叶酸联合维生素B补充剂与老年心血管疾病患者预后及全因死亡率相关性META分析
Folic Acid plus B Vitamin Supplementation on Prognosis and All-Cause Mortality in Old-er Patients with Cardiovascular Disease: A Meta Analysis
DOI: 10.12677/ACM.2022.12111482, PDF, HTML, XML, 下载: 218  浏览: 415 
作者: 李超楠, 胡 松, 刘 佳, 毛拥军*:青岛大学附属医院老年科,山东 青岛
关键词: 心脏性猝死(SCD)心血管疾病叶酸维生素B6Meta分析Sudden Cardiac Death (SCD) Cardiovascular Disease Folic Acid Vitamin B6 Meta Analysis
摘要: 背景:在观察性研究中,同型半胱氨酸水平降低,冠心病和中风发病率也相应降低。叶酸、维生素B6和B12可使同型半胱氨酸水平降低。本文目的旨在研究补充剂能否降低心血管疾病患者发生死亡事件的风险及改善预后。方法:我们对前瞻性研究进行了系统回顾和荟萃分析,以阐明叶酸、维生素B补充与老年心血管疾病患者预后及死亡率之间的关系。本文将“室性心律失常”“心室颤动”“心源性猝死”等作为检索词,通过Pubmed、Cochrane library、Embase、CNKI、万方数据库进行检索,对所有检索到的随机对照试验进行质量评估,Meta分析通过ReviewManger5.3统计软件进行。结果:共纳入8项符合入选标准的随机对照试验(RCT),试验组(服用叶酸及维生素B)患者共计11840例,对照组(服用安慰剂)患者共计15913例,将心源性猝死及其他原因致死的发生率作为观察的重点事件。Meta分析结果显示,服用叶酸及维生素B的试验组与对照组比较在预防心源性猝死方面无显著性差异(OR = 1.04, 95% CI 0.94~1.16, P = 0.46);服用叶酸及维生素B的试验组在与对照组的全因死亡率无显著性差异(OR = 1.04, 95% CI 0.95~1.15, P = 0.38)。结论:虽然叶酸和维生素B6摄入与冠心病风险呈线性负相关,但在老年人群中,叶酸和维生素B的补偿并不能减少心源性猝死及其他原因致死的发生。分析结果不支持使用维生素B作为冠心病患者预防心源性猝死及其他原因致死的有效措施。
Abstract: Background: In observational studies, the lower the level of homocysteine, the lower the incidence of coronary heart disease and stroke. Folate, vitamin B6 and B12 can reduce the level of homocys-teine. The purpose of this paper is to investigate whether supplements can reduce the risk of mor-tality events and improve outcomes in patients with cardiovascular diseases. Methods: A systematic review and meta-analysis of prospective studies were conducted to clarify the relationship between folic acid and vitamin B supplements and the prognosis and mortality of elderly patients with car-diovascular disease. “Ventricular arrhythmia”, “ventricular fibrillation”, “sudden cardiac death”, were used as search terms and searched through Pubmed, Cochrane library, Embase, CNKI, Wan-fang database. After the quality of the retrieved RCTs was evaluated, Meta-analysis was conducted using ReviewManger5.3 statistical software. Results: A total of 8 randomized controlled trials (RCT) meeting the inclusion criteria, 11840 patients in test group (taking folic acid and vitamin B) and 15913 patients in control group (taking placebo) were included. The end event was the incidence of sudden cardiac death and other causes. Meta analysis showed that there was no significant differ-ence between the test group and the control group in sudden cardiac death (OR = 1.04, 95% CI 0.94~1.16, P = 0.46) and all-cause mortality (OR = 1.04, 95% CI 0.95~1.15, P = 0.38). Conclusion: Although folate and vitamin B6 intake are linearly inverse associated with coronary heart disease risk, compensation of folate and vitamin B does not reduce the occurrence of sudden cardiac death and other causes in the elderly population. The results of the analysis do not support the use of vitamin B as an effective measure to prevent sudden cardiac death and other causes in patients with coronary heart disease.
文章引用:李超楠, 胡松, 刘佳, 毛拥军. 叶酸联合维生素B补充剂与老年心血管疾病患者预后及全因死亡率相关性META分析[J]. 临床医学进展, 2022, 12(11): 10273-10282. https://doi.org/10.12677/ACM.2022.12111482

1. 引言

心源性猝死(SCD)可能在症状发作后瞬间发生,没有典型的警告信号,因此留给任何类型的医疗干预的时间都非常有限 [1]。由于广泛的公共健康影响,预防仍然是降低一般人群中SCD风险的最可行的方法 [2]。

同型半胱氨酸(Homocysteine Hcy)是甲硫氨酸–半胱氨酸途径的代谢中间产物,是一种含硫的兴奋性氨基酸。在病理条件下,如营养(B族维生素/叶酸)缺乏、高膳食蛋氨酸、参与Hcy代谢的酶的遗传多态性或肾脏疾病,Hcy在循环中积累,产生高同型半胱氨酸血症(Hyperhomocysteinemia HHcy),这是一种与心律失常和心脏性猝死(SCD)相关的疾病 [3]。最近一项动物研究揭示了血浆Hcy升高的小鼠的异常传导。观察到接近500 lsec的长时间心搏停止、P波下降、QTc间期延长以及其他心电图异常 [4]。证据 [5] [6] [7] [8] 表明,循环中兴奋性氨基酸的病理性增加,可能增加心脏特殊传导系统中的钙渗透性离子通道的活性,特别是在窦房结和房室结中,缩短传导时间,并潜在地为室上性和室性快速性心律失常的发生创造底物。

很多研究表明,对于心血管疾病来说,同型半胱氨酸可能是一个可以改变的危险因素。实验研究证实同型半胱氨酸会引起氧化应激,损伤内皮细胞,从而促使血栓形成 [9]。流行病学研究表明,同型半胱氨酸水平与心血管风险之间存在着独立的分级关联 [10] [11] [12]。观察数据表明,即使轻度到中度的同型半胱氨酸升高,也会增加心血管疾病罹患风险;这一观察 [11] 结果很重要,因为这种增加很常见,并且可以通过安全且廉价的治疗轻松纠正。同型半胱氨酸中最重要的饮食决定因素是叶酸;每日补充0.5~5.0毫克叶酸,通常可使血浆同型半胱氨酸水平降低25%左右 [13]。每天补充至少0.4毫克的维生素B12可进一步降低约7%的水平,补充维生素B6在蛋氨酸负荷后降低同型半胱氨酸方面可能特别重要。

病例对照研究和前瞻性研究 [14] [15] 表明,血浆总同型半胱氨酸水平是冠心病(CHD)和脑卒中强有力的、分级且独立的危险因子。来自所谓孟德尔随机化研究的证据,证明CHD与677C→T亚甲基四氢叶酸还原酶多态性之间存在关联,为同型半胱氨酸与冠心病之间的因果关系提供了证据支持 [16] [17]。通过补充B族维生素叶酸和维生素B12,可降低血浆总同型半胱氨酸水平 [12],血浆水平高或膳食摄入叶酸和维生素B6的人患冠心病的风险降低 [18] [19] [20]。在美国,通过用叶酸强化食物来降低总同型半胱氨酸的人口平均水平 [21] 据估计每年可防止17000人死于冠状动脉疾病 [22],并且有人建议将叶酸加入复方药丸中,作为预防心血管疾病的一种手段 [23]。与基于流行病学证据的预期相反,一项大型随机试验 [24] 发现,使用B族维生素降低总同型半胱氨酸水平无法预防近期中风患者的复发性中风、心肌梗死或死亡。然而,事后疗效分析表明,试验中的一大群参与者可能受益于B族维生素治疗。因此本文旨在研究补充剂能否降低心血管疾病患者发生死亡事件的风险及改善预后。

2. 材料与方法

2.1. 文献检索

通过计算机检索Pubmed、Embase、Cochrane library、CNKI、万方数据库,检索时间范围均从建库至2022年3月份。检索有关叶酸联合维生素B补充预防或干预心源性猝死的随机对照试验(RCT)。英文检索词为“Ventricular tachycardia”“ventricular fibrillation”“folic acid ”“vitamin B6”“vitamin B12”“Sudden cardiac death”,中文检索词为“心源性猝死”“叶酸”“维生素B6”“维生素B12”。

2.2. 文献纳入和排除标准

纳入标准:1) 比较服用叶酸、维生素B6和维生素B12的试验组与安慰剂的结果;2) 随机双盲设计;3) 存在对照组(安慰剂对照组或活性对照组);4) 主要终点为心脏性猝死或其他原因死亡者;5) 至少随访24个周。排除标准:1) 心血管疾病诊断不明确、无法或不愿遵守研究治疗;2) 具有重复数据的研究;3) 研究数据不完整;4) 确定为同一作者或同一机构在重叠时期发表的研究。在重复数据的情况下,只选择包含相关变量的患者人数较多的研究。

2.3. 文献质量评价

所有纳入的文献均按照改良的Jadad评分量表标准进行方法学质量评价 [25],该量表以内部效度为中心。Jadad评分项目包括四部分:随机化、盲法、分配隐藏以及退出或失访。其中评分标准认定:高质量文献4~7分,低质量文献1~3分。由两名独立评审员进行了评估,并咨询第三名研究人员以解决可能存在的分歧。

2.4. 数据提取

筛选符合条件的研究进行全面审查。如果研究中未报告相关变量结果(心律失常终点),我们在ClinicalTrials.gov上搜索补充材料和相关研究的结果(不良事件)部分。由两名研究人员独立进行数据搜索和研究。对于文章存在的分歧,经与作者沟通并达成一致后得以解决。

2.5. 统计学方法

用ReviewManger5.4.1统计软件进行数据分析。用固定效应模型预测所测结果的低异质性,当发现显著异质性时,使用随机效应模型。优势比(OR)和95%置信区间(CI)作为效应大小的度量。如果P < 0.05认为差异有统计学意义。

3. 结果

3.1. 文献的检索和筛选

在计算机人工搜索中共选出1350项研究。其中有56篇因重复而被删除。在审阅了标题和摘要之后,1016项研究被排除在外,对剩余的278项研究进行全文分析。其中52项研究不包含结局指标,218篇文章诊断标准不一致,最终纳入符合入选标准的RCT共8篇。

3.2. 纳入文献的基本特征

研究人群的平均年龄在59.8至68.9岁之间;女性的比例从17%到100%。心肌梗死的发病率在4个试验 [24] [26] [27] [28] (7, 8, 14, 15)中<40%,在3个试验 [29] [30] [31] (9, 11~13)中>40%。中位随访时间为52.2个月(范围:18~87.6个月)。该随机对照试验中,共有6项 [24] [26] [27] [29] [30] [31] 均报告SCD和心脏死亡,有8项 [24] [26] - [32] 报告全因死亡。纳入文献的基本特征见表1

Table 1. The basic characteristics of the included literature

表1. 纳入文献基本特征

注:T组为试验组,C组为对照组;RCT:随机对照试验;PCS:前瞻性队列研究:① 心源性猝死率,② 全因死亡率。

3.3. 纳入文献的质量评估

依据Jadad评分标准,各纳入文献的质量评分结果见表2

Table 2. The quality assessment results of included RCTs

表2. 纳入RCT的质量评估结果

3.4. Meta分析结果

对六项试验的荟萃分析结果显示,口服补充叶酸、维生素B6和维生素B16在预防心源性猝死方面的试验结果之间没有显著差异,(OR = 1.04, 95% CI 0.94~1.16, P = 0.46)。异质性检验I2 = 22%,P = 0.27,因此,采用随机效应模型对各项指标进行合并分析。结果如图1所示。

对八项试验进行荟萃分析结果显示,口服补充叶酸、维生素B6和维生素B12的补偿的试验组与对照组在全因死亡方面试验结果之间没有显著差异,(OR = 1.04, 95% CI 0.95~1.15, P = 0.38)。异质性检验I2 = 35%,P = 0.15,因此,采用随机效应模型对各项指标进行合并分析。结果如图2所示。

对二项试验进行荟萃分析结果显示,口服补充叶酸和维生素B12的补偿的试验组与对照组在全因死亡方面试验结果之间没有显著差异,(OR = 1.02, 95% CI 0.74~1.41, P = 0.89)。异质性检验I2 = 34%,P = 0.22,因此,采用随机效应模型对各项指标进行合并分析。结果如图3所示。

对二项试验进行荟萃分析结果显示,单独口服补充维生素B6补偿的试验组与对照组在全因死亡方面试验结果之间没有显著差异,(OR = 1.02, 95% CI 0.80~1.30, P = 0.88)。异质性检验I2 = 0%,P = 0.73,因此,采用随机效应模型对各项指标进行合并分析。结果如图4所示。

Figure 1. Meta-analysis of the incidence of sudden cardiac death in the trial group compared to the control group

图1. 试验组与对照组心源性猝死的发生率比较的Meta分析

Figure 2. Meta-analysis of all-cause mortality outcomes in the experimental group (folic acid plus vitamin B6, vitamin B12) and the control group

图2. 试验组(叶酸联合维生素B6、维生素B12)与对照组全因死亡率结果的荟萃分析

Figure 3. Meta-analysis of all-cause mortality outcomes in the experimental group (folic acid plus vitamin B12) and the control group

图3. 试验组(叶酸联合维生素B12)与对照组全因死亡率结果的荟萃分析

Figure 4. Meta-analysis of all-cause mortality outcomes in the experimental group (vitamin B6) versus the control group

图4. 试验组(维生素B6)与对照组全因死亡率结果的荟萃分析

4. 讨论

通过对所收录的8项临床试验进行荟萃分析,结果表明服用叶酸、维生素B6和维生素B12并没有降低患者罹患室性心律失常和发生心源性猝死的风险。纳入的临床研究大多在早期,但随着当代他汀类药物、抗血小板、心力衰竭、心律失常药物以及血管再通和射频消融治疗的逐步发展,使得单纯服用叶酸、维生素B6和维生素B12预防心源性猝死及其他死亡事件发生概率降低。

相关研究发现,虽然经过叶酸治疗的病人血浆总同型半胱氨酸水平明显降低,但没有发现单独或联合使用叶酸(加上维生素B12)和维生素B6的二次干预可降低近期心肌梗死患者因心血管疾病引起的并发症和死亡风险。与预期相反,出现了一种服用B族维生素,尤其是叶酸、维生素B6和维生素B12的患者的事件发生率增加的趋势。然而不依从性并不是这些负面结果的可能解释,因为高依从率虽然可能被过度报道,但可以通过维生素状态的生化评估得以体现。多项观察性研究结果显示 [33],血浆总同型半胱氨酸水平是预测心血管事件发生的关键因素。但在一般人群 [14] 以及诊断为心血管疾病的患者 [15] 中,涉及降低同型半胱氨酸治疗的干预试验结果并未证实同型半胱氨酸的致病作用。一项大型二级干预试验 [24] 和三项较小的研究 [34] [35] 的结果表明,维生素B治疗对中风复发或心血管原因引起的并发症和死亡没有影响。在报道的B族维生素治疗高危患者的心脏结局预防评估(HOPE) 2试验中也发现了类似的结果 [36]。叶酸联合维生素B6可降低接受冠状动脉球囊成形术的患者的再狭窄率 [37],但可增加冠状动脉支架置入术后的再狭窄率。一项研究 [38] 结果显示接受叶酸加高剂量维生素B6治疗的患者事件发生率增加。因此,在心血管疾病患者中使用高剂量B族维生素进行的二次干预试验基本上没有显示出效果,这与使用高剂量单一营养素(如维生素E、C和A)预防心脏病的失败效果相似。一些 [39] [40] [41] [42] 研究证明了功能的改善,但并非所有研究 [43] [44] [45] [46] [47] 都证明了这一点。

降低同型半胱氨酸治疗在临床上缺乏益处,这表明这种治疗可能具有促进动脉粥样硬化血栓形成的作用。叶酸可能通过独立于同型半胱氨酸的机制影响内皮功能 [39] 并支持细胞生长 [48]。血管平滑肌细胞增殖和基质形成的增加被认为是服用叶酸和维生素B6的患者支架内再狭窄风险增加的可能机制 [38]。此外,维生素B6高水平可能会抑制血管生成 [49]。所以高剂量的维生素B6对血管重塑、心肌修复都可能带来不良影响,导致心血管疾病患者出现更多并发症,并导致死亡率上升。总之试验证明,叶酸干预以及是否给予大剂量维生素B6及维生素B12,并不能降低急性心肌梗死后心血管疾病复发或死亡的风险。在急性心肌梗死或冠状动脉支架植入术后,这种治疗甚至可能有害,因此不应予以推荐。

另外本研究存在一定局限性,首先,纳入研究的人群在基线特征和共病患病率方面存在异质性。异质性的另一个来源是由于纳入的研究规模不同,从几百到几万个样本不等。因此,在固定效应模型中运行死亡率和住院分析更为现实。其次,一些已完成的研究没有提供足够的数据来分析基线特征和其他终点,包括心血管/非心血管死亡率、心肌梗死住院以及全因死亡率和心肌梗死住院的组合,导致缺乏统计能力。本文仅考虑了可用的关键基线特征,分析中不包括体重指数、慢性肾脏病、慢性阻塞性肺病、贫血等因素。因此,与随机对照试验中治疗良好的人群相比,全因死亡率估计可能更高,并且可能存在时间效应。

综上所述,通过荟萃分析结果显示,叶酸、维生素B6和维生素B12可能仅对患有高半胱氨酸血症的心肌梗死患者有一定作用,并没有减少心源性猝死等死亡事件的发生。

NOTES

*通讯作者Email: maoyongjun@qduhospital.cn

参考文献

[1] Albert, C.M. and Ruskin, J.N. (2001) Risk Stratifiers for Sudden Cardiac Death (SCD) in the Community: Primary Pre-vention of SCD. Cardiovascular Research, 50, 186-196.
https://doi.org/10.1016/S0008-6363(00)00319-9
[2] Jouven, X., Desnos, M., Guerot, C., et al. (1999) Predicting Sudden Death in the Population: The Paris Prospective Study I. Circulation, 99, 1978-1983.
https://doi.org/10.1161/01.CIR.99.15.1978
[3] Maldonado, C., Soni, C.V., Todnem, N.D., et al. (2010) Hyper-homocysteinemia and Sudden Cardiac Death: Potential Arrhythmogenic Mechanisms. Current Vascular Pharmacology, 8, 64-74.
https://doi.org/10.2174/157016110790226552
[4] Rosenberger, D., Gargoum, R., Tyagi, N., et al. (2011) Ho-mocysteine Enriched Diet Leads to Prolonged QT Interval and Reduced Left Ventricular Performance in Telemetric Mon-itored Mice. Nutrition, Metabolism and Cardiovascular Diseases, 21, 492-498.
https://doi.org/10.1016/j.numecd.2009.11.014
[5] Lipton, S.A., Kim, W.K., Choi, Y.B., et al. (1997) Neurotoxi-city Associated with Dual Actions of Homocysteine at the N-methyl-D-aspartate Receptor. Proceedings of the National Academy of Sciences of the United States of America, 94, 5923-5928.
https://doi.org/10.1073/pnas.94.11.5923
[6] Gill, S.S., Pulido, O.M., Mueller, R.W., et al. (1998) Molecular and Immunochemical Characterization of the Ionotropic Glutamate Receptors in the Rat Heart. Brain Research Bulletin, 46, 429-434.
https://doi.org/10.1016/S0361-9230(98)00012-4
[7] Gill, S., Veinot, J., Kavanagh, M., et al. (2007) Human Heart Glutamate Receptors—Implications for Toxicology, Food Safety, and Drug Discovery. Toxicologic Pathology, 35, 411-417.
https://doi.org/10.1080/01926230701230361
[8] Mayer, M.L., Westbrook, G.L. and Guthrie, P.B. (1984) Voltage-Dependent Block by Mg2+ of NMDA Responses in Spinal Cord Neurones. Nature, 309, 261-263.
https://doi.org/10.1038/309261a0
[9] Harker, L.A., Harlan, J.M. and Ross, R. (1983) Effect of Sulfinpyrazone on Homocysteine-Induced Endothelial Injury and Arteriosclerosis in Baboons. Circulation Research, 53, 731-739.
https://doi.org/10.1161/01.RES.53.6.731
[10] Boushey, C.J., Beresford, S.A., Omenn, G.S., et al. (1995) A Quan-titative Assessment of Plasma Homocysteine as a Risk Factor for Vascular Disease. Probable Benefits of Increasing Folic Acid Intakes. JAMA, 274, 1049-1057.
https://doi.org/10.1001/jama.1995.03530130055028
[11] Klerk, M., Verhoef, P., Clarke, R., et al. (2002) MTHFR 677C→T Polymorphism and Risk of Coronary Heart Disease: A Meta-Analysis. JAMA, 288, 2023-2031.
https://doi.org/10.1001/jama.288.16.2023
[12] (2005) Dose-Dependent Effects of Folic Acid on Blood Concentra-tions of Homocysteine: A Meta-Analysis of the Randomized Trials. The American Journal of Clinical Nutrition, 82, 806-812.
https://doi.org/10.1093/ajcn/82.4.806
[13] Li, Y., Huang, T., Zheng, Y., et al. (2016) Folic Acid Supple-mentation and the Risk of Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. Journal of the American Heart Association, 5, e003768.
https://doi.org/10.1161/JAHA.116.003768
[14] Arnesen, E., Refsum, H., Bønaa, K.H., et al. (1995) Serum Total Homocysteine and Coronary Heart Disease. International Journal of Epidemiology, 24, 704-709.
https://doi.org/10.1093/ije/24.4.704
[15] Nygård, O., Nordrehaug, J.E., Refsum, H., et al. (1997) Plasma Homo-cysteine Levels and Mortality in Patients with Coronary Artery Disease. The New England Journal of Medicine, 337, 230-236.
https://doi.org/10.1056/NEJM199707243370403
[16] Wald, D.S., Law, M. and Morris, J.K. (2002) Homocysteine and Cardiovascular Disease: Evidence on Causality from a Meta-Analysis. BMJ, 325, 1202.
https://doi.org/10.1136/bmj.325.7374.1202
[17] Casas, J.P., Bautista, L.E., Smeeth, L., et al. (2005) Homocysteine and Stroke: Evidence on a Causal Link from Mendelian Randomisation. The Lancet, 365, 224-232.
https://doi.org/10.1016/S0140-6736(05)70152-5
[18] Robinson, K., Arheart, K., Refsum, H., et al. (1998) Low Circulating Folate and Vitamin B6 Concentrations: Risk Factors for Stroke, Peripheral Vascular Disease, and Coronary Artery Disease. Circulation, 97, 437-443.
https://doi.org/10.1161/01.CIR.97.5.437
[19] Folsom, A.R., Nieto, F.J., McGovern, P.G., et al. (1998) Prospective Study of Coronary Heart Disease Incidence in Relation to Fasting Total Homocysteine, Related Genetic Polymorphisms, and B Vitamins: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation, 98, 204-210.
https://doi.org/10.1161/01.CIR.98.3.204
[20] Voutilainen, S., Rissanen, T.H., Virtanen, J., Lakka, T.A., et al. (2001) Low Dietary Folate Intake Is Associated with an Excess Incidence of Acute Coronary Events: The Kuopio Is-chemic Heart Disease Risk Factor Study. Circulation, 103, 2674-2680.
https://doi.org/10.1161/01.CIR.103.22.2674
[21] Jacques, P.F., Selhub, J., Bostom, A.G., et al. (1999) The Effect of Folic Acid Fortification on Plasma Folate and Total Homocysteine Concentrations. The New England Journal of Med-icine, 340, 1449-1454.
https://doi.org/10.1056/NEJM199905133401901
[22] Liu, X.D, Shi, M., Xia, F., Han, J.L., et al. (2015) The Chi-na Stroke Secondary Prevention Trial (CSSPT) Protocol: A Double-Blinded, Randomized, Controlled Trial of Combined Folic Acid and B Vitamins for Secondary Prevention of Stroke. International Journal of Stroke, 10, 264-268.
https://doi.org/10.1111/ijs.12017
[23] Wald, N.J. and Law, M.R. (2003) A Strategy to Reduce Cardiovascular Disease by More than 80%. BMJ, 326, 1419.
https://doi.org/10.1136/bmj.326.7404.1419
[24] Toole, J.F., Malinow, M.R., Chambless, L.E., et al. (2004) Low-ering Homocysteine in Patients with Ischemic Stroke to Prevent Recurrent Stroke, Myocardial Infarction, and Death: The Vitamin Intervention for Stroke Prevention (VISP) Randomized Controlled Trial. JAMA, 291, 565-575.
https://doi.org/10.1001/jama.291.5.565
[25] Jadad, A.R., Moore, R.A., Carroll, D., et al. (1996) Assessing the Quality of Reports of Randomized Clinical Trials: Is Blinding Necessary? Controlled Clinical Trials, 17, 1-12.
https://doi.org/10.1016/0197-2456(95)00134-4
[26] Albert, C.M., Cook, N.R., Gaziano, J.M., et al. (2008) Effect of Folic Acid and B Vitamins on Risk of Cardiovascular Events and Total Mortality among Women at High Risk for Cardiovascular Disease: A Randomized Trial. JAMA, 299, 2027-2036.
https://doi.org/10.1001/jama.299.17.2027
[27] Bønaa, K.H., Njølstad, I., Ueland, P.M., et al. (2006) Homocysteine Lowering and Cardiovascular Events after Acute Myocardial Infarction. The New England Journal of Medicine, 354, 1578-1588.
https://doi.org/10.1056/NEJMoa055227
[28] Ebbing, M., Bleie, Ø., Ueland, P.M., et al. (2008) Mortality and Car-diovascular Events in Patients Treated with Homocysteine-Lowering B Vitamins after Coronary Angiography: A Ran-domized Controlled Trial. JAMA, 300, 795-804.
https://doi.org/10.1001/jama.300.7.795
[29] Armitage, J.M., Bowman, L., Clarke, R.J., et al. (2010) Effects of Homocysteine-Lowering with Folic Acid Plus Vitamin B12 vs Placebo on Mortality and Major Morbidity in Myocardial Infarction Survivors: A Randomized Trial. JAMA, 303, 2486-2494.
https://doi.org/10.1001/jama.2010.840
[30] Liakishev, A.A. (2006) Homocysteine Lowering with Folic Acid and B Vitamins in Vascular Disease. Kardiologiia, 46, Article No. 70.
[31] Galan, P., Kesse-Guyot, E., Czernichow, S., et al. (2010) Effects of B Vitamins and Omega 3 Fatty Acids on Cardiovascular Diseases: A Randomised Placebo Controlled Trial. BMJ, 341, c6273.
https://doi.org/10.1136/bmj.c6273
[32] Wang, L., Li, H., Zhou, Y., et al. (2015) Low-Dose B Vitamins Supplementation Ameliorates Cardiovascular Risk: A Double-Blind Randomized Controlled Trial in Healthy Chinese Elderly. European Journal of Nutrition, 54, 455-464.
https://doi.org/10.1007/s00394-014-0729-5
[33] Homocysteine Studies Collaboration (2002) Homocysteine and Risk of Ischemic Heart Disease and Stroke: A Meta-Analysis. JAMA, 288, 2015-2022.
https://doi.org/10.1001/jama.288.16.2015
[34] Liem, A., Reynierse-Buitenwerf, G.H., Zwinderman, A.H., et al. (2003) Secondary Prevention with Folic Acid: Effects on Clinical Outcomes. Journal of the American College of Cardi-ology, 41, 2105-2113.
https://doi.org/10.1016/S0735-1097(03)00485-6
[35] Liem, A.H., van Boven, A.J., Veeger, N.J., et al. (2004) Ef-ficacy of Folic Acid When Added to Statin Therapy in Patients with Hypercholesterolemia Following Acute Myocardial Infarction: A Randomised Pilot Trial. International Journal of Cardiology, 93, 175-179.
https://doi.org/10.1016/j.ijcard.2003.02.001
[36] Lonn, E., Held, C., Arnold, J.M., et al. (2006) Rationale, Design and Baseline Characteristics of a Large, Simple, Randomized Trial of Combined Folic Acid and Vitamins B6 and B12 in High-Risk Patients: The Heart Outcomes Prevention Evaluation (HOPE)-2 Trial. Canadian Journal of Cardiology, 22, 47-53.
https://doi.org/10.1016/S0828-282X(06)70238-0
[37] Schnyder, G., Roffi, M., Pin, R., et al. (2001) Decreased Rate of Coronary Restenosis after Lowering of Plasma Homocysteine Levels. The New England Journal of Medicine, 345, 1593-1600.
https://doi.org/10.1056/NEJMoa011364
[38] Lange, H., Suryapranata, H., De Luca, G., et al. (2004) Folate Therapy and In-Stent Restenosis after Coronary Stenting. The New England Journal of Medicine, 350, 2673-2681.
https://doi.org/10.1056/NEJMoa032845
[39] Verhaar, M.C., Stroes, E. and Rabelink, T.J. (2002) Fo-lates and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 6-13.
https://doi.org/10.1161/hq0102.102190
[40] van Dijk, R.A., Rauwerda, J.A., Steyn, M., et al. (2001) Long-Term Homocysteine-Lowering Treatment with Folic Acid Plus Pyridoxine Is Associated with Decreased Blood Pressure but Not with Improved Brachial Artery Endothelium-Dependent Vasodilation or Carotid Artery Stiffness: A 2-Year, Ran-domized, Placebo-Controlled Trial. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 2072-2079.
https://doi.org/10.1161/hq1201.100223
[41] Vermeulen, E.G., Stehouwer, C.D., Valk, J., et al. (2004) Effect of Homocysteine-Lowering Treatment with Folic Acid plus Vitamin B on Cerebrovascular Atherosclerosis and White Mat-ter Abnormalities as Determined by MRA and MRI: A Placebo-Controlled, Randomized Trial. European Journal of Clinical Investigation, 34, 256-261.
https://doi.org/10.1111/j.1365-2362.2004.01332.x
[42] Stanger, O., Semmelrock, H.J., Wonisch, W., et al. (2002) Effects of Folate Treatment and Homocysteine Lowering on Resistance Vessel Reactivity in Atherosclerotic Subjects. Journal of Pharmacology and Experimental Therapeutics, 303, 158-162.
https://doi.org/10.1124/jpet.102.036715
[43] Durga, J., van Tits, L.J., Schouten, E.G., et al. (2005) Effect of Low-ering of Homocysteine Levels on Inflammatory Markers: A Randomized Controlled Trial. Archives of Internal Medicine, 165, 1388-1394.
https://doi.org/10.1001/archinte.165.12.1388
[44] Thambyrajah, J., Landray, M.J., Jones, H.J., et al. (2001) A Randomized Double-Blind Placebo-Controlled Trial of the Effect of Homocysteine-Lowering Therapy with Folic Acid on Endothelial Function in Patients with Coronary Artery Disease. Journal of the American College of Cardiology, 37, 1858-1863.
https://doi.org/10.1016/S0735-1097(01)01235-9
[45] Doshi, S.N., Moat, S.J., McDowell, I.F., et al. (2002) Low-ering Plasma Homocysteine with Folic Acid in Cardiovascular Disease: What Will the Trials Tell Us? Atherosclerosis, 165, 1-3.
https://doi.org/10.1016/S0021-9150(02)00191-0
[46] Woodman, R.J., Celermajer, D.E., Thompson, P.L., et al. (2004) Folic Acid Does Not Improve Endothelial Function in Healthy Hyperhomocysteinaemic Subjects. Clinical Science (London), 106, 353-358.
https://doi.org/10.1042/CS20030296
[47] Dusitanond, P., Eikelboom, J.W., Hankey, G.J., et al. (2005) Homocys-teine-Lowering Treatment with Folic Acid, Cobalamin, and Pyridoxine Does Not Reduce Blood Markers of Inflammation, Endothelial Dysfunction, or Hypercoagulability in Patients with Previous Transient Ischemic Attack or Stroke: A Ran-domized Substudy of the VITATOPS Trial. Stroke, 36, 144-146.
https://doi.org/10.1161/01.STR.0000150494.91762.70
[48] Stover, P.J. (2004) Physiology of Folate and Vitamin B12 in Health and Disease. Nutrition Reviews, 62, S3-S12; Discussion S13.
https://doi.org/10.1301/nr.2004.jun.S3-S12
[49] Matsubara, K., Mori, M., Akagi, R., et al. (2004) Anti-Angiogenic Effect of Pyridoxal 5’-Phosphate, Pyridoxal and Pyridoxamine on Embryoid Bodies Derived from Mouse Embryonic Stem Cells. International Journal of Molecular Medicine, 14, 819-823.
https://doi.org/10.3892/ijmm.14.5.819