长链非编码RNA MAPKAPK5-AS1在恶性肿瘤及其他疾病中的研究进展
The Research Progress of LncRNA MAPKAPK5-AS1 in Malignant Tumors and Other Diseases
DOI: 10.12677/ACM.2022.12111477, PDF, HTML, XML, 下载: 161  浏览: 7,784 
作者: 陈 超, 吴平平, 刘钱伟, 王巧云, 高 磊, 颉剑峰, 杜小东, 张 秩, 高 琴, 于照祥*:西安医学院第一附属医院普外科,陕西 西安
关键词: 长链非编码RNAMAPKAPK5-AS1恶性肿瘤LncRNA MAPKAPK5-AS1 Malignancy
摘要: 长链非编码RNA在调节基因表达水平上发挥重要的作用,广泛参与人类疾病的进展。LncRNA MAPKAPK5-AS1被发现在多种疾病中处于失调状态,如肝细胞癌、结直肠癌、肺癌及类风湿性关节炎等。本综述总结近些年MAPKAPK5-AS1相关研究,试图揭示其在疾病中的进展机制,为进一步研究提供参考。
Abstract: Long non-coding RNAs play an important role in the regulation of gene expression levels and are widely involved in the progression of human diseases. LncRNA MAPKAPK5-AS1 has been found to be dysregulated in a variety of diseases, such as hepatocellular carcinoma, colorectal cancer, lung cancer and rheumatoid arthritis. In this review, we summarize the recent progress related to MAPKAPK5-AS1, trying to reveal the mechanism of its progression in the disease, which provided reference for further studies.
文章引用:陈超, 吴平平, 刘钱伟, 王巧云, 高磊, 颉剑峰, 杜小东, 张秩, 高琴, 于照祥. 长链非编码RNA MAPKAPK5-AS1在恶性肿瘤及其他疾病中的研究进展[J]. 临床医学进展, 2022, 12(11): 10241-10248. https://doi.org/10.12677/ACM.2022.12111477

1. 引言

人类基因组测序表明大约有2%的基因编码蛋白质,而其余98%为非编码基因 [1]。长链非编码RNA (long noncoding RNA, lncRNA)属于非编码RNA,长度超过200个核苷酸分子,越来越多的证据表明,lncRNA在基因表达水平的调节中发挥着重要的作用 [2]。lncRNA参与大部分生物过程,如表观遗传调控、转录调控和转录后调控等 [3]。癌症生物学领域中的lncRNA研究表明,在各种类型的癌症中,大量lncRNA处于失调状态,并且失调的lncRNA可能在癌症起始、转移和治疗反应中发挥重要作用 [4]。LncRNA MAPKAPK5-AS1被发现在多种疾病中起重要作用,本文综述总结近些年MAPKAPK5-AS1相关研究,试图揭示其在疾病中的机制,为进一步研究提供参考。

2. LncRNA MAPKAPK5-AS1的结构和功能

MAPKAPK5-AS1位于染色体12q24.12上,又可称为C12orf47或MAAS,长度为2390个核苷酸,MAPKAPK5-AS1是MAPKAPK5的反义转录物,两个基因在启动子和第一个外显子区域共享重叠序列,因此MAPKAPK5-AS1可以顺式调节相邻基因MAPKAPK5,且MAPKAPK5基因已被证明在癌症进展中具有双重特征 [5]。MAPKAPK5-AS1已被证明在多种癌症中充当致癌分子,例如肝细胞癌、甲状腺癌、乳腺癌和结直肠癌等 [6]。lncRNA的亚细胞定位可以表明其介导生物学功能的机制。研究表明,位于细胞核内的lncRNA主要通过与多种蛋白质结合来调控基因表达。相比之下,位于细胞质中的lncRNA通常通过ceRNA机制在转录后水平调节基因表达 [7]。通过亚细胞分级分析观察到MAPKAPK5-AS1主要位于细胞质中,这表明MAPKAPK5-AS1可能通过作为miRNA海绵分子发挥其在肿瘤细胞中致癌作用,且HIF-1α可以直接与MAPKAPK5-AS1启动子结合以激活MAPKAPK5-AS1转录 [8]。

3. LncRNA MAPKAPK5-AS1调控肿瘤和其他疾病发生发展机制

MAPKAPK5-AS1在乙型肝炎病毒(HBV)相关的肝细胞癌(Hepatocellular carcinoma, HCC)组织样本中上调,在M2巨噬细胞中MAPKAPK5-AS1表达水平显着上调,表明MAPKAPK5-AS1在HBV相关HCC癌组织中的高表达可能依赖于来自TAM的外泌体转移 [9]。有研究证实,MAPKAPK5-AS1可吸附miR-429促进锌指E-box结合同源框1 (ZEB1)表达参与HCC的发生发展 [10]。在癌症中负调节G蛋白偶联受体(GPCRs)信号传导的G蛋白信号调节因子(RGS)蛋白参与其中。RF分类器预测RGS20和MAPKAPK5-AS1相互作用概率为0.95,提示MAPKAPK5-AS1可能通过RGS发挥作用 [11]。另有研究证实 [6],MAPKAPK5-AS1通过let-7f-1-3p-SNAI1轴促进结直肠癌的转移,MAPKAPK5-AS1还可以促进MAPK激活蛋白激酶5 (MK5)的翻译,而MK5促进c-Jun的磷酸化,c-Jun通过直接结合到锌指因子蜗牛1 (SNAI1)并激活其转录促进结直肠癌的发生。新风胶囊可调节MAPKAPK5-AS1抑制RA炎症反应和促进细胞凋亡,治疗RA [12]。MAPKAPK5-AS1还可通过MAPKAPK5-AS1/miR-124-3p/E2F3轴调节在LPS诱导的H9C2细胞凋亡和炎症反应 [13]。这些机制为MAPKAPK5-AS1在疾病中的研究提供新的思路。

4. 不同肿瘤和疾病中LncRNA MAPKAPK5-AS1的研究进展

4.1. LncRNA MAPKAPK5-AS1与肝癌

肝细胞癌是最常见的肝癌类型,为全球第三大肿瘤相关死亡原因。HCC的主要危险因素包括慢性丙型肝炎病毒或乙型肝炎病毒感染、大量饮酒、糖尿病和非酒精性脂肪肝病等 [14]。亚洲是HCC发病率最高的地区,且乙型肝炎病毒感染是中国患者最常见的HCC病因。尽管近些年来HCC的治疗取得了很大进展,包括分子靶向治疗、经导管动脉化疗栓塞、消融治疗、手术切除和肝移植等,但HCC患者的预后仍不尽如人意,5年复发率高达80%,其原因主要是肿瘤发生转移和复发 [15]。许多lncRNA被发现和证明参与包括HCC在内的各种肿瘤进展 [16]。缺氧是实体瘤微环境的标志,它参与了包括HCC在内的各种癌症的进展 [17]。HCC发生和转移的确切机制在很大程度上仍不清楚。因此,阐明肿瘤发生和转移的分子机制,对开发新的HCC治疗方法显得非常重要。研究表明 [8],MAPKAPK5-AS1在HCC中上调,与HCC患者的肿瘤大小(p = 0.006)、肿瘤多发性(p = 0.001)、血管侵犯( p = 0.008)、晚期肿瘤-淋巴结转移(TNM) (p = 0.001)和较短的生存期(p = 0.0002)显着相关。在功能上,MAPKAPK5-AS1的敲低抑制了HCC细胞的增殖、迁移和EMT,并诱导细胞凋亡。MAPKAPK5-AS1过表达增强体内HCC生长和肺转移。MAPKAPK5-AS1主要位于HCC细胞的细胞质中,通过充当内源性竞争性RNA海绵miR-154-5p上调PLAG1样锌指2 (PLAGL2)的表达,从而激活EGFR/AKT信号传导。HIF-1α可以直接与启动子结合以激活MAPKAPK5-AS1转录,MAPKAPK5-AS1通过PLAGL2调节HIF-1α表达,在HCC中形成缺氧介导的MAPKAPK5-AS1/PLAGL2/HIF-1α信号环促进HCC进展。Tao [9] 等证实,MAPKAPK5-AS1通过稳定c-Myc蛋白促进原癌基因MYC诱导的细胞周期蛋白依赖性激酶4(CDK4)、CDK6和S期激酶相关蛋白2的转录激活,从而促进G1期向S期过渡,后者促成了HCC细胞的反常增殖。以上研究提示MAPKAPK5-AS1可能是HCC潜在的治疗靶点和预后预测因子。

4.2. LncRNA MAPKAPK5-AS1与乳腺癌

乳腺癌是导致癌症死亡的主要原因,据世界卫生组织公布,2020年全球有68.5万人死于乳腺癌 [18]。大多数乳腺癌是腺癌,其中85%的腺癌病例来自乳腺导管,15%来自小叶上皮。乳腺癌细胞上雌激素受体、孕激素受体和人表皮生长因子2受体的存在与否对于确定治疗选择是重要的 [19]。治疗通常包括手术、放疗、化疗、靶向治疗(如曲妥珠单抗和帕妥珠单抗)和内分泌治疗等 [20]。乳腺癌的发病率和死亡率逐年上升,需探索其发生发展机制。LncRNA在乳腺癌中异常表达,并可调控肿瘤细胞增殖及迁移等功能 [21]。张 [22] 等研究证实,通过集落形成实验、Transwell实验及蛋白免疫印迹(Western Blot)实验,敲低MAPKAPK5-AS1基因后,乳腺癌细胞克隆形成数及迁移细胞数量显著减少,E-cadherin蛋白表达上调和N-cadherin蛋白表达下调,且Ki67表达水平降低,提示敲低MAPKAPK5-AS1后乳腺癌细胞增殖、迁移等功能被抑制,并减弱上皮–间质转化(EMT)过程。starBase数据库提示MAPKAPK5-AS1可能靶向miR-96,双荧光素酶报告实验提示两者能互相结合并影响活性。MAPKAPK5-AS1可通过MAPKAPK5-AS1/miR-96轴促进乳腺癌发生发展。以上研究提示MAPKAPK5-AS1可作为乳腺癌治疗中一位新成员。

4.3. LncRNA MAPKAPK5-AS1与结直肠癌

结直肠癌(colorectal cancer, CRC)是男性第三大常见癌症,女性第二常见癌症,发病率高,死亡率高,预后不良 [23]。尽管结直肠癌临床诊断和治疗包括癌症生物标志物、手术切除、放疗和化疗等,但患者预后较差 [24]。复发、转移和耐药是结直肠癌患者预后不良的主要原因。侵袭性结直肠肿瘤具有复杂的生物学特征,涉及一系列病理生理变化以及基因和信号通路的异常调节等。因此,发现CRC的有效肿瘤标志物和治疗靶点至关重要。TCGA数据库和GEO数据库显示MAPKAPK5-AS1在CRC组织中显着上调,MAPKAPK5-AS1水平的变化与晚期TNM分期相关,包括淋巴结转移、外周转移和病理分期等 [25]。MAPKAPK5-AS1已被证明可作为竞争性内源性RNA,通过与miRNA反应元件竞争来调节癌症相关基因的表达 [26]。有研究表明 [6],MAPKAPK5-AS1在CRC中上调并诱导细胞增殖和转移。敲低MK5-AS1在体外抑制细胞迁移和侵袭,并抑制小鼠肺转移。MK5-AS1通过海绵化let-7f-1-3p调节SNAI1的表达,顺式调节相邻基因MAPKAPK5。此外,MAPKAPK5-AS1还可以促进MAPK激活蛋白激酶5(MK5)的翻译,而MK5促进c-Jun的磷酸化,c-Jun通过直接结合到锌指因子蜗牛1 (SNAI1)并激活其转录促进结直肠癌的发生。MAPKAPK5-AS1还可通过靶向p21促进结直肠癌的发展 [25]。MAPKAPK5-AS1在CRC肿瘤发生中起重要作用,其可作为CRC的分子治疗新靶点。

4.4. LncRNA MAPKAPK5-AS1与肺癌

肺癌主要分为小细胞肺癌和非小细胞肺癌,其危险因素包括烟草、环境污染、有毒物质等 [27]。肺腺癌(Lung adenocarcinoma, LUAD)是严重的肺癌之一,占所有肺癌患者40%左右 [28]。在中国,每年与肺癌相关的LUAD患者数超过100万,死亡人数超过20万。其快速发展和早期转移导致预后不良 [29],然而肺癌发病机制仍不明确,由于缺乏可靠的生物标志物,因此预防LUAD是一项重大挑战。有研究表示 [30],MAPKAPK5-AS1在LUAD组织和三个LUAD细胞系(SK-lu-1、A549和H1299)中过表达。在通过质粒转染敲低MAPKAPK5-AS1后,集落形成实验显示集落明显减少,CCK-8增值实验显示LUAD细胞的生长明显受到抑制。此外,增殖标记物Ki-67的免疫荧光染色显示,LUAD细胞的增殖能力在MAPKAPK5-AS1下调后显着降低,凋亡细胞比例增加。MAPKAPK5-AS1在LUAD组织高表达且能够影响LUAD细胞增殖和凋亡等功能,其在肺癌中可能作为原癌基因而促进肿瘤发生发展。因此,MAPKAPK5-AS1可作为肺癌诊断、治疗和预后的生物标志物。

4.5. LncRNA MAPKAPK5-AS1与甲状腺癌

甲状腺癌是内分泌系统常见的恶性肿瘤,世界范围内女性尤其是发达国家女性中甲状腺癌发病率和死亡率均呈上升趋势 [31]。全球癌症统计数据估计,2018年约有567,000例甲状腺癌被诊断,其中约15.9%的病例发生在中国 [32]。虽然甲状腺癌的临床治疗中包括放射性碘治疗、甲状腺切除术和促甲状腺激素抑制治疗在内的治疗方式,但其疗效并不理想。因此,研究甲状腺癌的潜在机制具有重要意义,这可能会揭示更有效的诊断和治疗方法。研究表明,异常表达的lncRNA在包括甲状腺癌在内的恶性肿瘤的发展中发挥着重要作用 [33] [34]。研究证实 [35],MAPKAPK5-AS1的表达与甲状腺癌的增殖、迁移和侵袭有关。荧光定量聚合酶链反应(qRT-PCR)结果表明,与正常细胞相比,MAPKAPK5-AS1在甲状腺癌中高表达。功能测定表明,敲低MAPKAPK5-AS1可显着抑制BCPAP和TPC-1细胞的增殖和侵袭并加速细胞凋亡。此外还发现miR-519e-5p受MAPKAPK5-AS1负调控,下调MAPKAPK5-AS1表达抑制细胞增殖、迁移和侵袭,并通过海绵化miR-519e-5p促进细胞凋亡,这表明MAPKAPK5-AS1可能作为治疗甲状腺癌的一个潜在有希望的靶点。

4.6. LncRNA MAPKAPK5-AS1与胶质瘤

胶质瘤是最常见的原发性中枢神经系统恶性肿瘤,约占中枢神经系统肿瘤数量的44%,且患者临床预后不良 [36]。胶质母细胞瘤的预后是胶质瘤中最差的,其患者的中位总生存期为15~23月,5年生存率低于6% [37]。确诊后,胶质瘤的标准治疗包括手术切除最大病变范围、化疗(如替莫唑胺)和放疗等。治疗方案可能因疾病的不同阶段和患者的年龄而有差异。最近研究表明,自噬治疗将成为胶质瘤治疗的新方法 [38]。lncRNA功能受损参与胶质瘤发病机制,例如细胞凋亡和增殖 [39]。Luan等 [40] 研究发现,通过lncRNA-自噬基因共表达网络,确定了与与自噬相关基因MAPKAPK5-AS1的特征。MAPKAPK5-AS1是胶质瘤患者独立预后因素(p < 0.01),通过Kaplan-Meier生存曲线分析显示,MAPKAPK5-AS1高表达患者6年总生存期较低表达患者明显升高(p < 0.05),是胶质瘤患者有利预后因素,且MAPKAPK5-AS1在低风险组表达升高。此外,MAPKAPK5-AS1可通过与miRNA作用来调节基因表达,并与肝癌的总生存期显着相关 [41],MAPKAPK5-AS1还被证明参与了间变胶质瘤的免疫应答 [17]。MAPKAPK5-AS1对胶质瘤患者具有预后价值,可能成为潜在的预测和治疗靶点。

4.7. LncRNA MAPKAPK5-AS1与类风湿性关节炎

类风湿性关节炎(RA)是一种慢性自身免疫性炎症疾病,是一种由遗传、环境和随机因素引起的多因素疾病,会损害外周关节并导致器官损伤,包括心脏、肾脏、肺、眼睛、皮肤和神经系统等 [42]。目前,RA的全球患病率约为1%,以女性为多见 [43]。类风湿因子(RF)和抗瓜氨酸化蛋白抗体(ACPA)的存在与否可将RA分为两种类型。RA管理的最终目标是开始积极的药物治疗,以获得完全缓解或至少显着减轻症状和临床体征。目前普遍认为病因是瓜氨酸化失调导致产生ACPA [44],但RA的病因尚未完全阐明。有研究报道,细胞凋亡和自噬在RA的发病机制中起重要作用。Wen [45] 等研究表明,对RA患者进行高通量测序和GO富集分析,显示MAPKAPK5-AS1与细胞凋亡和自噬相关,并且MAPKAPK5-AS1在RA患者中表达下调。对RA患者和健康对照的独立样本集进行qRT-PCR分析,提示MAPKAPK5-AS1在RA患者中表达水平较低。接收者操作特征曲线分析(ROC)提示MAPKAPK5-AS1的AUC为0.644,p值为0.025,敏感性为0.613,特异性为0.657。Spearman相关性检验分析提示MAPKAPK5-AS1与RA临床指标IgM呈正相关。文 [12] 等研究证实,MAPKAPK5-AS1在滑膜成纤维细和外周血单个核细胞中表达均降低,新风胶囊可通过调控MAPKAPK5-AS1抑制RA炎症反应和促进细胞凋亡,治疗RA。以上研究提示MAPKAPK5-AS1可能作为RA的潜在诊断生物标志物和治疗新方向。

4.8. LncRNA MAPKAPK5-AS1与心肌功能障碍

脓毒症诱发的心肌功能障碍(SIMD)是脓毒症患者严重的并发症。炎症、氧化应激和心肌细胞凋亡是SIMD发展的三个关键因素 [46]。脂多糖(LPS)是革兰氏阴性菌细胞壁中的一种成分,可导致败血症。LPS可诱导心肌细胞炎症因子的表达,引起心肌细胞肥大和凋亡,削弱心肌细胞的收缩功能,最终导致充血性心力衰竭 [47]。LPS诱导的心肌损伤中的炎性损伤是导致难治性低血压和脓毒症死亡的重要因素 [48]。SIMD由于其病理机制复杂,目前还没有有效的治疗策略。据报道,lncRNA在LPS诱导的炎症反应障碍中起重要作用。Chen [13] 等证实,MAPKAPK5-AS1在LPS诱导的心肌损伤中表达上调,而miR-124-3p表达减少。Starbase数据库预测miR-124-3p为MAPKAPK5-AS1的下游miRNA,双荧光素酶报告基因检测证实miR-124-3p为MAPKAPK5-AS1靶标。敲低MAPKAPK5-AS1降低了LPS诱导的细胞凋亡和炎症反应,而miR-124-3p的过表达逆转了MAPKAPK5-AS1的敲低对LPS诱导的细胞凋亡和炎症反应的影响。MAPKAPK5-AS1和miR-124-3p能够互相影响彼此表达。MAPKAPK5-AS1通过海绵化microRNA-124-3p/E2F3促进LPS诱导的心肌炎症损伤。研究揭示了MAPKAPK5-AS1/miR-124-3p/E2F3轴在LPS诱导的H9C2细胞凋亡和炎症反应进展中的新调控模型。为进一步研究炎症导致心肌功能障碍和开发治疗心肌炎新药物提供理论依据。

5. 小结及展望

lncRNA在基因表达水平的调节中发挥着重要的作用,参与大部分生物过程,如表观遗传调控、转录调控和转录后调控等。LncRNA MAPKAPK5-AS1是MAPKAPK5的反义转录物,且MAPKAPK5-AS1被发现在多种疾病中处于失调状态,如肝细胞癌、结直肠癌、肺癌及类风湿性关节炎等。应探索MAPKAPK5-AS1在不同疾病中的发生发展机制,且其与其它因素通过何种途径或联系互相影响并作用来发挥协同或(抑制)效应,促进其对疾病的理解。还应进一步探索通过对MAPKAPK5-AS1的干预,开发出新的诊断和治疗方式,为未来相关疾病治疗提供更多机会。

NOTES

*通讯作者。

参考文献

[1] Rosenbloom, K.R., Dreszer, T.R., Long, J.C., et al. (2012) ENCODE Whole-Genome Data in the UCSC Genome Browser: Update 2012. Nucleic Acids Research, 40, D912-D917.
https://doi.org/10.1093/nar/gkr1012
[2] Tan, Y.T., Lin, J.F., Li, T., et al. (2021) LncRNA-Mediated Posttranslational Modifications and Reprogramming of Energy Metabolism in Cancer. Cancer Communications (London), 41, 109-120.
https://doi.org/10.1002/cac2.12108
[3] Qian, X., Zhao, J., Yeung, P.Y., et al. (2019) Revealing lncRNA Struc-tures and Interactions by Sequencing-Based Approaches. Trends in Biochemical Sciences, 44, 33-52.
https://doi.org/10.1016/j.tibs.2018.09.012
[4] Goodall, G.J. and Wickramasinghe, V.O. (2021) RNA in Cancer. Nature Reviews Cancer, 21, 22-36.
https://doi.org/10.1038/s41568-020-00306-0
[5] Perander, M., Keyse, S.M. and Seternes, O.M. (2016) New In-sights into the Activation, Interaction Partners and Possible Functions of MK5/PRAK. Frontiers in Bioscience (Land-mark Ed), 21, 374-384.
https://doi.org/10.2741/4394
[6] Yang, T., Chen, W.C., Shi, P.C., et al. (2020) Long Noncoding RNA MAPKAPK5-AS1 Promotes Colorectal Cancer Progression by Cis-Regulating the Nearby Gene MK5 and Acting as a Let-7f-1-3p Sponge. Journal of Experimental & Clinical Cancer Research, 39, Article No. 139.
https://doi.org/10.1186/s13046-020-01633-8
[7] Yang, Z., Jiang, S., Shang, J., et al. (2019) LncRNA: Shedding Light on Mechanisms and Opportunities in Fibrosis and Aging. Ageing Research Reviews, 52, 17-31.
https://doi.org/10.1016/j.arr.2019.04.001
[8] Wang, L., Sun, L., Liu, R., et al. (2021) Long Non-Coding RNA MAPKAPK5-AS1/PLAGL2/HIF-1alpha Signaling Loop Promotes Hepatocellular Carcinoma Progression. Journal of Experimental & Clinical Cancer Research, 40, Article No. 72.
https://doi.org/10.1186/s13046-021-01868-z
[9] Tao, L., Li, D., Mu, S., et al. (2022) LncRNA MAPKAPK5_AS1 Facilitates Cell Proliferation in Hepatitis B Virus-Related Hepatocellular Carcinoma. Laboratory In-vestigation, 102, 494-504.
https://doi.org/10.1038/s41374-022-00731-9
[10] Peng, Z., Ouyang, X., Wang, Y., et al. (2022) MAPKAPK5-AS1 Drives the Progression of Hepatocellular Carcinoma via Regulating miR-429/ZEB1 Axis. BMC Mo-lecular and Cell Biology, 23, Article No. 21.
https://doi.org/10.1186/s12860-022-00420-x
[11] Wang, Y., Setiawan, M.F., Liu, H., et al. (2022) Regulator of G Protein Signaling 20 Correlates with Long Intergenic Non-Coding RNA (lincRNAs) Harboring Oncogenic Potential and Is Markedly Upregulated in Hepatocellular Carcinoma. Biology (Basel), 11, Article No. 1174.
https://doi.org/10.3390/biology11081174
[12] 文建庭, 刘健, 王馨, 等. 新风胶囊通过调控lncRNA MAPKAPK5-AS1对类风湿关节炎滑膜成纤维细胞凋亡与炎症的影响[J]. 中国中药杂志, 2021, 46(24): 6542-6548.
[13] Chen, W.W., Gao, G.Y., Yan, M.J., et al. (2021) Long Noncoding RNA MAPKAPK5-AS1 Promoted Lipopolysaccharide-Induced Inflammatory Damage in the Myocardium by Sponging microRNA-124-3p/E2F3. Molecu-lar Medicine, 27, Article No. 131.
https://doi.org/10.1186/s10020-021-00385-1
[14] Singal, A.G. and El-Serag, H.B. (2015) Hepatocellular Carcinoma from Epidemiology to Prevention: Translating Knowledge into Practice. Clinical Gastroenterology and Hepatology, 13, 2140-2151.
https://doi.org/10.1016/j.cgh.2015.08.014
[15] (2021) Hepatocellular Carcinoma. Nature Reviews Disease Primers, 7, Article No. 6.
[16] Chen, T., Liu, R., Niu, Y., et al. (2021) HIF-1alpha-Activated Long Non-Coding RNA KDM4A-AS1 Promotes Hepatocellular Carcinoma Progression via the miR-411-5p/KPNA2/AKT Pathway. Cell Death & Disease, 12, Article No. 1152.
https://doi.org/10.1038/s41419-021-04449-2
[17] Yuen, V.W. and Wong, C.C. (2020) Hypoxia-Inducible Factors and Innate Immunity in Liver Cancer. Journal of Clinical Investigation, 130, 5052-5062.
https://doi.org/10.1172/JCI137553
[18] Giaquinto, A.N., Sung, H., Miller, K.D., et al. (2022) Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 524-541.
https://doi.org/10.3322/caac.21754
[19] Feng, Y., Spezia, M., Huang, S., et al. (2018) Breast Cancer Development and Progression: Risk Factors, Cancer Stem Cells, Signaling Pathways, Genomics, and Molecular Pathogenesis. Genes & Diseases, 5, 77-106.
https://doi.org/10.1016/j.gendis.2018.05.001
[20] Elia, R., Maruccia, M., De Pascale, A., et al. (2021) The Man-agement of Breast Implant-Associated Anaplastic Large Cell Lymphoma in the Setting of Pregnancy: Seeking for Clinical Practice Guidelines. Archives of Plastic Surgery, 48, 373-377.
https://doi.org/10.5999/aps.2021.00185
[21] Li, Z., Hou, P., Fan, D., et al. (2017) The Degradation of EZH2 Mediated by lncRNA ANCR Attenuated the Invasion and Me-tastasis of Breast Cancer. Cell Death & Differentiation, 24, 59-71.
https://doi.org/10.1038/cdd.2016.95
[22] 张秀梅, 周永华, 丛林, 等. MAPKAPK5-AS1/miR-96对乳腺癌细胞转移的影响及机制[J]. 河北医药, 2021, 43(14): 2096-2100.
[23] Siegel, R.L., Miller, K.D. and Jemal, A. (2019) Cancer Statistics, 2019. CA: A Cancer Journal for Cli-nicians, 69, 7-34.
https://doi.org/10.3322/caac.21551
[24] Primrose, J., Falk, S., Finch-Jones, M., et al. (2014) Systemic Chemo-therapy with or without Cetuximab in Patients with Resectable Colorectal Liver Metastasis: The New EPOC Randomised Controlled Trial. The Lancet Oncology, 15, 601-611.
https://doi.org/10.1016/S1470-2045(14)70105-6
[25] Ji, H., Hui, B., Wang, J., et al. (2019) Long Noncoding RNA MAPKAPK5-AS1 Promotes Colorectal Cancer Proliferation by Partly Silencing p21 Expression. Cancer Science, 110, 72-85.
https://doi.org/10.1111/cas.13838
[26] Karreth, F.A. and Pandolfi, P.P. (2013) ceRNA Cross-Talk in Cancer: When ce-bling Rivalries Go Awry. Cancer Discovery, 3, 1113-1121.
https://doi.org/10.1158/2159-8290.CD-13-0202
[27] Guo, X., Zhang, Y., Zheng, L., et al. (2018) Global Characterization of T Cells in Non-Small-Cell Lung Cancer by Single-Cell Sequencing. Nature Medicine, 24, 978-985.
https://doi.org/10.1038/s41591-018-0045-3
[28] Mitiushkina, N.V., Tiurin, V.I., Iyevleva, A.G., et al. (2018) Variability in Lung Cancer Response to ALK Inhibitors Cannot Be Explained by the Diversity of ALK Fusion Variants. Biochimie, 154, 19-24.
https://doi.org/10.1038/s41591-018-0045-3
[29] Nanavaty, P., Alvarez, M.S. and Alberts, W.M. (2014) Lung Cancer Screening: Advantages, Controversies, and Applications. Cancer Control, 21, 9-14.
https://doi.org/10.1177/107327481402100102
[30] Zhang, H., Wang, Y. and Lu, J. (2019) Identification of Lung-Adenocarcinoma-Related Long Non-Coding RNAs by Random Walking on a Competing Endogenous RNA Net-work. Annals of Translational Medicine, 7, Article No. 339.
https://doi.org/10.21037/atm.2019.06.69
[31] Zaballos, M.A. and Santisteban, P. (2017) Key Signaling Pathways in Thyroid Cancer. Journal of Endocrinology, 235, R43-R61.
https://doi.org/10.1530/JOE-17-0266
[32] Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mor-tality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[33] Yuan, Q., Liu, Y., Fan, Y., et al. (2018) LncRNA HOTTIP Promotes Pa-pillary Thyroid Carcinoma Cell Proliferation, Invasion and Migration by Regulating miR-637. The International Journal of Biochemistry & Cell Biology, 98, 1-9.
https://doi.org/10.1016/j.biocel.2018.02.013
[34] Han, P., Li, J.W., Zhang, B.M., et al. (2017) The lncRNA CRNDE Promotes Colorectal Cancer Cell Proliferation and Chemoresistance via miR-181a-5p-Mediated Regulation of Wnt/beta-catenin Signaling. Molecular Cancer, 16, Article No. 9.
https://doi.org/10.1186/s12943-017-0583-1
[35] Zhou, Y., Liu, S., Luo, Y., et al. (2020) IncRNA MAPKAPK5-AS1 Promotes Proliferation and Migration of Thyroid Cancer Cell Lines by Targeting miR-519e-5p/YWHAH. European Journal of Histochemistry, 64, Article No. 3177.
https://doi.org/10.4081/ejh.2020.3177
[36] Reni, M., Mazza, E., Zanon, S., Gatta, G., et al. (2017) Central Nervous System Gliomas. Critical Reviews in Oncology/Hematology, 113, 213-234.
https://doi.org/10.1016/j.critrevonc.2017.03.021
[37] Shergalis, A., Bankhead, A.R., Luesakul, U., et al. (2018) Current Challenges and Opportunities in Treating Glioblastoma. Pharmacological Reviews, 70, 412-445.
https://doi.org/10.1124/pr.117.014944
[38] Pavlides, S., Vera, I., Gandara, R, et al. (2012) Warburg Meets Au-tophagy: Cancer-Associated Fibroblasts Accelerate Tumor Growth and Metastasis via Oxidative Stress, Mitophagy, and Aerobic Glycolysis. Antioxidants & Redox Signaling, 16, 1264-1284.
https://doi.org/10.1089/ars.2011.4243
[39] Bian, E.B., Li, J., Xie, Y.S., et al. (2015) LncRNAs: New Players in Gliomas, with Special Emphasis on the Interaction of lncRNAs with EZH2. Journal of Cellular Physiology, 230, 496-503.
https://doi.org/10.1002/jcp.24549
[40] Luan, F., Chen, W., Chen, M., et al. (2019) An Autopha-gy-Related Long Non-Coding RNA Signature for Glioma. FEBS Open Bio, 9, 653-667.
https://doi.org/10.1002/2211-5463.12601
[41] Zhang, J., Fan, D., Jian, Z., et al. (2015) Cancer Specific Long Noncoding RNAs Show Differential Expression Patterns and Competing Endogenous RNA Potential in Hepatocellular Carcinoma. PLOS ONE, 10, e141042.
https://doi.org/10.1371/journal.pone.0141042
[42] Coutant, F. and Miossec, P. (2020) Evolving Concepts of the Pathogenesis of Rheumatoid Arthritis with Focus on the Early and Late Stages. Current Opinion in Rheumatology, 32, 57-63.
https://doi.org/10.1097/BOR.0000000000000664
[43] Smolen, J.S., Aletaha, D. and McInnes, I.B. (2016) Rheumatoid Arthritis. The Lancet, 388, 2023-2038.
https://doi.org/10.1016/S0140-6736(16)30173-8
[44] Jonsson, M.K., Hensvold, A.H., Hansson, M., et al. (2018) The Role of Anti-Citrullinated Protein Antibody Reactivities in an Inception Cohort of Patients with Rheumatoid Arthritis Receiving Treat-to-Target Therapy. Arthritis Research & Therapy, 20, Article No. 146.
https://doi.org/10.1186/s13075-018-1635-7
[45] Wen, J., Liu, J., Jiang, H., et al. (2020) lncRNA Expression Pro-files Related to Apoptosis and Autophagy in Peripheral Blood Mononuclear Cells of Patients with Rheumatoid Arthritis. FEBS Open Bio, 10, 1642-1654.
https://doi.org/10.1002/2211-5463.12913
[46] Yang, C., Xia, W., Liu, X., et al. (2019) Role of TXNIP/NLRP3 in Sepsis-Induced Myocardial Dysfunction. International Journal of Molecular Medicine, 44, 417-426.
https://doi.org/10.3892/ijmm.2019.4232
[47] Tan, J., Sun, T., Shen, J., et al. (2019) FAM46C Inhibits Lipopoly-saccharides-Induced Myocardial Dysfunction via Downregulating Cellular Adhesion Molecules and Inhibiting Apoptosis. Life Sciences, 229, 1-12.
https://doi.org/10.1016/j.lfs.2019.03.048
[48] Gichana, Z.M., Liti, D., Waidbacher, H., Zollitsch, W., et al. (2018) Waste Management in Recirculating Aquaculture System through Bacteria Dissimilation and Plant Assimilation. Aqua-culture International, 26, 1541-1572.
https://doi.org/10.1007/s10499-018-0303-x