三阶导数的前提下可以达到一阶收敛. 同时, 我们通过严格的误差分析, 证明了当初值属 于Hγ+3(Td)时, 双调和非线性SchrÖdinger方程在Hγ(Td)上具有一阶收敛, 其中
Abstract: In this paper, we introduce a first order low-regularity integrator for the biharmonic nonlinear SchrÖdinger equation. It only requires the boundedness of three additional derivatives of the solution to be the first order convergent. By rigorous error analysis, we show that the scheme provides first order accuracy in Hγ(Td) for rough initial data in Hγ+3(Td) with .
文章引用:宁翠. 双调和非线性SchrÖdinger方程的低正则算法[J]. 应用数学进展, 2022, 11(11): 7512-7523. https://doi.org/10.12677/AAM.2022.1111796

参考文献

[1] Zhu, S., Zhang, J. and Yang, H. (2010) Limiting Profile of the Blow-Up Solutions for the Fourth-Order Nonlinear Schro¨dinger Equation. Dynamics of Partial Differential Equations, 7, 187-205.
https://doi.org/10.4310/DPDE.2010.v7.n2.a4
[2] Guo, Q. (2016) Scattering for the Focusing L2-Supercritical and H˙ 2-Subcritical Biharmonic NLS Equations. Communications in Partial Differential Equations, 41, 185-207.
https://doi.org/10.1080/03605302.2015.1116556
[3] Li, Y., Wu, Y. and Xu, G. (2011) Global Well-Posedness for the Mass-Critical Nonlinear Schro¨dinger Equation on T. Journal of Differential Equations, 250, 2715-2736.
https://doi.org/10.1016/j.jde.2011.01.025
[4] Li, Y., Wu, Y. and Xu, G. (2011) Low Regularity Global Solutions for the Focusing Mass- Critical NLS in R. SIAM Journal on Mathematical Analysis, 43, 322-340.
https://doi.org/10.1137/090774537
[5] Wu, Y. (2013) Global Well-Posedness of the Derivative Nonlinear Schro¨dinger Equations in Energy Space. Analysis & PDE, 6, 1989-2002.
https://doi.org/10.2140/apde.2013.6.1989
[6] Liu, X., Simpson, G. and Sulem, C. (2013) Stability of Solitary Waves for a Generalized Derivative Nonlinear Schro¨dinger Equation. Journal of Nonlinear Science, 23, 557-583.
https://doi.org/10.1007/s00332-012-9161-2
[7] Wu, Y. (2015) Global Well-Posedness on the Derivative Nonlinear Schro¨dinger Equation. Anal- ysis & PDE, 8, 1101-1113.
https://doi.org/10.2140/apde.2015.8.1101
[8] Ning, C., Ohta, M. and Wu, Y. (2017) Instability of Solitary Wave Solutions for Derivative Nonlinear Schro¨dinger Equation in Endpoint Case. Journal of Differential Equations, 262, 1671-1689.
https://doi.org/10.1016/j.jde.2016.10.020
[9] Le Coz, S. and Wu, Y. (2018) Stability of Multi-Solitons for the Derivative Nonlinear Schro¨dinger Equation. International Mathematics Research Notices, No. 13, 4120-4170.
https://doi.org/10.1093/imrn/rnx013
[10] Ning, C. (2020) Instability of Solitary Wave Solutions for Derivative Nonlinear Schr¨odinger Equation in Borderline Case. Nonlinear Analysis, 192, Article ID: 111665.
https://doi.org/10.1016/j.na.2019.111665
[11] Feng, B. and Zhu, S. (2021) Stability and Instability of Standing Waves for the Fractional Nonlinear Schro¨dinger Equations. Journal of Differential Equations, 292, 287-324.
https://doi.org/10.1016/j.jde.2021.05.007
[12] Court`es, C., Lagouti`ere, F. and Rousset, F. (2020) Error Estimates of Finite Difference Schemes for the Korteweg-de Vries Equation. IMA Journal of Numerical Analysis, 40, 628-685.
https://doi.org/10.1093/imanum/dry082
[13] Holden, H., Koley, U. and Risebro, N. (2014) Convergence of a Fully Discrete Finite Difference Scheme for the Korteweg-de Vries Equation. IMA Journal of Numerical Analysis, 35, 1047- 1077.
https://doi.org/10.1093/imanum/dru040
[14] Aksan, E. and O¨ zde¸s, A. (2006) Numerical Solution of Korteweg-de Vries Equation by Galerkin B-Spline Finite Element Method. Applied Mathematics and Computation, 175, 1256-1265.
https://doi.org/10.1016/j.amc.2005.08.038
[15] Dutta, R., Koley, U. and Risebro, N.H. (2015) Convergence of a Higher Order Scheme for the Korteweg-de Vries Equation. SIAM Journal on Numerical Analysis, 53, 1963-1983.
https://doi.org/10.1137/140982532
[16] Holden, H., Karlsen, K.H., Risebro, N.H. and Tang, T. (2011) Operator Splitting for the KdV Equation. Mathematics of Computation, 80, 821-846.
https://doi.org/10.1090/S0025-5718-2010-02402-0
[17] Holden, H., Lubich, C. and Risebro, N.H. (2012) Operator Splitting for Partial Differential Equations with Burgers Nonlinearity. Mathematics of Computation, 82, 173-185.
https://doi.org/10.1090/S0025-5718-2012-02624-X
[18] Ma, H. and Sun, W. (2001) Optimal Error Estimates of the Legendre-Petrov-Galerkin Method for the Korteweg-de Vries Equation. SIAM Journal on Numerical Analysis, 39, 1380-1394.
https://doi.org/10.1137/S0036142900378327
[19] Shen, J. (2003) A New Dual-Petrov-Galerkin Method for Third and Higher Odd-Order Dif- ferential Equations: Application to the KdV Equation. SIAM Journal on Numerical Analysis, 41, 1595-1619.
https://doi.org/10.1137/S0036142902410271
[20] Yan, J. and Shu, C.W. (2002) A Local Discontinuous Galerkin Method for KdV Type Equa- tions. SIAM Journal on Numerical Analysis, 40, 769-791.
https://doi.org/10.1137/S0036142901390378
[21] Liu, H. and Yan, J. (2006) A Local Discontinuous Galerkin Method for the Kortewegde Vries Equation with Boundary Effect. Journal of Computational Physics, 215, 197-218.
https://doi.org/10.1016/j.jcp.2005.10.016
[22] Hochbruck, M. and Ostermann, A. (2010) Exponential Integrators. Acta Numerica, 19, 209-286.
https://doi.org/10.1017/S0962492910000048
[23] Hofmanov´a, M. and Schratz, K. (2017) An Exponential-Type Integrator for the KdV Equation. Numerische Mathematik, 136, 1117-1137.
https://doi.org/10.1007/s00211-016-0859-1
[24] Lubich, C. (2008) On Splitting Methods for Schro¨dinger-Poisson and Cubic Nonlinear Schro¨dinger Equations. Mathematics of Computation, 77, 2141-2153.
https://doi.org/10.1090/S0025-5718-08-02101-7
[25] Ostermann, A. and Schratz, K. (2018) Low Regularity Exponential-Type Integrators for Semi- linear Schr¨odinger Equations. Foundations of Computational Mathematics, 18, 731-755.
https://doi.org/10.1007/s10208-017-9352-1
[26] Wu, Y. and Yao, F. (2022) A First-Order Fourier Integrator for the Nonlinear Schro¨dinger Equation on T without Loss of Regularity. Mathematics of Computation, 91, 1213-1235.
https://doi.org/10.1090/mcom/3705
[27] Kato, T. and Ponce, G. (1988) Commutator Estimates and the Euler and Navier-Stokes E- quations. Communications on Pure and Applied Mathematics, 41, 891-907.
https://doi.org/10.1002/cpa.3160410704