乳酸:调节缺氧相关炎症性疾病的“新宠”
Lactic Acid: A “New Favorite” for Regulating Hypoxia Related Inflammatory Diseases
DOI: 10.12677/ACM.2022.12111488, PDF, HTML, XML, 下载: 720  浏览: 1,363  科研立项经费支持
作者: 吕冠平:洱源县人民医院内四科,云南 大理;黄 茜, 赵 敏*:丽江文化旅游学院,云南 丽江
关键词: 乳酸化乳酸翻译后修饰缺氧炎症Lactation Lactate Post-Translational Modification Hypoxia Inflammation
摘要: 乳酸是一种糖酵解产物,是一种重要的能源。此外,它通过组蛋白和非组蛋白的乳酸化来调节基因转录,这是一种新的翻译后修饰。长期以来,人们一直认为缺氧和糖酵解可以促进免疫细胞活化。近年来,多项研究强调糖酵解代谢物乳酸的平衡稳态功能。乳酸直接抑制信号通路并修饰组蛋白,在调节巨噬细胞极化、肿瘤免疫和抗病毒反应中发挥重要作用。目前,缺氧炎症性疾病与乳酸的关系尚未得到系统阐述。因此,本文综述了缺氧环境下炎症性疾病和乳酸代谢及乳酸化的最新进展。
Abstract: Lactic acid is a product of glycolysis and an important energy source. Furthermore, it regulates gene transcription through lactation of histones and non-histone proteins, a novel post-translational modification. Hypoxia and glycolysis have long been thought to promote immune cell activation. In recent years, multiple studies have emphasized the homeostatic function of the glycolytic metabo-lite lactate. Lactate directly inhibits signaling pathways and modifies histones, playing an important role in regulating macrophage polarization, tumor immunity, and antiviral responses. At present, the relationship between hypoxic inflammatory diseases and lactate has not been systematically elucidated. Therefore, this article reviews the latest progress in inflammatory diseases and lactate metabolism and lactation in hypoxic environments.
文章引用:吕冠平, 黄茜, 赵敏. 乳酸:调节缺氧相关炎症性疾病的“新宠”[J]. 临床医学进展, 2022, 12(11): 10318-10326. https://doi.org/10.12677/ACM.2022.12111488

1. 引言

19世纪首次发现缺氧形成乳酸 [1]。最近的研究表明,乳酸是一种重要的能量来源,是代谢过程中的主要糖异生前体,也是一种信号分子 [2]。2019年诺贝尔生理学或医学奖旨在表彰发现细胞感知缺氧水平(即缺氧)并做出反应的分子机制。缺氧反应的一个关键介质是缺氧诱导因子1α (HIF1α),缺氧诱导因子1α (HIF1α)是响应缺氧调节的关键转录因子 [3]。在缺氧条件下表达稳定,可进入细胞核调控下游基因的表达。此外,炎症因子和微生物感染可激活免疫细胞并诱导糖酵解,也可激活HIF1α [4]。

先前的研究表明,HIF1α和糖酵解途径的代谢物可以促进炎症。同时,糖酵解途径的激活伴随着缺氧和炎症,可以增加乳酸的产生和释放,促进细胞外环境的酸化,同时高浓度的乳酸可以作为代谢底物转运到细胞中。同时,乳酸增加了辅助T细胞的分化和干扰素-γ (IFNγ)的产生 [5],并促进了肿瘤相关巨噬细胞(TAMs)的M2样极化和VEGF表达,有趣的是,部分是由HIF1α激活介导的 [6]。值得注意的是,在2019年,Zhang等人 [7] 提出了具有全球影响力的组蛋白赖氨酸乳酸化(Kla)机制,具体显示了组蛋白赖氨酸残基的乳酸盐衍生的乳酸化作为一种表观遗传修饰,直接刺激来自染色质的基因转录。在人和小鼠细胞的核心组蛋白上鉴定了28个乳酸化位点。低氧和细菌刺激通过糖酵解诱导乳酸的产生,这是刺激组蛋白乳酸化的前体。同时使用暴露于细菌的M1巨噬细胞作为模型系统,表明组蛋白乳酸化与乙酰化具有不同的时间动力学。在M1巨噬细胞极化的后期,组蛋白乳糖基化的增加诱导了参与伤口愈合的稳态基因,包括Arg1。

为探索缺氧相关疾病和有效治疗靶点提供了新的研究方向。

那么缺氧和乳酸有什么关系呢?乳酸能否通过多种机制抵消HIF1α和糖酵解代谢物引起的炎症反应,促进细胞稳态?在此,本文主要总结了乳酸代谢和组蛋白乳酸化在缺氧炎症性疾病中的最新研究进展。

2. 乳酸产生与代谢重编程和Warburg效应

葡萄糖是肿瘤细胞和免疫细胞的主要能量来源,两种细胞之间发生营养竞争。肿瘤细胞大量消耗这两种物质,导致免疫细胞饥饿,抗肿瘤免疫力下降。在糖酵解过程中,葡萄糖分解为丙酮酸,随后在细胞质中代谢为乳酸,而不是进入三羧酸循环 [8]。值得注意的是,乳酸是糖酵解过程中产生的一种重要代谢物,并且由于有氧糖酵解在癌症中的Warburg效应而被广泛研究。此外,即使在完全有氧的条件下,癌细胞也可以通过糖酵解产生乳酸和三磷酸腺苷(ATP)。这种现象称为Warburg效应 [9] [10]。累积研究表明,由于线粒体缺陷和三磷酸腺苷(ATP)生成受损,Warburg效应增加了乳酸生成率并酸化了肿瘤微环境 (TME),这有利于细胞的生长和存活 [10]。

重要的是,Warburg效应的终点是乳酸受许多关键酶的调节。首先,在大多数细胞中表达的葡萄糖转运蛋白(GLUT)参与了将葡萄糖转运到代谢活跃组织中。多种肿瘤高度表达GLUT1并具有许多调节因子 [11]。例如,HIF1α和CD147分别与GLUT1呈正相关 [12] [13]。同时,Hu等人发现mir-455-5p还通过IGF-1R/Akt/GLUT1通路促进GLUT1的上调 [14]。GLUT1的上调只是乳酸产生的第一步。其次,己糖激酶(HK)将葡萄糖转化为6-磷酸葡萄糖。此外,丙酮酸激酶2 (PKM2)是调节丙酮酸积累的最终限速酶。PKM2、热休克蛋白90 (Hsp90)和HIF1α之间的相互作用是稳定PKM2,并诱导有氧糖酵解以抑制细胞凋亡的关键物质 [15]。此外,乳酸脱氢酶(LDH)、丙酮酸脱氢酶激酶(PDK)和丙酮酸磷酸脱氢酶(PDH)是决定丙酮酸去向的关键酶。LDHA和LDHB编码LDH,因此抑制LDHB转录或诱导LDHA转录是促进乳酸产生的重要机制 [16]。研究发现mir-142-3p和N-myc下游调节基因2 (NDRG2)的减少和mir-34c-3p的增加刺激了LDHA的上调 [17] [18] [19]。生成的乳酸继续介导PDK磷酸化PDH的活性,导致丙酮酸进入三羧酸循环(TAC) [16]。发现mir-142-3p和N-myc下游调节基因2 (NDRG2)的减少和mir-34c-3p的增加刺激了LDHA的上调 [16] [17] [18]。生成的乳酸继续介导PDK磷酸化PDH的活性,导致丙酮酸进入三羧酸循环(TAC) [16]。发现mir-142-3p和N-myc下游调节基因2 (NDRG2)的减少和mir-34c-3p的增加刺激了LDHA的上调 [16] [17] [18]。生成的乳酸继续介导PDK磷酸化PDH的活性,导致丙酮酸进入三羧酸循环(TAC) [16]。一方面,它通过氧化磷酸化(OXPHOS)减少葡萄糖的消耗,另一方面,它可以导致丙酮酸的积累,间接促进乳酸的产生。最后,酸性环境还依赖于pH依赖性单羧酸盐转运系统(MCT),它是乳酸在细胞和微环境之间穿梭的工具 [20]。乳酸流入和流出细胞分别取决于MCT1和MCT4 [21]。乳酸的转移破坏了细胞外的pH稳态,不仅影响酶的活性,还参与了免疫细胞的调节。乳酸也可以作为刺激细胞的底物,这被称为“反向waburg效应” [22]。

3. 乳酸缺氧调节在免疫炎症中的作用

在一些炎症性疾病的情况下,乳酸触发一系列细胞内信号,可能促进慢性炎症过程 [23] [24] [25] [26]。大多数炎症部位是缺氧的,而HIF1α它是细胞对缺氧反应的关键调节因子。然而,乳酸介导的对长时间缺氧的反应似乎与HIF1α有关,这并不一定,因为乳酸使用NDRG家族成员3 (NDRG3),NDRG3在常氧条件下以PHD2/VHL依赖性方式降解。然而,在长期缺氧条件下,它通过与乳酸结合而免受降解。NDRG3水平升高导致RAF-ERK信号通路激活,调节缺氧相关的病理生理反应,包括促进炎症和血管生成 [27]。在关节炎的滑膜中,乳酸以多种方式调节免疫细胞的功能,即迁移和细胞因子的产生。在T细胞中,乳酸通过CD4 + T细胞乳酸转运蛋白SLC5a12和CD8 + T细胞的SLC16a1 (MCT1)诱导其在炎症部位的积累 [28]。乳酸介导的炎症组织中T细胞运动的抑制与糖酵解减少相结合。同时,乳酸抑制几种糖酵解酶的表达和CD4+T细胞的葡萄糖流动,使T细胞在炎症部位蓄积 [23] [28]。综上所述,这些变化导致类风湿关节炎中CD4+T细胞的活跃增殖和Th1、Th17等促炎亚群的产生,促进了慢性炎症的发生 [29] [30]。此外,Sun等 [31] 在溃疡性结肠炎中发现,乳酸可显着降低巨噬细胞β中的促炎细胞因子IL-1,同时抑制NLRP3炎性体,减轻肠道炎症。最近的研究发现,COVID-19患者的乳酸含量明显高于正常值。这意味着乳酸的增加将导致COVID-19患者的恶化 [32]。

然而乳酸不仅对某些炎症有促进作用,对炎症也有抑制作用。研究人员提出了肿瘤炎症的概念,解释了炎症导致肿瘤形成、发展和扩散的机制 [33] [34] [35]。因此,炎症在癌变过程中起着至关重要的作用,是肿瘤生长的关键组成部分。感染、持续性刺激和炎症都是导致癌症发展的因素,从而形成炎症性肿瘤微环境(TME)。已发现肿瘤源性乳酸可将肿瘤相关巨噬细胞转化为M2样细胞,从而抑制肿瘤在微环境中的生长 [6]。乳酸对巨噬细胞的抑制作用不仅限于肿瘤微环境。在胞吐作用期间,有氧糖酵解被激活并促进乳酸的释放。在此过程中,旁分泌分泌的乳酸增加了抗炎基因TGFB、IL10和M2等基因的表达,从而促进了抗炎环境的发生 [36]。同时,Zhang等 [37] 表明乳酸还可以通过抑制促炎干扰素信号通路促进巨噬细胞稳态。此外,乳酸还能抑制促炎细胞因子TNFα,延缓脂多糖诱导的信号转导 [38] [39]。最新研究还发现,在LPS诱导的炎症模型中,乳酸可抑制LPS,从而发挥抗炎作用 [40]。

4. 乳酸–缺氧调节促进肿瘤免疫逃逸

肿瘤细胞产生的乳酸进一步分泌到细胞外,塑造肿瘤的发病机制和演变过程,在促进癌症进展中发挥关键作用。研究证实,从肿瘤细胞中流出的乳酸在保持酸性表型和通过调节TME (包括细胞侵袭、血管生成、生存信号、转移发展和逃避免疫监视)来促进肿瘤进展方面起着至关重要的作用 [41]。同时,肿瘤细胞来源的乳酸可触发血管内皮生长因子Arg1的表达,以及HIF-1α介导的TAM的M2样极化,促进肿瘤生长 [6]。此外,Liu等发现肿瘤细胞来源的乳酸激活mTORC1信号通路,导致转录因子TFEB及其下游靶基因的表达下调,包括溶酶体基因V型质子ATP酶亚基D2 (atp6v0d2)蛋白质可以酸化溶酶体并促进蛋白质降解,从而靶向HIF-2α溶酶体降解。因此,通过乳酸-atp6v0d2-HIF-2α轴可以促进肿瘤血管生成和生长 [42]。Bohn t等人发现肿瘤有氧糖酵解介导的酸中毒可诱导调节性TAM表型并促进肿瘤生长 [43]。

Treg是一种具有免疫抑制特性的T细胞。它们对于维持免疫耐受、控制免疫排斥和预防自身免疫性疾病至关重要。此外,肿瘤微环境中的大量Treg现在被认为是肿瘤细胞逃避免疫监视的“罪魁祸首”。它们不仅可以通过细胞间的直接接触抑制免疫效应细胞(T细胞、NK细胞、树突状细胞)的功能,还可以通过细胞间的间接接触来分泌可溶性细胞因子(如IL-10、TGF-β)、颗粒酶、穿孔素等。起到免疫抑制作用。Watson等 [44] 证明,肿瘤细胞不仅可以通过创造代谢物缺乏的微环境来剥夺效应T细胞的营养,逃避“猎杀”,还可以为Treg提供乳酸,成为联合“盟友”,共同对抗效应T细胞。但研究发现,一旦阻止了肿瘤微环境中Treg细胞对乳酸的摄取,免疫治疗的效果就会显着提高,肿瘤生长受到抑制 [43]。同时,Zappasodi R等 [45] 阐明阻断Treg免疫检查点CTLA-4 (细胞毒性T淋巴细胞相关蛋白4)稳定Treg的作用取决于肿瘤细胞和Treg的糖酵解活性。低糖酵解细胞对抗CTLA-4免疫治疗更为敏感,这为CTLA-4免疫治疗与糖酵解抑制剂联合治疗肿瘤的策略提供了理论支持。

由上可见,乳酸对宿主免疫及相关炎症反应具有双刃剑作用,使其成为治疗肿瘤和感染性疾病的有希望的靶点 [46]。

5. 组蛋白乳酸化在免疫炎症中的作用

2019年,提出了一种新的蛋白质翻译后修饰,即组蛋白赖氨酸乳酸化(Kla) [7]。这一发现表明,代谢过程中积累的乳酸可作为前体物质,导致组蛋白赖氨酸的乳酸化修饰,并参与细菌感染的M1巨噬细胞的稳态调节。该研究不仅为蛋白质翻译后修饰的研究开辟了新领域,也为代谢物乳酸在肿瘤和免疫领域的研究指明了新方向。

此后,许多科学家对组蛋白乳酸化进行了研究,大量研究证明,它可以调节肿瘤和炎症的发生发展。通过构建巨噬细胞特异性BCAP缺失(BCAP Δ M Φ)在小鼠体内,发现巨噬细胞特异性表达的BCAP抑制两种关键蛋白gsk3b和FoxO1的功能,帮助机体减轻炎症;BCAP通过糖酵解影响乳酸含量,调节组蛋白修饰影响损伤修复基因的表达,进而向修复巨噬细胞的转化 [47]。此外,研究人员发现组蛋白H3赖氨酸18 (H3K18)乳酸化可能介导炎性细胞因子表达和Arg1过表达,刺激修复巨噬细胞的表达,从而发挥巨噬细胞在脓毒症中的抗炎作用 [48]。随后,K Yang等人发现乳酸通过p300/CBP依赖机制促进HMGB1的乳酸化,通过抑制去乙酰化酶SIRT1并将乙酰化酶p300/CBP募集到细胞核(这个过程通过G蛋白偶联受体81 (GPR81)实现)。巨噬细胞中的HMGB1乳酸化/乙酰化通过外泌体分泌途径释放,破坏内皮完整性,增加血管通透性,导致内皮细胞屏障功能障碍,促进脓毒症发展 [49]。研究人员发现,在系统性红斑狼疮(SLE)中,由缺氧诱导因子(HIF)介导的代谢开关,负责在红细胞成熟过程中激活泛素蛋白酶体系统(UPS)。由于狼疮患者红细胞中的乳酸调节UPS的赖氨酸乳酸化,并调节代谢开关介导的UPS的激活,因此红细胞中的线粒体不能被自噬清除。一旦异常红细胞被巨噬细胞摄取,红细胞中的线粒体DNA会刺激强大的炎症通路,称为CGAs/sting通路,进而促进I型干扰素的产生,导致SLE的发生 [50]。近期研究发现,在小鼠腹膜炎模型中,甲基磺酰甲烷(MSM)乳酸-H3K18乳酸化通路促进Arg1表达,控制巨噬细胞极化为M2型,从而减轻炎症 [51]。

组蛋白乳酸化可引起致癌信号,可能是肿瘤治疗的明确靶点。研究 [52] 证实,H3K18乳酸化修饰可影响m6A阅读蛋白YTHN6甲基腺苷RNA结合蛋白2 (YTHDF2)的表达,进而影响Per1/TP53基因的功能,参与眼部黑色素瘤的功能调节,促进黑色素瘤发生发展。它为黑色素瘤的治疗提供了新的治疗靶点。随后发现,一方面,乳酸以组蛋白H3K18乳酸化修饰的形式促进肿瘤浸润髓系细胞(TIM)中甲基转移酶3 (METTL3)的转录;另一方面,乳酸化修饰可直接发生在mettl3蛋白的“CCCH”锌指结构域(ZFD),ZFD作为靶识别结构域(TRD),增强mettl3结合并催化靶RNA的m6A修饰。结果表明,乳酸化-METTL3-JAK1-STAT3调节轴可有效诱导TIMs的免疫抑制功能。从而促进肿瘤的发生和发展 [53]。这些发现表明,METTL3抑制剂可能具有作为一种新的免疫治疗策略干预结直肠癌(CRC)的潜力,并为癌症免疫治疗策略的发展提供了新的线索。最近发现,在肿瘤中,代谢产物乳酸可调节Treg细胞中moesin蛋白的分泌,增强TGF-β信号转导,影响肿瘤微环境,促进肿瘤发生 [54]。研究发现,在肾透明细胞癌(ccrcc)患者中,非活动性von Hippel-Lindau (VHL)与组蛋白乳酸化的存在呈正相关,高水平的组蛋白乳酸化表明预后不良。非活性VHL通过激活组蛋白乳酸化β (PDGFRβ)激活血小板衍生生长因子受体,从而促进ccrcc的进展。相反,PDGFRβ信号转导可进一步刺激组蛋白乳酸化,从而在ccrcc中形成致癌正反馈环 [55]。有趣的是,研究发现,组蛋白乳酸化和PDGFRβ联合抑制PDGFR显著增强了治疗效果,因此,靶向组蛋白乳酸化和PDGFRβ信号之间的正反馈回路可能为ccrcc患者提供有希望的治疗策略。此外,发现肝细胞癌(HCC)临床样本中的组蛋白乳酸化水平显著高于邻近组织。去甲基玉米酯(DML)可进一步抑制H3组蛋白(h3k9la和h3k56la)的乳酸化,抑制肝癌细胞的增殖和迁移,并通过降低乳酸的表达促进肝癌细胞的凋亡 [56]。

6. 乳酸和组蛋白乳酸化在其他缺氧炎症性疾病中的作用

巨噬细胞分为两种亚型:促炎(M1)巨噬细胞和抗炎(M2)巨噬细胞。脑缺氧和缺血后,小胶质细胞倾向于向M1表型极化,M1小胶质细胞释放促炎细胞因子等,损害周围神经元和胶质细胞 [57]。乳酸抑制信号通路并改变组蛋白,以减少炎症巨噬细胞的激活,促进稳态M2样极化 [58]。组蛋白乳酸化促进M1型巨噬细胞向M2型极化,并恢复稳态 [7]。因此,组蛋白乳酸化与缺血性缺氧脑病密切相关,可能是一种潜在的治疗方法 [59]。类似地,它也适用于动脉粥样硬化(AS),主要是因为AS长期以来被认为是动脉壁的慢性炎症疾病,其发病机制主要由巨噬细胞驱动,然后转化为促炎性MI巨噬细胞 [60]。

W Yang等 [61] 首次证实了H3K18和H3K23组蛋白在小鼠卵母细胞、受精卵和植入前胚胎中的核积累。此外,发现体外低氧培养可减少组蛋白的乳酸化,进而损害小鼠的着床前发育。研究 [62] 表明,神经元中乳酸摄入量的增加会导致线粒体能量代谢的增强和更多活性氧(ROS)的产生,从而导致神经元氧化应激。氧化应激损害线粒体和ATP的合成,导致产生更多的活性氧。这种恶性循环最终导致周围神经系统的轴突退化。同时,脑蛋白通过神经兴奋被乳酸化修饰。此外,Li X等 [63] 证实了子痫前期胎盘中组蛋白乳酸化水平升高,并鉴定了滋养层细胞缺氧诱导组蛋白乳酸化促进纤维化的相关基因表达,为子痫前期胎盘功能障碍的机制提供了新的认识。

7. 结语

总之,乳酸是有氧糖酵解的产物。与传统观点相比,乳酸是一种重要的能源 [64]。它是多种细胞(如免疫细胞和肿瘤细胞)的能量来源,也是直接或间接破坏免疫反应的信号分子。组蛋白乳酸化是蛋白质的翻译后修饰,可以调节基因表达。不同的乳酸浓度对不同的疾病也有不同的影响。乳酸浓度和组蛋白乳酸化修饰有助于恢复身体的生理功能。对于不同疾病,何时增加或减少乳酸浓度是未来需要考虑的重要问题。目前,降低乳酸浓度的方法有两种,一种是通过抑制糖酵解和谷氨酰胺的关键酶来阻断乳酸的生产途径,另一种是阻断乳酸的运输 [65] [66] [67]。但如何有效提高乳酸浓度?需要进一步的研究和确认。值得注意的是,鉴于酶的多样性,找到一种能够最大限度地调节乳酸的酶至关重要。此外,如何解决对正常细胞的损伤也是一个大问题 [68]。无论如何,靶向乳酸和组蛋白乳酸化修饰是治疗缺氧相关炎症疾病的一种有希望的方法,但仍有很长的路要走。

基金项目

基于网络药理学的云木香抗癌作用及机制研究,(编号:2022J1215)。

NOTES

*通讯作者。

参考文献

[1] Brooks, G.A. (2009) Cell-Cell and Intracellular Lactate Shuttles. The Journal of Physiology, 587, 5591-5600.
https://doi.org/10.1113/jphysiol.2009.178350
[2] Brooks, G.A. (2020) Lactate as a Fulcrum of Metabolism. Re-dox Biology, 35, Article ID: 101454.
https://doi.org/10.1016/j.redox.2020.101454
[3] Zhang, L., Cao, J., Dong, L. and Lin, H. (2020) TiPARP Forms Nuclear Condensates to Degrade HIF-1α and Suppress Tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 117, 13447-13456.
https://doi.org/10.1073/pnas.1921815117
[4] O’Neill, L.A., Kishton, R.J. and Rathmell, J. (2016) A Guide to Immunometabolism for Immunologists. Nature Reviews Immunology, 16, 553-565.
https://doi.org/10.1038/nri.2016.70
[5] Peng, M., et al. (2016) Aerobic Glycolysis Promotes T Helper 1 Cell Dif-ferentiation through an Epigenetic Mechanism. Science, 354, 481-484.
https://doi.org/10.1126/science.aaf6284
[6] Colegio, O.R., et al. (2014) Functional Polarization of Tu-mour-Associated Macrophages by Tumour-Derived Lactic Acid. Nature, 513, 559-563.
https://doi.org/10.1038/nature13490
[7] Zhang, D., et al. (2019) Metabolic Regulation of Gene Expression by Histone Lactylation. Nature, 574, 575-580.
https://doi.org/10.1038/s41586-019-1678-1
[8] Rivadeneira, D.B. and Delgoffe, G.M. (2018) Antitumor T-Cell Reconditioning: Improving Metabolic Fitness for Optimal Cancer Immunotherapy. Clinical Cancer Research, 24, 2473-2481.
https://doi.org/10.1158/1078-0432.CCR-17-0894
[9] Warburg, O., Wind, F. and Negelein, E. (1927) The Metab-olism of Tumors in the Body. The Journal of General Physiology, 8, 519-530.
https://doi.org/10.1085/jgp.8.6.519
[10] Sharma, N.K. and Pal, J.K. (2021) Metabolic Ink Lactate Modulates Epigenomic Landscape: A Concerted Role of Pro-Tumor Microenvironment and Macroenvironment during Carcinogene-sis. Current Molecular Medicine, 21, 177-181.
https://doi.org/10.2174/1566524020666200521075252
[11] Mueckler, M. and Thorens, B. (2013) The SLC2 (GLUT) Family of Membrane Transporters. Molecular Aspects of Medicine, 34, 121-138.
https://doi.org/10.1016/j.mam.2012.07.001
[12] Amann, T., et al. (2009) GLUT1 Expression Is Increased in Hepatocellular Carcinoma and Promotes Tumorigenesis. The American Journal of Pathology, 174, 1544-1552.
https://doi.org/10.2353/ajpath.2009.080596
[13] Li, X., et al. (2020) Enhanced Glucose Metabolism Mediated by CD147 Contributes to Immunosuppression in Hepatocellular Carcinoma. Cancer Immunology, Immunotherapy, 69, 535-548.
https://doi.org/10.1007/s00262-019-02457-y
[14] Hu, Y., Yang, Z., Bao, D., Ni, J.-S. and Lou, J. (2019) miR-455-5p Suppresses Hepatocellular Carcinoma Cell Growth and Invasion via IGF-1R/AKT/GLUT1 Pathway by Targeting IGF-1R. Pathology-Research and Practice, 215, Article ID: 152674.
https://doi.org/10.1016/j.prp.2019.152674
[15] Feng, J., et al. (2019) PKM2 Is the Target of Proanthocyanidin B2 during the Inhibition of Hepatocellular Carcinoma. Journal of Experimental & Clinical Cancer Research, 38, Article No. 204.
https://doi.org/10.1186/s13046-019-1194-z
[16] Hong, S.M., Lee, Y.-K., Park, I., Kwon, S., Min, S. and Yoon, G. (2019) Lactic Acidosis Caused by Repressed Lactate Dehydrogenase Subunit B Expression Down-Regulates Mitochon-drial Oxidative Phosphorylation via the Pyruvate Dehydrogenase (PDH)—PDH Kinase Axis. Journal of Biological Chemistry, 294, 7810-7820.
https://doi.org/10.1074/jbc.RA118.006095
[17] Hua, S., Liu, C., Liu, L. and Wu, D. (2018) miR-142-3p Inhibits Aerobic Glycolysis and Cell Proliferation in Hepatocellular Carcinoma via Targeting LDHA. Biochemical and Biophysi-cal Research Communications, 496, 947-954.
https://doi.org/10.1016/j.bbrc.2018.01.112
[18] Guo, Y., et al. (2019) Combined Aberrant Expression of NDRG2 and LDHA Predicts Hepatocellular Carcinoma Prognosis and Mediates the Anti-Tumor Effect of Gemcitabine. Interna-tional Journal of Biological Sciences, 15, 1771-1786.
https://doi.org/10.7150/ijbs.35094
[19] Weng, Q., et al. (2020) Integrated Analyses Identify miR-34c-3p/MAGI3 Axis for the Warburg Metabolism in Hepatocellular Carcinoma. The FASEB Journal, 34, 5420-5434.
https://doi.org/10.1096/fj.201902895R
[20] 张慧芳, 曾志军, 周艳宏. 乳酸代谢——肿瘤治疗新靶点[J]. 生物化学与生物物理进展, 2021, 48(2): 147-157.
[21] Zhao, Y., et al. (2019) Targeted Inhibition of MCT4 Disrupts Intra-cellular pH Homeostasis and Confers Self-Regulated Apoptosis on Hepatocellular Carcinoma. Experimental Cell Re-search, 384, Article ID: 111591.
https://doi.org/10.1016/j.yexcr.2019.111591
[22] Liu, H.T., et al. (2019) HSF1: A Mediator in Metabolic Altera-tion of Hepatocellular Carcinoma Cells in Cross-Talking with Tumor-Associated Macrophages. American Journal of Translational Research, 11, 5054-5064.
[23] Pucino, V., et al. (2019) Lactate Buildup at the Site of Chronic Inflamma-tion Promotes Disease by Inducing CD4+ T Cell Metabolic Rewiring. Cell Metabolism, 30, 1055-1074.
https://doi.org/10.1016/j.cmet.2019.10.004
[24] Certo, M., Marone, G., de Paulis, A., Mauro, C. and Pucino, V. (2020) Lactate: Fueling the Fire Starter. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 12, e1474.
https://doi.org/10.1002/wsbm.1474
[25] Pucino, V., Bombardieri, M., Pitzalis, C. and Mauro, C. (2017) Lactate at the Crossroads of Metabolism, Inflammation, and Autoimmunity. European Journal of Immunology, 47, 14-21.
https://doi.org/10.1002/eji.201646477
[26] Certo, M., et al. (2021) Endothelial Cell and T-Cell Crosstalk: Targeting Metabolism as a Therapeutic Approach in Chronic Inflammation. British Journal of Pharmacology, 178, 2041-2059.
https://doi.org/10.1111/bph.15002
[27] Lee, D.C., et al. (2015) A Lactate-Induced Response to Hypoxia. Cell, 161, 595-609.
https://doi.org/10.1016/j.cell.2015.03.011
[28] Haas, R., et al. (2015) Lactate Regulates Metabolic and Pro-Inflammatory Circuits in Control of T Cell Migration and Effector Functions. PLOS Biology, 13, e1002202.
https://doi.org/10.1371/journal.pbio.1002202
[29] Yang, Z., Fujii, H., Mohan, S.V., Goronzy, J.J. and Weyand, C.M. (2013) Phosphofructokinase Deficiency Impairs ATP Generation, Autophagy, and Redox Balance in Rheumatoid Arthritis T Cells. Journal of Experimental Medicine, 210, 2119-2134.
https://doi.org/10.1084/jem.20130252
[30] Yang, Z., et al. (2016) Restoring Oxidant Signaling Suppresses Proar-thritogenic T Cell Effector Functions in Rheumatoid Arthritis. Science Translational Medicine, 8, 331ra38.
https://doi.org/10.1126/scitranslmed.aad7151
[31] Sun, S., et al. (2021) Lactic Acid-Producing Probiotic Saccha-romyces cerevisiae Attenuates Ulcerative Colitis via Suppressing Mzacrophage Pyroptosis and Modulating Gut Microbi-ota. Frontiers in Immunology, 12, Article ID: 777665.
https://doi.org/10.3389/fimmu.2021.777665
[32] Gupta, G.S. (2022) The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation, 1-33.
https://doi.org/10.1007/s10753-022-01680-7
[33] Soto-Heredero, G., Gómez de las Heras, M.M., Gaban-dé-Rodríguez, E., Oller, J. and Mittelbrunn, M. (2020) Glycolysis—A Key Player in the Inflammatory Response. The FEBS Journal, 287, 3350-3369.
https://doi.org/10.1111/febs.15327
[34] Palmieri, E.M., et al. (2020) Nitric Oxide Orchestrates Metabolic Rewiring in M1 Macrophages by Targeting Aconitase 2 and Pyruvate Dehydrogenase. Nature Communications, 11, Article No. 698.
https://doi.org/10.1038/s41467-020-14433-7
[35] Greten, F.R. and Grivennikov, S.I. (2019) Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity, 51, 27-41.
https://doi.org/10.1016/j.immuni.2019.06.025
[36] Morioka, S., et al. (2018) Efferocytosis Induces a Novel SLC Program to Promote Glucose Uptake and Lactate Release. Nature, 563, 714-718.
https://doi.org/10.1038/s41586-018-0735-5
[37] Zhang, W., et al. (2019) Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell, 178, 176-189.
https://doi.org/10.1016/j.cell.2019.05.003
[38] Peter, K., et al. (2015) Lactic Acid Delays the Inflammatory Re-sponse of Human Monocytes. Biochemical and Biophysical Research Communications, 457, 412-418.
https://doi.org/10.1016/j.bbrc.2015.01.005
[39] Dietl, K., et al. (2022) Lactic Acid and Acidification Inhibit TNF Secretion and Glycolysis of Human Monocytes. The Journal of Immunology, 184, 1200-1209.
https://doi.org/10.4049/jimmunol.0902584
[40] Liang, L., Liu, P., Deng, Y., Li, J. and Zhao, S. (2022) L-Lactate Inhibits Lipopolysaccharide-Induced Inflammation of Microglia in the Hippocampus. International Journal of Neurosci-ence, 1-8.
https://doi.org/10.1080/00207454.2022.2084089
[41] Ippolito, L., Morandi, A., Giannoni, E. and Chiarugi, P. (2019) Lactate: A Metabolic Driver in the Tumour Landscape. Trends in Biochemical Sciences, 44, 153-166.
https://doi.org/10.1016/j.tibs.2018.10.011
[42] Liu, N., et al. (2019) Lactate Inhibits ATP6V0d2 Expression in Tumor-Associated Macrophages to Promote HIF-2α- Mediated Tumor Progression. The Journal of Clinical Investiga-tion, 129, 631-646.
https://doi.org/10.1172/JCI123027
[43] Bohn, T., et al. (2018) Tumor Immunoevasion via Ac-idosis-Dependent Induction of Regulatory Tumor-Associated Macrophages. Nature Immunology, 19, 1319-1329.
https://doi.org/10.1038/s41590-018-0226-8
[44] Watson, M.J., et al. (2021) Metabolic Support of Tu-mour-Infiltrating Regulatory T Cells by Lactic Acid. Nature, 591, 645-651.
https://doi.org/10.1038/s41586-020-03045-2
[45] Zappasodi, R., et al. (2021) CTLA-4 Blockade Drives Loss of Treg Stability in Glycolysis-Low Tumours. Nature, 591, 652-658.
https://doi.org/10.1038/s41586-021-03326-4
[46] Luo, Y., Li, L., Chen, X., Gou, H., Yan, K. and Xu, Y. (2022) Effects of Lactate in Immunosuppression and Inflammation: Progress and Prospects. International Reviews of Immunol-ogy, 41, 19-29.
https://doi.org/10.1080/08830185.2021.1974856
[47] Irizarry-Caro, R.A., et al. (2020) TLR Signaling Adapter BCAP Regulates Inflammatory to Reparatory Macrophage Transition by Promoting Histone Lactylation. Proceedings of the National Academy of Sciences of the United States of America, 117, 30628-30638.
https://doi.org/10.1073/pnas.2009778117
[48] Chu, X., et al. (2021) Lactylated Histone H3K18 as a Potential Bi-omarker for the Diagnosis and Predicting the Severity of Septic Shock. Frontiers in Immunology, 12, Article ID: 786666.
https://doi.org/10.3389/fimmu.2021.786666
[49] Yang, K., et al. (2022) Lactate Promotes Macrophage HMGB1 Lactylation, Acetylation, and Exosomal Release in Polymicrobial Sepsis. Cell Death & Differentiation, 29, 133-146.
https://doi.org/10.1038/s41418-021-00841-9
[50] Caielli, S., et al. (2021) Erythroid Mitochondrial Retention Trig-gers Myeloid-Dependent Type I Interferon in Human SLE. Cell, 184, 4464-4479.
https://doi.org/10.1016/j.cell.2021.07.021
[51] Ma, W., et al. (2022) Methylsulfonylmethane Protects against Lethal Dose MRSA-Induced Sepsis through Promoting M2 Macrophage Polarization. Molecular Immunology, 146, 69-77.
https://doi.org/10.1016/j.molimm.2022.04.001
[52] Yu, J., et al. (2021) Histone Lactylation Drives Oncogenesis by Facilitating m6A Reader Protein YTHDF2 Expression in Ocular Melanoma. Genome Biology, 22, Article No. 85.
https://doi.org/10.1186/s13059-021-02308-z
[53] Xiong, J., et al. (2022) Lactylation-Driven METTL3-Mediated RNA m6A Modification Promotes Immunosuppression of Tumor-Infiltrating Myeloid Cells. Molecular Cell, 82, 1660-1677.
https://doi.org/10.1016/j.molcel.2022.02.033
[54] Gu, J., et al. (2022) Tumor Metabolite Lactate Pro-motes Tumorigenesis by Modulating MOESIN Lactylation and Enhancing TGF-β Signaling in Regulatory T Cells. Cell Reports, 39, Article ID: 110986.
https://doi.org/10.1016/j.celrep.2022.110986
[55] Yang, J., et al. (2022) A Positive Feedback Loop between Inac-tive VHL-Triggered Histone Lactylation and PDGFRβ Signaling Drives Clear Cell Renal Cell Carcinoma Progression. International Journal of Biological Sciences, 18, 3470- 3483.
https://doi.org/10.7150/ijbs.73398
[56] Pan, L., et al. (2022) Demethylzeylasteral Targets Lactate by Inhibiting Histone Lactylation to Suppress the Tumorigenicity of Liver Cancer Stem Cells. Pharmacological Research, 181, Article ID: 106270.
https://doi.org/10.1016/j.phrs.2022.106270
[57] Rocha-Ferreira, E. and Hristova, M. (2015) Antimicrobial Peptides and Complement in Neonatal Hypoxia-Ischemia Induced Brain Damage. Frontiers in Immunology, 6, Article ID: 00056.
https://doi.org/10.3389/fimmu.2015.00056
[58] Ivashkiv, L.B. (2020) The Hypoxia-Lactate Axis Tempers Inflam-mation. Nature Reviews Immunology, 20, 85-86.
https://doi.org/10.1038/s41577-019-0259-8
[59] Zhou, Y., Yang, L., Liu, X. and Wang, H. (2022) Lactylation May Be a Novel Posttranslational Modification in Inflammation in Neonatal Hypoxic-Ischemic Encephalopathy. Frontiers in Pharmacology, 13, Article ID: 926802.
https://doi.org/10.3389/fphar.2022.926802
[60] Jin, F., et al. (2021) Targeting Epigenetic Modifiers to Repro-gramme Macrophages in Non-Resolving Inflammation-Driven Atherosclerosis. European Heart Journal Open, 1, oeab022.
https://doi.org/10.1093/ehjopen/oeab022
[61] Yang, W., et al. (2021) Hypoxic in Vitro Culture Reduces Histone Lactylation and Impairs Pre-Implantation Embryonic Development in Mice. Epigenetics & Chromatin, 14, Arti-cle No. 57.
https://doi.org/10.1186/s13072-021-00431-6
[62] Jia, L., et al. (2021) Rheb-Regulated Mitochondrial Pyruvate Metabolism of Schwann Cells Linked to Axon Stability. Developmental Cell, 56, 2980-2994.
https://doi.org/10.1016/j.devcel.2021.09.013
[63] Li, X., et al. (2022) Hypoxia Regulates Fibrosis-Related Genes via Histone Lactylation in the Placentas of Patients with Preeclampsia. Journal of Hypertension, 40, 1189-1198.
https://doi.org/10.1097/HJH.0000000000003129
[64] Rabinowitz, J.D. and Enerbäck, S. (2020) Lactate: The Ugly Duckling of Energy Metabolism. Nature Metabolism, 2, 566-571.
https://doi.org/10.1038/s42255-020-0243-4
[65] Sanità, P., et al. (2014) Tumor-Stroma Metabolic Relationship Based on Lactate Shuttle Can Sustain Prostate Cancer Progression. BMC Cancer, 14, Article No. 154.
https://doi.org/10.1186/1471-2407-14-154
[66] Choi, S.Y.C., et al. (2016) The MCT4 Gene: A Novel, Potential Target for Therapy of Advanced Prostate CancerMCT4 as a Potential Therapeutic Target for CRPC. Clinical Cancer Re-search, 22, 2721-2733.
https://doi.org/10.1158/1078-0432.CCR-15-1624
[67] Choi, S.Y.C., et al. (2018) Targeting MCT 4 to Reduce Lac-tic Acid Secretion and Glycolysis for Treatment of Neuroendocrine Prostate Cancer. Cancer Medicine, 7, 3385-3392.
https://Doi.Org/10.1002/Cam4.1587
[68] Zhang, Y., et al. (2022) Lactate: The Mediator of Metabolism and Im-munosuppression. Frontiers in Endocrinology, 13, Article ID: 901495.
https://doi.org/10.3389/fendo.2022.901495