#### 期刊菜单

Regulation of Pressure Arch around Deep Buried Tunnel during Construction with Steps Method
DOI: 10.12677/HJCE.2022.1111130, PDF , HTML, XML, 下载: 79  浏览: 167  科研立项经费支持

Abstract: Through analysis of stress redistribution of surrounding rock during the tunnel construction process step, the dynamic changes of tunnel pressure arch were studied. The conclusions were gotten: in the two process steps the thickness of the temporary and final upper pressure arch is larger than that of the side pressure arch, but the maximum stress on the coordinate axis is relatively smaller, the temporary upper pressure arch moves to the tunnel and the temporary side pressure arch moves away from the tunnel to form the corresponding final pressure arch, and the final pressure arch thickness and the maximum stress on the coordinate axis are larger, with the increase of the height of the upper step, the temporary upper pressure arch gradually moves away from tunnel and stabilized, the temporary side pressure arch gradually moves away from the tunnel and stabilized, the thickness of temporary pressure arch is increased and then stabilized, the maximum stress on the coordinate axis increases; the step quantities do not affect the final pressure arch.

1. 引言

2. 隧道台阶施工法简述

Figure 1. Construction procedure of steps method

3. 隧道压力拱理论

4. 两台阶法施工过程中围岩应力分布

4.1. 计算条件及计算模型

Table 1. Parameters of particles and wall

Figure 2. Model of tunnel after excavation

4.2. 上台阶开挖后围岩应力分布

Figure 3. Stress distribution after the excavation of the upper step

Table 2. Parameters of the temporary pressure arch after the excavation of the upper step

4.3. 下台阶开挖后围岩应力分布

Figure 4. Stress distribution after the excavation of the lower step

Table 3. Parameters of final pressure arch after the excavation of lower step

5. 台阶法施工方案对压力拱的影响

5.1. 两台阶法上台阶高度对临时压力拱的影响

Table 4. Parameters of the temporary pressure arch at different upper step height

5.2. 两台阶法上台阶高度对最终压力拱的影响

Table 5. Parameters of final pressure arch at different upper step height

5.3. 台阶数量对最终压力拱的影响

Figure 5. Construction of three steps and four steps method

Table 6. Parameters of final pressure arch of three steps and four step method

6. 结论

1) 两台阶法上台阶开挖后形成的临时压力拱，其中上部压力拱的厚度较侧压力拱大，但坐标轴上最大应力相对增量较小。

2) 两台阶法下台阶开挖后形成最终压力拱，其中上部压力拱的厚度较侧压力拱大，但坐标轴上最大应力相对增量较小。

3) 两台阶法施工过程中，临时上部压力拱向隧道壁移动形成最终上部压力拱，同时压力拱厚度增大；而临时侧压力拱远离隧道壁移动形成最终侧压力拱，同时压力拱厚度增大；临时压力拱坐标轴上最大应力均小于最终压力拱的对应值。

4) 两台阶法中随上台阶高度的增大，临时上部压力拱逐渐向隧道壁移动并趋于稳定，而临时侧压力拱逐渐远离隧道壁并趋于稳定；临时压力拱厚度均先增大后趋于稳定，坐标轴上最大应力相对增量均逐渐增大；上台阶高度对最终压力拱影响较小。

5) 台阶数量影响临时压力拱，而不影响最终压力拱。

 [1] 陈秋南, 包太, 徐泽沛. 隧道工程[M]. 北京: 机械工业出版社, 2007. [2] 蔡美峰, 何满朝, 刘东燕. 岩石力学与工程[M]. 北京: 科学出版社, 2002. [3] 关宝树. 隧道工程施工要点集[M]. 北京: 人民交通出版社, 2003. [4] 陶星. 隧道开挖释放荷载的有限元模拟方法研究[J]. 四川建筑, 2012, 32(6): 67-68. [5] 杨昌民, 李飞, 张汉超, 雷保军. 某高速公路隧道分步开挖数值模拟[J]. 公路交通科技(应用技术版), 2013(4): 167-168. [6] 蔡美峰. 深部开采围岩稳定性与岩层控制关键理论和技术[J]. 采矿与岩层控制工程学报, 2020, 2(3): 5-13. [7] 苏子龙, 孔强. 金家楼隧道施工过程的数值模拟分析[J]. 山西建筑, 2022, 48(20): 156-158. [8] 言志信, 史盛, 江平, 等. 某砂岩隧道在开挖过程中变形的数值模拟研究[J]. 防灾减灾工程学报, 2013(6): 631-636. [9] 冯忠居, 朱登远, 彭小兵, 等. 泥岩隧道施工技术对围岩的影响及其数值模拟分析[J]. 公路, 2013, 58(12): 224-229. [10] 何栋梁, 成彦惠, 方建勤, 柳群义. 考虑时空效应的隧道围岩变形分析[J]. 公路交通科技, 2016, 33(7): 91-95. [11] 安永林, 李佳豪, 刘文娟, 周进, 谭格宇. 隧道压力拱边界统一判定方法及其空间演化特征[J]. 中国安全科学学报, 2022, 32(8): 84-90. [12] Lee, C.J., Wu, B.R., Chen, H.T. and Chiang, K.H. (2006) Tunnel Stability and Arching Effects during Tunneling in Soft Clayey Soil. Tunneling and Underground Space Technology, 21, 119-132. https://doi.org/10.1016/j.tust.2005.06.003 [13] 张佩, 刘泽昊, 齐吉琳, 杜修力. 卵石倾角对砂卵石地层隧道开挖影响的细观力学研究[J]. 工程力学, 2022, 39(10): 48-60. [14] 瞿东明, 侯明章, 吴科亮, 张亚龙. 深埋大断面隧道开挖施工方案比选分析[J]. 公路交通科技(应用技术版), 2015, 11(11): 206-209. [15] 徐泽沛. 隧道压力拱细观机理及影响因素研究[D]: [博士学位论文]. 长沙: 中南大学, 2014.