适于木本植物油脂的催化剂研究:纳米固体超强酸催化剂对游离脂肪酸的酯化
Study of Catalyst Appliable for Woody Plant Oil: Nano Solid Superacid Catalyzing the Esterification of Free Fatty Acid
DOI: 10.12677/wjf.2012.11001, PDF, HTML, XML, 下载: 3,720  浏览: 13,604  国家科技经费支持
作者: 张学俊*:贵州大学化学与化学工程学院,贵州大学贵州省发酵工程与生物制药重点实验室;张文坤, 欧阳寒梅:贵州大学,贵州省发酵工程与生物制药重点实验室;李搏:黔西南康达生物能源科技有限公司;周蓉:贵州大学化学与化学工程学院
关键词: 固体超强酸催化剂高酸价木本植物油脂生物柴油Solid Superacid; Catalyst; High Acid Value; Woody Plant Oil; Biodiesel
摘要: 木本植物油脂与草本相比多为高酸价,用碱性催化剂进行酯交换时易发生皂化。两步法是先将游离脂肪酸酯化,再进行碱催化生产,可以提高资源的利用率,拓展原料的来源,降低成本。锡是少数几个可制备固体超强酸的金属。本文以掺锑二氧化锡纳米材料为基体,进行表面硫酸化。在330℃煅烧得到催化剂 /Sb-SnO2,酸性强(H0 ≥ –14.5),超过100%硫酸(–11.9)近1000倍,为固体超强酸。TEM照片显示为纳米催化剂。将其应用在高酸值米糠油的酯化反应中,在常压、常温(70℃)下进行游离脂肪酸的酯化催化反应,对游离酸的酯化率为95%以上,残余米糠油的酸值由58.94 mg/g降到3~4 mg/g,可用液体碱催化剂继续进行酯交换反应。从而证实该催化剂可用于高酸价木本油脂两步法生成生物柴油,提高资源的利用率。
Abstract: Generally woody plant oil bears a higher acid value than the oil from herbaceous plant. Basic catalyst will lead to soap reaction in transesterification of oil. Tow step method divides the production of biodiesel into the esterification of free fatty acid and the transesterification of oil, which improves resource utilization greatly and broadens sources of oil, contributing to a low cost. Sin is a few metals by which solid superacid can be prepared. The present paper used nanocrystal of SnO2 doped with Sb as carrier to superficially sulfate on it. Nano-catalyst @Sb-SnO2 calcined at 330˚C for 3 h is a solid superacid with a strong acidy, Hammett function H0 ≥ –14.5, stronger than 100% sulfuric acid (–11.9) near to 1000 times. The image of TEM showed the solid superacid is nano size. In esterification of rice bran oil with high acid value, the ratio of esterification of free fatty acid was up to 95% under normal pressure at 70˚C, and the acid value of remains of rice bran oil decreased from 58.94 to 3 - 4 mg KOH/g. So the remains of rice bran oil can be directly used for transesterification by homogeneous basic catalyst, thereby the tow step method can be practiced and enhance the utilization of rate oil resources.  
文章引用:张学俊, 张文坤, 李搏, 欧阳寒梅, 周蓉. 适于木本植物油脂的催化剂研究:纳米固体超强酸催化剂对游离脂肪酸的酯化[J]. 林业世界, 2012, 1(1): 1-7. http://dx.doi.org/10.12677/wjf.2012.11001

参考文献

[1] 马养民,何荣,几种木本植物种子油的理化性质及脂肪酸组成分析,食品工业科技,2009,30[10]; 147-8
[2] 王友东,固定化重组脂肪酶催化木本植物油脂制备生物柴油,硕士论文,南京林业大学,2010,6
[3] 杜学禹,固定碱催化木本植物油脂制备生物柴油研究,硕士论文,南京林业大学,2009,6
[4] 李俊雄,高酸价油脂制备生物柴油的研究,生物质化学工程,2007,41[6],25-28
[5] Matsuhashi, H. Miyazaki, H. Kawamura, Y. Nakamura, H. and Arata, K. Preparation of a Solid Superacid of Sulfated Tin Oxide with Acidity Higher Than That of Sulfated Zirconia and Its Applications to Aldol Condensation and Benzoylation1, Chem. Mater. No.13, pp. 3038-3042, (2001).
[6] Xuejun Zhang, Hongbo Liang, and Fuxing Gan, Novel Anion Exchange Method for Exact Antimony Doping Control of Stannic Oxide Nanocrystal Powder, J. Am. Ceram. Soc., 89 [3]: 792, (2006)
[7] Fen Yang, Xuejun Zhang, Xuhui Mao, and Fuxing Gan, Synthesis and Characterization of Highly Dispersed Antimony-Doped Stannic Hydroxide Nanoparticles: Effects of the Azeotropic Solvents to Remove Water on the Properties and Microstructures of the Nanoparticles, J. Am. Ceram. Soc., 90 [4]: 1019, (2007).
[8] K J Harrington. Chemical and Physical Properties of Vegetable Oil Esters and their Effect on diesel Fuel Performance[J]. Biomass, ,9[1], (1986).