近40年来四川盆地参考作物蒸散量时空特征分析
Impact of Climate Change on Evapotranspiration of Reference Crops in the Sichuan Basin
DOI: 10.12677/CCRL.2022.116107, PDF,  被引量 下载: 181  浏览: 276  科研立项经费支持
作者: 杨 羽:成都信息工程大学大气科学学院,四川 成都;成都超有爱科技有限公司,四川 成都;王俣浩*, 朱 瑶, 辛治轩, 张楚楠:成都信息工程大学大气科学学院,四川 成都
关键词: 参考作物蒸散量Mann-Kendall突变检验Morlet小波分析四川盆地Reference Crop Evapotranspiration Mann Kendall Mutation Test Morlet Wavelet Analysis Sichuan Basin
摘要: 准确估算参考作物蒸散量对于灌溉预报、水资源调度和规划有着重要意义。本文基于1978~2016年四川盆地8个资料完整且具有代表性气象站点的观测数据,利用Penman-Monteith公式计算参考作物蒸散量,分析了参考作物蒸散量的时空变化特征,并初步分析了其与气象要素的关系,结果表明:1) 四川盆地年参考作物蒸散量近40年来整体上呈显著增加趋势,空间分布上表现为盆地中部区域最小,北部区域最大,最大值达到了1149 mm;2) Mann-Kendall突变检测表明年参考作物蒸散量在2000年发生了显著的突变型增大,Morlet小波分析显示参考作物蒸散量存在10~16年和50~60年时间尺度周期,其中50~60年时间尺度的周期较为显著。3) 参考作物蒸散量与气温、日照时数和风速呈极显著正相关,与相对湿度呈极显著负相关关系。
Abstract: Accurate estimation of reference crop evapotranspiration is of great significance for irrigation forecasting, water resources scheduling and planning. Based on the observation data from eight mete-orological stations with complete and representative data in the Sichuan basin from 1978 to 2016, the spatial and temporal variation characteristics of reference crop evapotranspiration calculated by the Penman-Monteith model is analyzed. The results show that: 1) the annual average reference crop evapotranspiration has shown an overall significant increasing trend in the past 40 years. In terms of spatial distribution, the reference crop evapotranspiration is the smallest in the middle area of the basin and is the largest in the north area with the maximum value 1149 mm. 2) Mann-Kendall mutation detection shows that the annual reference crop evapotranspiration has increased significantly in 2000, and Morlet wavelet analysis shows that the reference crop evapo-transpiration has two time scale cycles which are from 10 to 16 years and from 50 to 60 years, among which the latter cycle is more significant. 3) The reference crop evapotranspiration is highly significantly positively correlated with temperature, sunshine hours and wind speed, while is highly negatively correlated with relative humidity.
文章引用:杨羽, 王俣浩, 朱瑶, 辛治轩, 张楚楠. 近40年来四川盆地参考作物蒸散量时空特征分析[J]. 气候变化研究快报, 2022, 11(6): 1033-1040. https://doi.org/10.12677/CCRL.2022.116107

参考文献

[1] Chen, D., Rojas, M., Samset, B.H., et al. (2021) Framing, Context, and Methods. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 147-286.
[2] 张志高, 郑美洁, 蔡茂堂, 等. 1960-2019年河南省参考作物蒸散量时空演变与成因分析[J]. 节水灌溉, 2021(3): 44-50.
[3] Allen, R.G., Pereira, S., Raes, D. and Smith, M. (1998) FAO Irrigation and Drainage Paper 56: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO, Rome.
[4] Brutsaert, W. and Parl, M.B. (1998) Hydrologic Cycle Explains the Evaporation Paradox. Nature, 396, Ar-ticle No. 30.
https://doi.org/10.1038/23845
[5] 王君勤, 叶生进, 樊毅. 中国不同气候区参考作物蒸散量计算模型适用性评价[J]. 节水灌溉, 2022(3): 82-91.
[6] 朱岗昆, 杨纫章. 气象记录在经济建设中的应用(II): 中国各地蒸发量的初步研究[J]. 气象学报, 1955, 26(1-2): 1-28.
[7] 黄娟, 申双和, 李新建, 张文斌. 1961-2010年中国参考作物蒸散量变化趋势与时空格局[J]. 水土保持研究, 2016, 23(5): 240-244.
[8] 檀艳静, 胡程达, 史桂芬. 黄淮海区域参考作物蒸散量的时空变化特征及影响因素[J]. 干旱气象, 2020, 38(5): 794-803.
[9] 王鹏涛, 延军平, 蒋冲, 刘宪锋. 华北平原参考作物蒸散量时空变化及其影响因素分析[J]. 生态学报, 2014, 34(19): 5589-5599.
[10] 张青雯, 崔宁博, 冯禹, 龚道枝, 胡笑涛. 中国西南五省参考作物蒸散量时空变化分析[J]. 灌溉排水学报, 2016, 35(11): 80-87.
[11] 刘悦, 崔宁博, 李果, 等. 近56年西南地区四季参考作物蒸散量变化成因分析[J]. 节水灌溉, 2018(12): 54-59.
[12] 周丽, 聂常乐, 任钇潼, 梁晶晶, 徐华. 四川冬春季参考作物蒸散量时空变化及其成因[J]. 浙江农业学报, 2020, 32(4): 559-570.
[13] 程正兴, 杨守志, 冯晓霞. 小波分析的理论、算法、进展和应用[M]. 北京: 国防工业出版社, 2007.
[14] 赵媛媛, 何春阳, 姚辉, 黄庆旭, 杨洋. 干旱过程对耕地自然生产功能的影响[J]. 农业工程学报, 2009, 25(12): 278-284.
[15] 于东平, 张鑫, 何毅, 石鑫. 青海省东部高原农业区参考作物蒸散量的时空变化[J]. 农业工程学报, 2012, 28(2): 66-71.